RU2715825C1 - Гидротрансформатор с регулируемым передаточным отношением - Google Patents

Гидротрансформатор с регулируемым передаточным отношением Download PDF

Info

Publication number
RU2715825C1
RU2715825C1 RU2019118831A RU2019118831A RU2715825C1 RU 2715825 C1 RU2715825 C1 RU 2715825C1 RU 2019118831 A RU2019118831 A RU 2019118831A RU 2019118831 A RU2019118831 A RU 2019118831A RU 2715825 C1 RU2715825 C1 RU 2715825C1
Authority
RU
Russia
Prior art keywords
wheel
bearings
crank
gear ratio
turbine
Prior art date
Application number
RU2019118831A
Other languages
English (en)
Inventor
Фарит Фаварисович Ахияров
Original Assignee
Фарит Фаварисович Ахияров
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Фарит Фаварисович Ахияров filed Critical Фарит Фаварисович Ахияров
Priority to RU2019118831A priority Critical patent/RU2715825C1/ru
Application granted granted Critical
Publication of RU2715825C1 publication Critical patent/RU2715825C1/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/30Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F01C1/34Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H41/00Rotary fluid gearing of the hydrokinetic type
    • F16H41/04Combined pump-turbine units

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Fluid Gearings (AREA)

Abstract

Изобретение относится к гидропередачам. Гидротрансформатор с регулируемым передаточным отношением состоит из корпуса с цапфой. Цапфа имеет отверстие, выполненное с эксцентриситетом, в котором через подшипники и эксцентриковый механизм установлен ведущий вал с насосным колесом, имеющим лопасти, размещенные внутри направляющего колеса. Колесо выполнено с окнами и направляющими канавками с пальцами, фиксирующими лопасти. Турбинное колесо установлено через подшипники, с одной стороны в корпусе, а с другой - на кривошип, выполненный с противовесами и установленный через подшипники на цапфе. Направляющее колесо установлено с эксцентриситетом через подшипники на кривошип, имеющий для управления фрикционную муфту и электромагнитный захват. Достигается упрощение конструкции. 3 ил.

Description

Изобретение относится к машиностроению, а в частности к объемным гидропередачам и может быть использовано в трансмиссиях самоходных транспортных средств и в приводах строительных машин.
Достаточно широкое распространение объемные гидропередачи с применением аксиально-поршневых гидронасосов и гидромоторов получили в приводах строительных машин, пластинчатые гидромашины нашли свое применение в объемных приводах металлорежущих станков. [1] Многочисленные попытки использовать объемные гидропередачи для привода транспортных средств не дали существенных результатов. Достаточно широкое распространение в автомобилестроении получили гидродинамические передачи, так называемые гидротрансформаторы, обеспечивающие передачу крутящего момента за счет гидродинамического воздействия направленного потока рабочей жидкости от насосного колеса на лопатки турбинного колеса. Гидротрансформаторы, по причине невысокого коэффициента трансформации крутящего момента (меньше трех в режиме остановки ведомого вала) используются совместно с гидромеханическими коробками перемены передач, образуя общий узел, имеющий название автоматической коробки перемены передач (АКПП). АКПП технологически достаточно сложный и дорогостоящий агрегат, имеющий на единицу передаваемой мощности массу и габариты значительно превышающие указанные параметры механических коробок перемены передач. [2]
Предлагаемый гидротрансформатор с регулируемым передаточным отношением (регулируемый гидротрансформатор) рассматривается как агрегат для изменения в автоматическом режиме скоростных и тяговых характеристик транспортных и самоходных машин и может заменить существующие АКПП без снижения технико-экономических показателей и ресурса эксплуатации, а по масса-габаритным характеристикам и по удельным производственным затратам иметь значительно лучшие показатели. По классификации гидромашин регулируемый гидротрансформатор можно отнести к роторно-лопастной гидропередаче с рычажным механизмом, но в результате проведенного поиска и анализа объемных и гидродинамических передач, по указанной классификации, известную гидромашину схожую по конструкции с предлагаемым регулируемым гидротрансформатором обнаружить не удалось. При отсутствии аналогов, имеющих схожие конструктивные особенности, предлагается рассматривать регулируемый гидротрансформатор в сравнении с существующими АКПП, имеющими тоже назначение и такой же уровень автоматизации. В отличии от АКПП регулируемый гидротрансформатор обеспечивает бес ступенчатое изменение передаточного отношения, состоит из значительно меньшего количества сборочных единиц.
Описание чертежей.
На фиг. 1 изображен поперечный разрез регулируемого гидротрансформатора в режиме задней передачи.
На фиг. 2 изображен поперечный разрез регулируемого гидротрансформатора в режиме движения вперед.
На фиг. 3 изображен продольный разрез регулируемого гидротрансформатора в режиме движения вперед.
В корпусе 1 с цапфой 2 через подшипники 3 и эксцентриковый механизм 4 установлен ведущий вал 5 выполненный с насосным колесом 6 имеющим цилиндрические шарниры 7 с лопастями 8, размещенными в направляющем колесе 9 имеющим окна 10, направляющие канавки 11 с пальцами 12 фиксирующими лопасти 13 закрепленными через цилиндрические шарниры 14 на турбинном колесе 15 выполненным с шлицевой ступицей 16 для соединения с ведомым валом 17, причем турбинное колесо установлено в подшипниках 18 и 19, а направляющее колесо 9 установленное через подшипники 20 на кривошип 21 выполненный с противовесами 22 и 23, установленный в подшипниках 24 имеет управление через электромагнитный захват 25 и фрикционную муфту 26.
Осуществление изобретения.
В корпусе 1 установлена в оси, являющейся центральной осью, цапфа 2 имеющая отверстие выполненное с эксцентриситетом, где для привода насосного колеса 6 имеется ведущий вал 5 установленный через подшипники 3 и эксцентриковый механизм 4 состоящий из двух эксцентриковых втулок (эксцентриков) установленных одна в другой с возможностью вращения как в цапфе так и между собой обеспечивающих при повороте в противоположные стороны на 180° линейное перемещение ведущего вала на расстояние равное четырем эксцентриситетам втулок (эксцентриковый механизм Митрофанова А.А-SU 1573271), причем насосное колесо 6 имеющее закрепленные посредством цилиндрических шарниров 7 лопасти 8 размещено внутри направляющего колеса 9 которое имеет окна 10, направляющие канавки 11 с пальцами 12 фиксирующие лопасти 13 установленные через цилиндрически шарниры 14 на турбинном колесе 15 имеющим шлицевую ступицу 16 для соединения с ведомым валом 17 и установленном в центральной оси, с одной стороны через подшипники 18 в корпусе, а с другой через подшипники 19 на кривошип 21 выполненным с противовесами 22 и 23 установленным через подшипники 24 на цапфу 2 в центральной оси, а направляющее колесо 9 установлено через подшипники 20 также на кривошип 21, но только с эксцентриситетом являющимся радиусом кривошипа, причем для торможения кривошип соединен с фрикционной муфтой 26, а для его позиционирования предусмотрен электромагнитный захват 25
Работа регулируемого гидротрансформатора.
Работу регулируемого гидротрансформатора в качестве трансмиссии транспортного средства предлагается рассматривать на основных рабочих режимах, сопоставляя их с режимами, которые предусмотрены для АКПП. Изменение режимов работы в регулируемом гидротрансформаторе производится поворотом на заданный угол эксцентриков в эксцентриковом механизме обеспечивающими перемещение ведущего вала, совместно с насосным колесом, в заданные для каждого режима положения.
На всех режимах работы, кроме режима прямой передачи, кривошип фиксируется в заданном положении действием на противовес магнитного поля электромагнитного захвата, закрепленного на корпусе и фрикционной муфтой, обеспечивающей торможение, подвод в заданное положение и удержание кривошипа от вращения. Кривошип фиксируется в положении, при котором геометрическая ось вращения направляющего колеса совпадает с осью вращения насосного колеса, установленного в режиме нейтральной передаче. При соосном размещении насосного колеса и направляющего колеса, в положении эксцентрикового механизма «N» на нейтральной передачи, объем пространства между лопастями (межлопастное пространство), при вращении насосного колеса остается неизменным и вытеснение жидкости в турбинное колесо и обратно из турбинного колеса не производится и соответственно не производится передача крутящего момента.
Перевод эксцентрикового механизма из положения «N» в положение «R» соответствующее режиму задней передачи при котором ось вращения насосного колеса смещается от оси вращения направляющего колеса в сторону от центральной оси на величину равную отношению значения радиуса кривошипа к расчетному значению передаточного числа задней передачи. В этом положении (см. фиг. 1) объем межлопастного пространства, левой части насосного колеса по направлению вращения, уменьшается, производя вытеснение жидкости через окна в область турбинного колеса. Результирующая сила действия статического давления жидкости на турбинное колесо, направленная в сторону увеличения объема межлопастного пространства, обеспечивает его вращение вправо.
Перевод эксцентрикового механизма в положение «D» соответствующее режиму движения вперед, на первом этапе начала движения с места, при котором ось вращения насосного колеса смещается от оси вращения направляющего колеса в сторону к центральной оси на величину равную отношению значения радиуса кривошипа к расчетному значению передаточного числа первой передачи. В этом положении (см. фиг. 2), объем межлопастного пространства правой части насосного колеса по направлению вращения уменьшается, производя вытеснение жидкости через окна в область турбинного колеса. Результирующая сила действия статического давления жидкости на турбинное колесо, направленная в сторону увеличения объема межлопастного пространства, обеспечивает его вращение в лево.
На втором и последующих этапах, при разгоне транспортного средства эксцентриковый механизм, посредством сервоуправления (на чертежах не указан), в соответствии с достигнутой скоростью продолжает перемещать ведущий вал совместно с насосным колесом в направлении к центральной оси, обеспечивая дальнейшее увеличение объема подачи рабочей жидкости насосным колесом и как следствие плавное снижение передаточного отношения. При этом, в результате действия статического давления и гидродинамического воздействия направленного потока рабочей жидкости на направляющее колесо, со стороны насосного и турбинного колес на кривошипе создается крутящий момент который определяется как разница значений крутящих моментов создаваемых на насосном и турбинном колесах, причем крутящий момент на кривошипе изменяется от максимального, в начале движения (направленного против вращения насосного колеса), до нуля, на режимах близких к прямой передачи. На режимах близких к примой передачи значительное влияние на формирование крутящего момента создаваемого на кривошипе в направлении вращения насосного колеса оказывает гидродинамическое воздействие потока рабочей жидкости на направляющее колесо, которое в свою очередь обеспечивается направлением изгиба лопастей насосного и турбинного колес.
С переводом эксцентрикового механизма в крайнее положение в режиме «D», при котором ось вращения насосного колеса совмещается с центральной осью, производится разблокировка кривошипа фрикционной муфтой и электромагнитным захватом. При разблокировке кривошип начинает вращаться и догонять по частоте вращения насосное колесо, причем по мере его разгона, частота вращения направляющего колеса, в его геометрической оси, снижается, а частота его эксцентричного вращения растет. Когда кривошип по частоте вращения догонит насосное колесо, регулируемый гидротрансформатор переходит в режим блокировки на прямой передаче при котором между насосным и турбинным колесом (см. фиг. 3) вращающимися соосно в центральной оси и с одинаковой частотой, вращается направляющее колесо с той же частотой, но только эксцентрично относительно центральной оси. Данное взаимное перемещение насосного, турбинного и направляющего колес производится без изменения в них объема межлопастного пространства и, следовательно, без перемещения рабочей жидкости, без трения лопастей о стенки направляющего и турбинного колес. В режиме блокировки на прямой передаче регулируемый гидротрансформатор имеет максимально высокий гидравлический и механический КПД, в этом режиме, а он является основным для транспортного средства, его детали не подвергаются нагрузкам и износу.
При изменениях скоростных и тяговых условий движения транспортного средства производится выход из режима блокировки на прямой передаче, при котором фрикционная муфта и электромагнитный захват останавливают в заданном положении кривошип, а сервоуправление переводит эксцентриковый механизм на соответствующие для данной скорости значения передаточного числа регулируемого гидротрансформатора, обеспечивая работу двигателя в оптимальных режимах.
Новизна предлагаемого изобретения заключается в радиальном размещении узлов гидропередачи позволяющее обеспечивать передачу рабочей жидкости непосредственно от насосного колеса к турбинному и обратно, причем учитывая объемную производительность и скорости движения жидкости значительная часть передаваемой энергии производится за счет гидродинамического воздействия потока рабочей жидкости на лопасти турбинного колеса.

Claims (1)

  1. Гидротрансформатор с регулируемым передаточным отношением, состоящий из корпуса с цапфой, имеющей отверстие, выполненное с эксцентриситетом, в котором через подшипники и эксцентриковый механизм установлен ведущий вал с насосным колесом, имеющим в цилиндрических шарнирах лопасти, размещенные внутри направляющего колеса, выполненного с окнами и направляющими канавками с пальцами, фиксирующие лопасти, установленные через цилиндрические шарниры на турбинном колесе, имеющем шлицевую ступицу для соединения с ведомым валом, причем турбинное колесо установлено через подшипники с одной стороны в корпусе, а с другой - на кривошип, выполненный с противовесами и установленный через подшипники на цапфе, а направляющее колесо установлено с эксцентриситетом через подшипники на кривошип, имеющий для управления фрикционную муфту и электромагнитный захват.
RU2019118831A 2019-06-17 2019-06-17 Гидротрансформатор с регулируемым передаточным отношением RU2715825C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019118831A RU2715825C1 (ru) 2019-06-17 2019-06-17 Гидротрансформатор с регулируемым передаточным отношением

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019118831A RU2715825C1 (ru) 2019-06-17 2019-06-17 Гидротрансформатор с регулируемым передаточным отношением

Publications (1)

Publication Number Publication Date
RU2715825C1 true RU2715825C1 (ru) 2020-03-03

Family

ID=69768329

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019118831A RU2715825C1 (ru) 2019-06-17 2019-06-17 Гидротрансформатор с регулируемым передаточным отношением

Country Status (1)

Country Link
RU (1) RU2715825C1 (ru)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU167413A1 (ru) * Ю. Д. Амиров Гидротрансформатор
SU734028A1 (ru) * 1973-07-17 1980-05-15 За витель Гидромеханическа передача транспортного средства
SU1511498A1 (ru) * 1986-09-01 1989-09-30 И.М.Данипьченко Инерционно-импульсна передача
US5597295A (en) * 1992-11-10 1997-01-28 Pipaloff; Alexander G. Multi-chamber rotary fluid machine with at least two ring members carrying vanes
RU2259282C2 (ru) * 2003-07-25 2005-08-27 Темираев Руслан Казбекович Гидравлико-инерционный преобразователь, система управления им, коробка перемены передач и способ преобразования ими крутящего момента
RU2362881C2 (ru) * 2004-11-04 2009-07-27 Владимир Анисимович Романов Многоцилиндровая турбина объемного расширения

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU167413A1 (ru) * Ю. Д. Амиров Гидротрансформатор
SU734028A1 (ru) * 1973-07-17 1980-05-15 За витель Гидромеханическа передача транспортного средства
SU1511498A1 (ru) * 1986-09-01 1989-09-30 И.М.Данипьченко Инерционно-импульсна передача
US5597295A (en) * 1992-11-10 1997-01-28 Pipaloff; Alexander G. Multi-chamber rotary fluid machine with at least two ring members carrying vanes
RU2259282C2 (ru) * 2003-07-25 2005-08-27 Темираев Руслан Казбекович Гидравлико-инерционный преобразователь, система управления им, коробка перемены передач и способ преобразования ими крутящего момента
RU2362881C2 (ru) * 2004-11-04 2009-07-27 Владимир Анисимович Романов Многоцилиндровая турбина объемного расширения

Similar Documents

Publication Publication Date Title
US4342238A (en) Automotive drive system with continuously variable transmission
US8282522B2 (en) Mechanical-hydraulic continuously variable transmission, the method and vehicle mechanical-hydraulic continuously variable transmission
US2685255A (en) Vane type hydraulic drive
RU2715825C1 (ru) Гидротрансформатор с регулируемым передаточным отношением
EP2150727B1 (en) A continuous variable transmission assembly
US11339873B2 (en) Hydraulic mechanical transmission
US20230001981A1 (en) Speed shifting apparatus, transmission control method, steering system, and steering control method
RU2518136C2 (ru) Способ преобразования возвратно-поступательного движения поршней в цилиндрах поршневого ротора во вращательное движение ротора и передаточный механизм
RU88088U1 (ru) Гидромеханическое устройство преобразования возвратно-поступательного движения во вращательное с бесступенчатым изменением передаточного числа
CN103939537B (zh) 齿轮传动无级变速器
CN110307319B (zh) 摇摆式机械脉动无级变速器
RU2668450C2 (ru) Бесступенчатая коробка передач, установленная со стороны ходового винта для регулирования скорости
CN104088973B (zh) 一种齿轮传动液压调速的无级变速器
RU2557105C1 (ru) Гидравлическая передача
KR101373453B1 (ko) 무단변속기
CN114439896B (zh) 一种新型汽车无级调速变速器系统
CN103244627A (zh) 双轮调偏心平衡无级变速器
RU2565463C2 (ru) Бесступенчатая трансмиссия
KR20000012155A (ko) 무단변속기 및 그를 이용한 차량용 변속장치
RU2240455C2 (ru) Импульсная бесступенчатая передача
RU2042065C1 (ru) Планетарный редуктор
SU181465A1 (ru) Редуктор для тяжелонагруженных приводов
RU2341708C2 (ru) Шестеренчатый вариатор-2
CN114439897A (zh) 一种新型汽车变速器系统的无级调速模块
RU96203U1 (ru) Гидромеханическое устройство преобразования возвратно-поступательного движения во вращательное с бесступенчатым изменением передаточного числа