RU2715513C1 - Способ получения литого композиционного материала на основе меди - Google Patents
Способ получения литого композиционного материала на основе меди Download PDFInfo
- Publication number
- RU2715513C1 RU2715513C1 RU2019125217A RU2019125217A RU2715513C1 RU 2715513 C1 RU2715513 C1 RU 2715513C1 RU 2019125217 A RU2019125217 A RU 2019125217A RU 2019125217 A RU2019125217 A RU 2019125217A RU 2715513 C1 RU2715513 C1 RU 2715513C1
- Authority
- RU
- Russia
- Prior art keywords
- copper
- amount
- melt
- chromium
- production
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/06—Making non-ferrous alloys with the use of special agents for refining or deoxidising
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/10—Alloys containing non-metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
Abstract
Изобретение относится к области цветной металлургии, в частности литейному производству, а именно к получению литого композиционного материала (ЛКМ) на основе меди для изготовления деталей электротехнического назначения, работающих при повышенных температурах и давлениях. Способ получения литого композиционного материала на основе меди включает плавление меди под покровом тонкомолотого графита, введение в расплав реакционной смеси порошков хрома и бора для синтеза армирующих дискретных частиц диборида хрома CrB2, при этом расплав предварительно раскисляют наноразмерным алмазографитовым порошком фракции 60-75 нм в количестве 0,06-0,07 мас. %, после чего в расплав вводят реакционную смесь порошков хрома и бора в количестве 0,5-1,0 мас. %, а затем последовательно вводят модифицирующую добавку в виде кадмия в количестве 0,1 мас. % и микролегирующую добавку РЗМ в виде мишметалла Мц50ЖЗ в количестве 0,1 мас. %. Изобретение направлено на получение литого композиционного материала на основе меди с улучшенной структурой и низким удельным сопротивлением. 1 табл.
Description
Изобретение относится к области цветной металлургии, в частности литейному производству, и может быть использовано для получения материалов электротехнического назначения, работающих в условиях электроэрозионного износа при воздействии высоких нагрузок и повышенных температур. Данный материал может применяться для изготовления электродов точечной контактной сварки листовых металлов, требующих сочетания высокой прочности при повышенных температурах, электропроводности и пластичности.
Известен способ получения литого композиционного сплава электротехнического назначения на основе меди, заключающийся в раскислении медного расплава 0,7% фосфористой медью, получении образцов способом совмещенного литья и прессования в установке для штамповки электродов контактной сварки, последующей закалки и старении медных образцов [Патент РФ №2412035. МПК В23К 35/40, В23К 11/30/ С.Л. Бусыгин А.И. Демченко, А.С. Рафальский; заявл. 09.03.2010; опубл. 20.02.2011, Бюл. №5]. В качестве основного компонента используется медный лом, а также легирующий элемент в виде таблетки, состоящей из 100 г медного порошка и 20 г наноструктурированных частиц хрома. Дисперсно-твердеющие хромовые бронзы, содержащие от 0,4 до 1,0 масс. % Cr, обладают после закалки и старения высокой электропроводностью, однако температура рекристаллизации сплава снижается при эксплуатации электродов, что обусловлено растворимостью частичек твердого раствора на основе хрома в твердом растворе на основе меди. Недостатками данного метода также являются: необходимость проведения термической обработки, многооперационность технологического процесса, длительность использования термических печей, наличие плавильного и прессового оборудования и невозможность его применения в промышленных масштабах. Кроме того, раскисление расплава на основе меди фосфористой медью снижает ее электропроводность.
Частично этих недостатков лишен дисперсно-упроченный медный сплав, в состав которого введены готовые порошки карбидов переходных металлов, хорошо смачиваемых медью [Патент 09/122869 США. МПК7 С22С F 3/00. Yazaki Cor., Choh Takao, fujimaki, hirohiko a.o. Carbide dispersed strengthened copper alloy; Заявл. 27.07.1998. Опубл. 09.10.2001] Такие композиционные материалы обладают повышенными физико-механическими свойствами. В частности, при упрочнении медной матрицы порошком карбида хрома (Cr3C2) прочность на разрыв при 400°С составила 649 Н/мм2, что больше чем в два раза, чем у образца из чистой меди (301 Н/мм2) при той же температуре. Кроме того, полученный материал имеет удовлетворительную электропроводность, которая составляет 60% чистой меди. К недостаткам данного способа следует отнести применение порошков карбидов достаточно крупных размеров (16 мкм), которые склонны к дальнейшему укрупнению за счет коагуляции в расплаве меди с повышенным содержанием кислорода. Окисление металла происходит в процессе переплава катодной меди в открытой индукционной тигельной печи и в процессе замешивания в расплав порошков карбидов.
Известен способ изготовления композиционного материала для электрических контактов на медной основе, заключающийся в расплавлении меди, введении в медный расплав порошков графита 0,2-2,0% и хрома 0,1-1,0% фракцией от 0,1 до 10 мкм для синтеза упрочняющей фазы (Cr3C2) в расплаве меди с одновременным воздействием на полученный расплав вертикальных низкочастотных колебаний (НЧК) и последующей кристаллизации [Патент РФ №2567418. МПК Н01Н 1/02, С22С 1/02. Способ получения композиционного материала на основе меди для электрических контактов / заявл. 11.06.2014; опуб. 10.11.2015]. Применение НЧК позволило уменьшить длительность и снизить температуру синтеза карбида хрома. При этом частицы графита менее 0,1 мкм полностью переходили в карбидную фазу, а более крупные частицы образовывали структурный комплекс «ядро»(графит)-оболочка (карбид хрома), что существенно снижает прочность изделий, работающих при повышенных температурах и давлениях, например электродов контактной сварки. Образцы ЛКМ, полученные предложенным способом обладают высокими значениями твердости и низким электросопротивлением.
Основным недостатком данного метода является необходимость применения НЧК для разрушения конгломератов армирующих фаз и равномерного распределения их в объеме расплава, при этом в процессе литья и кристаллизации композиционных сплавов наблюдается повторное укрупнение частиц, о чем свидетельствует наличие в структуре композита включений карбидов различных размеров. Как известно, в процессе кристаллизации окисленной меди в ее структуре появляется оксидная фаза (Cu2O), которая может выделяться как в чистом виде, так и в виде эвтектики (Cu+Cu2O). Данное состояние системы на основе меди является микрогетерогенным. Наличие в расплаве эвтектики способствует формированию конгломератов армирующих фаз, образующихся в процессе их синтеза.
Из известных способов получения литых композиционных материалов на основе меди наиболее близким по технической сущности является способ, описанный в работе [Бабкин В.Г., Трунова А.И. Влияние технологических факторов на физико-механические свойства и электропроводность медематричных композитов // Журнал Сибирского федерального университета. Серия: Техника и технологии. 2018. Т. 11, №4. - С. 427-432], включающий синтез упрочняющей фазы борида хрома в расплаве меди при 1250°С в процессе химического взаимодействия порошков хрома фракции до 1 мм и бора фракции 100-200 мкм, введенных в расплав в стехиометрическом соотношении, соответствующему дибориду хрома (CrB2) и с учетом частичного растворения хрома в решетке меди. Выбор упрочняющей фазы CrB2 связан с его высокой электро- и теплопроводностью и стойкостью к окислению до 600-700°С. Композиционный материал имеет высокую прочность при повышенных температурах, электропроводность и достаточную пластичность. Однако такой способ имеет ряд недостатков: крупнозернистая столбчатая структура и анизотропия свойств материала, что связано с микрогетерогенностью расплава и высокой теплопроводностью меди; для перевода расплава из микрогетерогенного в гомогенное состояние с целью улучшения структуры материала требуется высокий перегрев расплава до 1320°С, что отрицательно сказывается на насыщении расплава кислородом и водородом; недостаточная дисперсность частиц упрочняющей фазы и их склонность к агломерации.
Технической задачей, решаемой изобретением, является разработка способа получения литого композиционного материала электротехнического назначения с дисперсной структурой, высоким уровнем электропроводности и жаропрочности при температурах плавки и литья не выше 1250°С.
Решение поставленной задачи достигается в способе получения литого композиционного материала на основе меди, включающий плавление меди под покровом тонкомолотого графита, введение в расплав реакционной смеси порошков хрома и бора для синтеза армирующих дискретных частиц диборида хрома CrB2, при этом, расплав предварительно раскисляют наноразмерным алмазографитовым порошком фракции 60-75 нм в количестве 0,06-0,07 масс. %, после чего вводят реакционную смесь порошков хрома и бора в количестве 0,5-1,0 масс. %, затем последовательно вводят модифицирующую добавку в виде кадмия в количестве 0,1 масс. % и микролегирующую добавку РЗМ в виде мишметалла Мц50ЖЗ в количестве 0,1 масс. %.
Предложенная схема технологического процесса получения ЛКМ обусловлена следующим: компоненты реакционной смеси Cr и B, применяемые в виде борида хрома, обладают высоким сродством к кислороду и могут легко окисляться в процессе открытой плавки композиционного сплава. Применение наноразмерного алмазографита в качестве раскислителя позволяет снизить содержание кислорода в жидкой меди до 0,005 масс. % [Бабкин В.Г., Трунова А.И. Черепанов А.И. Влияние кислорода на механические свойства меди и медематричных композитов, упрочненных синтезированными в расплаве карбидами хрома // Металлы. 2016. №3. - С. 25-30], повысить усвоение хрома и получить упрочняющую фазу заданного количества и состава. Необходимое для глубокого раскисления расплава содержание наноразмерного алмазографита в количестве 0,06-0,07 масс. % определено на основе термодинамического расчета реакций взаимодействия углерода с оксидной фазой. Введение менее 0,06 масс. % алмазографита недостаточно для глубокого раскисления расплава, а увеличение содержания свыше 0,07 масс. % вызывает избыток углерода в расплаве, который может взаимодействовать с образованием новых карбидных фаз, которые располагаясь по границам зерен вызывают охрупчивание материала.
Модифицирование расплава меди поверхностно-активным кадмием, снижающим межфазное натяжение на границе зародыш твердой фазы - кристаллизующийся расплав, уменьшает размер критического зародыша, увеличивает количество центров кристаллизации и способствует получению мелкозернистой структуры металлической матрицы композиционного материала. Кадмий также способствует снижению температуры перехода расплава меди из микрогетерогенного в гомогенное состояние, что позволяет получать ЛКМ с улучшенной структурой при общепринятых температурах плавки и литья медных сплавов. Модифицирование менее 0,1 масс. % кадмия не обеспечивает удовлетворительного эффекта по измельчению зерен матрицы, а более 0,1 масс. % - увеличивает расход модификатора без заметного измельчения зерна.
Улучшение свойств ЛКМ при вводе РЗМ в количестве 0,1 масс. % обеспечивается за счет уменьшения среднего размера упрочняющей боридной фазы, частицы которой приобретают глобулярную форму. Этому способствует адсорбция активных добавок РЗМ на поверхность синтезированных частиц диборида хрома, что улучшает их смачивание жидкой медью и предотвращает их укрупнение за счет коагуляции. Этому же способствует отсутствие в расплаве глобокораскиленной меди эвтектики, способствующей укрупнению упрочняющей фазы. Кроме того, РЗМ расходуется на рафинирование расплава от вредных примесей, таких как висмут, свинец, сера и др. Введение менее 0,1 масс. % РЗМ недостаточно ввиду того, что микролегирующая добавка будет полностью расходоваться на рафинирование расплава без адсорбции на поверхности упрочняющих фаз. Применение более 0,1 масс. % РЗМ нецелесообразно ввиду удорожания технологии получения КМ без заметного улучшения свойств.
Способ получения ЛКМ осуществляется следующим образом. Плавку меди ведут в графитовом тигле под покровом тонкомолотого графита, до температуры 1250°С и раскисляют наноразмерным алмазографитовым порошком фракции 60-75 нм в количестве 0,06-0,07 масс. %. Затем в расплавленную медь под зеркало металла вводят реакционную смесь порошков хрома и бора из расчета синтеза диборда хрома 0,5-1,5 масс. %. Расплав перемешивается и выдерживается при данной температуре в течение 10 мин для протекания процесса растворения компонентов и последующего охлаждения расплава. После снятия покровного слоя в расплав последовательно вводят микролегирующую добавку в виде РЗМ и модифицирующую добавку виде кадмия в количестве по 0,1 масс. %. Поверхностно-активный кадмий вводится в расплав в виде прутка из сплава системы Cu-Cd, а редкоземельные металлы в составе мишметалла Мц50ЖЗ, содержащего Ce до 55%, La до 45%, Ne и Pr до 10% и Fe не более 3%. Готовый сплав перемешивают и разливают в металлический кокиль. Из полученных слитков изготавливают образцы для исследования структуры, механических свойств и электропроводности. Введение упрочняющей фазы CrB2 в количестве менее 0,5 масс. % не обеспечивает эффективного упрочнения. Введение упрочняющей фазы в количестве 1,0 масс. % позволяет достичь максимальных значений прочности, а увеличение CrB2 до 1,5 масс. % приводит к снижению пластичности материала и повышению удельного электросопротивления, что не желательно для материалов электротехнического назначения.
Результаты испытания образцов, изготовленных по вышеприведенной технологии, представлены в таблице.
Предложенный способ получения литого композиционного материала на основе меди, позволяет добиться улучшенной структуры за счет введения модифицирующей добавки в виде кадмия и микролегирующей добавки РЗМ в виде мишметалла Мц50ЖЗ, и повысить прочностные характеристики за счет наличия упрочняющей фазы CrB2 при сохранении достаточной электропроводности.
Claims (1)
- Способ получения литого композиционного материала на основе меди, включающий плавление меди под покровом тонкомолотого графита, введение в расплав реакционной смеси порошков хрома и бора для синтеза армирующих дискретных частиц диборида хрома CrB2, отличающийся тем, что расплав предварительно раскисляют наноразмерным алмазографитовым порошком фракции 60-75 нм в количестве 0,06-0,07 мас. %, после чего в расплав вводят реакционную смесь порошков хрома и бора в количестве 0,5-1,0 мас. %, затем последовательно вводят модифицирующую добавку в виде кадмия в количестве 0,1 мас. % и микролегирующую добавку РЗМ в виде мишметалла Мц50ЖЗ в количестве 0,1 мас. %.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2019125217A RU2715513C1 (ru) | 2019-08-07 | 2019-08-07 | Способ получения литого композиционного материала на основе меди |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2019125217A RU2715513C1 (ru) | 2019-08-07 | 2019-08-07 | Способ получения литого композиционного материала на основе меди |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2715513C1 true RU2715513C1 (ru) | 2020-02-28 |
Family
ID=69768072
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2019125217A RU2715513C1 (ru) | 2019-08-07 | 2019-08-07 | Способ получения литого композиционного материала на основе меди |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2715513C1 (ru) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6299708B1 (en) * | 1997-07-29 | 2001-10-09 | Yazaki Corporation | Carbide dispersed, strengthened copper alloy |
RU2412035C1 (ru) * | 2010-03-09 | 2011-02-20 | Федеральное государственное образовательное учреждение высшего профессионального образования Сибирский федеральный университет (СФУ) | Способ изготовления электродов для контактной сварки |
RU2567418C1 (ru) * | 2014-06-11 | 2015-11-10 | Федеральное государственное бюджетное учреждение науки Институт металлургии Уральского отделения Российской академии наук (ИМЕТ УрО РАН) | Способ получения композиционного материала на основе меди для электрических контактов |
CN107354337A (zh) * | 2017-07-21 | 2017-11-17 | 大连理工大学 | 原位双相颗粒增强铜基复合材料及其制备方法 |
-
2019
- 2019-08-07 RU RU2019125217A patent/RU2715513C1/ru active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6299708B1 (en) * | 1997-07-29 | 2001-10-09 | Yazaki Corporation | Carbide dispersed, strengthened copper alloy |
RU2412035C1 (ru) * | 2010-03-09 | 2011-02-20 | Федеральное государственное образовательное учреждение высшего профессионального образования Сибирский федеральный университет (СФУ) | Способ изготовления электродов для контактной сварки |
RU2567418C1 (ru) * | 2014-06-11 | 2015-11-10 | Федеральное государственное бюджетное учреждение науки Институт металлургии Уральского отделения Российской академии наук (ИМЕТ УрО РАН) | Способ получения композиционного материала на основе меди для электрических контактов |
CN107354337A (zh) * | 2017-07-21 | 2017-11-17 | 大连理工大学 | 原位双相颗粒增强铜基复合材料及其制备方法 |
Non-Patent Citations (1)
Title |
---|
Бабкин В.Г. и др. Влияние технологических факторов на физико-механические свойства и электропроводность медематричных композитов. Журнал Сибирского федерального университета. Серия: Техника и технология, 2018, т. 11, N4, с.427-432. * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101364472B1 (ko) | 제강용 결정립 미세화 복합물 및 사용 | |
JP3803582B2 (ja) | 鋼の細粒化方法、鋼の細粒化用合金及び細粒化用合金の製造方法 | |
CN105264102A (zh) | 具有改进的高温机械特性的铝合金组合物 | |
WO2022268034A1 (zh) | 高强铸造镁合金及其制备方法和应用 | |
CN102310295A (zh) | 一种镁合金焊丝及其制备方法 | |
JP2004353011A (ja) | 電極材料及びその製造方法 | |
Kim et al. | Optimization of the process parameters affecting the microstructures and properties of compacted graphite iron | |
JP3896709B2 (ja) | 高清浄度鋼の溶製方法 | |
Basavakumar et al. | Impact toughness in Al–12Si and Al–12Si–3Cu cast alloys—Part 1: Effect of process variables and microstructure | |
CN108950120A (zh) | 一种铸铁用硅-镧-锶孕育剂及其制备方法 | |
CN104651729B (zh) | 工程机械斗齿用钢及斗齿的制备方法 | |
RU2715513C1 (ru) | Способ получения литого композиционного материала на основе меди | |
CN115261713B (zh) | 一种高硬高韧耐磨高铬铸铁的制备方法 | |
CN109694936B (zh) | 一种可净化钢液的脱氧合金化剂及其制备方法 | |
JP2004099923A (ja) | 高強度ダクタイル鋳鉄 | |
Bihari et al. | Effect on the mechanical properties of gray cast iron with variation of copper and molybdenum as alloying elements | |
Babkin et al. | Effect of oxygen on the mechanical properties of copper and copper-matrix composites hardened by melt-synthesized chromium carbides | |
Pola et al. | Semisolid lead-antimony alloys for cars batteries | |
Satya Prasad et al. | Electroslag crucible melting of age hardening copper–chromium alloy | |
CN104651721A (zh) | 斗齿用合金钢及斗齿的制备方法 | |
Nová et al. | The influence of microalloying on the thermal treatment of aluminum bronzes | |
JP5618065B2 (ja) | 球状黒鉛鋳鉄用Bi系接種剤およびこれを用いる球状黒鉛鋳鉄の製造方法 | |
JP3548453B2 (ja) | 伸線性に優れた炭素鋼の製法 | |
JP2002275575A (ja) | 高強度球状黒鉛鋳鉄及びその製造方法 | |
KR20120011829A (ko) | 철-망간 전율고용체를 포함하는 알루미늄 합금 및 그 제조방법 |