RU2713566C1 - Оптический многослойный полосно-пропускающий фильтр - Google Patents

Оптический многослойный полосно-пропускающий фильтр Download PDF

Info

Publication number
RU2713566C1
RU2713566C1 RU2019117518A RU2019117518A RU2713566C1 RU 2713566 C1 RU2713566 C1 RU 2713566C1 RU 2019117518 A RU2019117518 A RU 2019117518A RU 2019117518 A RU2019117518 A RU 2019117518A RU 2713566 C1 RU2713566 C1 RU 2713566C1
Authority
RU
Russia
Prior art keywords
filter
dielectric
dielectric layers
layers
mirrors
Prior art date
Application number
RU2019117518A
Other languages
English (en)
Inventor
Борис Афанасьевич Беляев
Владимир Вениаминович Тюрнев
Андрей Александрович Лексиков
Original Assignee
Федеральное государственное бюджетное научное учреждение "Федеральный исследовательский центр "Красноярский научный центр Сибирского отделения Российской академии наук"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное научное учреждение "Федеральный исследовательский центр "Красноярский научный центр Сибирского отделения Российской академии наук" filed Critical Федеральное государственное бюджетное научное учреждение "Федеральный исследовательский центр "Красноярский научный центр Сибирского отделения Российской академии наук"
Priority to RU2019117518A priority Critical patent/RU2713566C1/ru
Application granted granted Critical
Publication of RU2713566C1 publication Critical patent/RU2713566C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/285Interference filters comprising deposited thin solid films
    • G02B5/288Interference filters comprising deposited thin solid films comprising at least one thin film resonant cavity, e.g. in bandpass filters

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Filters (AREA)

Abstract

Оптический многослойный полосно-пропускающий фильтр относится к оптической технике терагерцового диапазона и может быть использован в оптических устройствах связи и измерительной аппаратуре. Фильтр содержит чередующиеся диэлектрические слои из материалов с высоким и низким показателями преломления, образующие зеркально-симметричную конструкцию. Все диэлектрические слои с низким показателем преломления выполнены из одного материала. Часть диэлектрических слоев имеет полуволновую толщину и является резонаторами фильтра, а остальные диэлектрические слои имеют четвертьволновую толщину и образуют многослойные диэлектрические зеркала, отделяющие резонаторы фильтра друг от друга и от внешнего пространства. Все диэлектрические слои с высокими показателями преломления выполнены из метаматериалов, представляющих собой диэлектрическую матрицу с металлическими наночастицами, оптимальные значения показателей преломления которых для каждого многослойного зеркала и каждого резонатора обеспечиваются оптимальной относительной объемной концентрацией металлических наночастиц в диэлектрической матрице метаматериала. Техническим результатом является уменьшение числа слоев в многослойных диэлектрических зеркалах полосно-пропускающего фильтра и расширение его нижней и верхней полосы заграждения. 1 табл., 6 ил.

Description

Изобретение относится к оптической технике терагерцового диапазона и может быть использовано в устройствах связи и измерительной аппаратуре.
Известен оптический многослойный полосно-пропускающий фильтр пятого порядка [Аналог: Н.А. Macleod. Thin-film optical filters. 4-th ed., Tucson: CRC Press, ©2010 Taylor and Francis Group, p.356-357, Figure 8.22]. Фильтр содержит чередующиеся диэлектрические слои из материалов с высоким и низким показателями преломления, образующие зеркально-симметричную конструкцию. В фильтре все диэлектрические слои с высоким показателем преломления (nH) выполнены из одного материала, а все слои с низким показателем преломления (nL) выполнены из второго материала. Пять диэлектрических слоев фильтра имеют толщину λ/2, где λ - длина волны в материале на центральной частоте полосы пропускания. Каждый из этих пяти слоев является резонатором фильтра. Они выполнены из материала с показателем преломления nH. Остальные диэлектрические слои имеют толщину λ/4. Они образуют многослойные диэлектрические зеркала, отделяющие резонаторы фильтра друг от друга и от внешнего пространства. Каждое из двух наружных зеркал состоит из 6 слоев, а каждое из трех внутренних зеркал состоит из 13 слоев. Последнее обстоятельство означает, что все внутренние зеркала обеспечивают одинаковую связь для любой пары смежных резонаторов.
Одним из недостатков этого полосно-пропускающего фильтра пятого порядка является большое число слоев в его зеркалах, что не только усложняет его конструкцию, но и ухудшает его частотную характеристику в полосах заграждения, сильно сужая ширину последних. Вторым недостатком фильтра являются его низкие селективные свойства в полосе пропускания, выражающиеся в большой неравномерности затухания, достигающей 3 дБ.
Наиболее близким аналогом заявляемого изобретения является трехрезонаторный полосно-пропускающий фильтр [Прототип: Гончаров Ф.Н., Лапшин Б.А., Петраков В.А., Политыкин Р.В., Шмидт А.А. Оптический многослойный фильтр. Патент РФ №2316029, 27.01.2008, МПК G02B 5/28]. Трехрезонаторный фильтр также содержит чередующиеся диэлектрические слои из материалов с высоким и низким показателями преломления. В нем все слои с высоким показателем преломления (nH ) выполнены из одного материала, а все слои с низким показателем преломления (nL) выполнены из второго материала. Три диэлектрических слоя фильтра имеют толщину L/2. Они являются резонаторами фильтра, центральный из которых выполнен из материала с показателем преломления nH, а два других резонатора выполнены из материала с показателем преломления nL Остальные диэлектрические слои имеют толщину λ/4. Они образуют четыре многослойные диэлектрические зеркала, отделяющие резонаторы друг от друга (два внутренних зеркала) и от внешнего пространства (два наружных зеркала). Количество слоев в наружных и внутренних зеркалах определяется предложенными математическими формулами, описывающими зависимость только от двух величин - от отношения показателей преломления двух используемых материалов и от относительной ширины полосы пропускания фильтра.
Основным недостатком этого трехрезонаторного полосно-пропускающего фильтра, как и предыдущего фильтра, является большое число диэлектрических слоев в зеркалах фильтра, приводящее к уширению паразитных полос пропускания и тем самым к сужению полос заграждения. В приведенном примере фильтра каждое наружное зеркало содержит 17 диэлектрических слоев, а каждое внутреннее зеркало содержит 34 диэлектрических слоя.
Техническим результатом заявляемого изобретения является уменьшение числа слоев в многослойных диэлектрических зеркалах полосно-пропускающего фильтра и за счет этого расширение его нижней и верхней полосы заграждения.
Технический результат для оптического многослойного полосно-пропускающего фильтра, содержащего чередующиеся диэлектрические слои из материалов с высоким и низким показателями преломления, в котором все диэлектрические слои с низким показателем преломления выполнены из одного материала, часть диэлектрических слоев имеют толщину λ/2 и являются резонаторами фильтра, а остальные диэлектрические слои имеют толщину λ/4 и образуют многослойные диэлектрические зеркала, отделяющие резонаторы фильтра друг от друга и от внешнего пространства, достигается тем, что все материалы диэлектрических слоев с высокими показателями преломления являются метаматериалами, представляющими собой диэлектрическую матрицу с металлическими наночастицами, оптимальное значение показателя преломления которых для каждого многослойного зеркала и каждого резонатора обеспечивается оптимальной относительной объемной концентрацией металлических наночастиц в диэлектрической матрице метаматериала.
Заявляемый оптический многослойный полосно-пропускающий фильтр отличается от прототипа тем, что все материалы диэлектрических слоев с высокими показателями преломления nH являются метаматериалами, представляющими собой диэлектрическую матрицу с металлическими наночастицами. Оптимальное значение показателя преломления nH метаматериала в каждом многослойном зеркале и в каждом резонаторе, отвечающее требуемой амплитудно-частотной характеристике фильтра, обеспечивается оптимальной относительной объемной концентрацией с металлических наночастиц в диэлектрической матрице метаматериала. Оптимальная величина концентрации с возрастает как с уменьшением требуемой ширины полосы пропускания, так и с уменьшением выбранного числа слоев в зеркале. При этом концентрация с ограничена неравенством 0<с<1/3. На верхнем пределе этого неравенства метаматериал теряет диэлектрические свойства и превращается в проводник с большими омическими потерями.
Эти отличия позволяют сделать вывод о соответствии заявляемого технического решения критерию «новизна». Признаки, отличающие заявляемое техническое решение от прототипа, не выявлены в других технических решениях при изучении данной и смежных областей техники и, следовательно, обеспечивают заявляемому решению соответствие критерию «изобретательский уровень».
Сущность изобретения поясняется чертежами и таблицей.
На фиг. 1 изображена конструкция фильтра 1 с центральной частотой полосы пропускания ƒ0=1 ТГц и относительной шириной полосы пропускания Δƒ/ƒ0=2%.
На фиг. 2 представлена частотная зависимость коэффициента прохождения |S21|2 в широкой полосе частот для фильтра 1 и его прототипа.
На фиг. 3 представлены частотные зависимости коэффициента прохождения |S21|2 и коэффициента отражения |S11|2 в узкой полосе частот для фильтра 1.
На фиг. 4 изображена конструкция фильтра 2 с центральной частотой полосы пропускания ƒ0=1 ТГц и относительной шириной полосы пропускания Δƒ/ƒ0=20%.
На фиг. 5 представлены частотные зависимости коэффициента прохождения |S21|2 и коэффициента отражения |S11|2 для фильтра 2.
На фиг. 6 представлена зависимость показателя преломления nH для метаматериала, используемого в фильтре 1 и фильтре 2, от величины относительной объемной концентрации c1,2 металлических наночастиц. Здесь же показано значение показателя преломления nL для диэлектрической матрицы метаметериала.
В табл. I приведены показатели преломления nHL для полистирола и nH1 и nH2 для метаматериалов на его основе вместе с отвечающими им относительными объемными концентрациями c1 и c2 наночастиц серебра.
Примеры осуществления изобретения показывают два фильтра, фильтр 1 и фильтр 2, конструкции которых изображены на фиг. 1 и фиг. 4.
Фильтр 1 содержит три резонатора (резонатор 1, резонатор 2 и резонатор 3), каждый из которых выполнен из полистирола полуволновой толщины с показателем преломления nHL=1612. Каждый такой резонатор отделен от соседнего резонатора внутренним трехслойным диэлектрическим зеркалом (зеркало 2 и зеркало 3), все слои которого имеют четвертьволновую толщину. Внутренний слой трехслойных зеркал выполнен из полистирола, а наружные слои этих зеркал выполнены из одного метаматериала с показателем преломления nH2. Этот метаматериал получен внедрением наночастиц серебра в диэлектрическую матрицу из полистирола. При этом относительная объемная концентрация наночастиц с2 в диэлектрической матрице отвечает определенной оптимальной величине показателя преломления, обеспечивающей требуемую амплитудно-частотную характеристику фильтра. Наружные зеркала (зеркало 1 и зеркало 4) имеют по одному четвертьволновому слою. Они также выполнены из метаматериала, полученного внедрением в полистирол наночастиц серебра, но уже с другой концентрацией с1, отвечающей оптимальному показателю преломления nH1. В зависимости от требуемой ширины полосы пропускания, концентрации с1,2 и отвечающие им показатели преломления nH1,2 могут изменяться в пределах 0<c1,2<l/3, 1.612<n1,2<30, согласно графику на фиг. 6. В частности, для амплитудно-частотной характеристики, изображенной на фиг. 2 и фиг. 3, конкретные оптимальные значения показателей преломления nH1,2 и отвечающих им концентраций c1,2 приведены в Таблице I.
Фильтр 2 также содержит три резонатора полуволновой толщины (резонатор 1, резонатор 2 и резонатор 3). Однако эти резонаторы выполнены из метаматериалов, полученных внедрением наночастиц серебра в диэлектрическую матрицу из полистирола. Метаматериал резонатора 1 и резонатора 3 имеет показатель преломления nH1, а метаматериал резонатора 2 имеет показатель преломления nH2. Наружные диэлектрические зеркала у фильтра отсутствуют. Два внутренних однослойных четвертьволновых зеркала (зеркало 1 и зеркало 2) располагаются между соседними резонаторами. Оба эти зеркала выполнены из полистирола с показателем преломления nL. В зависимости от требуемой ширины полосы пропускания, концентрации c1,2 и отвечающие им показатели преломления nH1,2 могут изменяться в пределах 0<c1,2<l/3, 1.612<n1,2<30. В частности, для амплитудно-частотной характеристики, изображенной на фиг. 5, конкретные оптимальные значения показателей преломления n1,2 и отвечающих им концентраций с1,2 приведены в Таблице I.
Достижение технического результата, а именно уменьшение числа четвертьволновых диэлектрических слоев в зеркалах оптического многослойного полосно-пропускающего фильтра подтверждают две представленные конструкции фильтров на фиг. 1 и фиг. 4, а также их расчетные амплитудно-частотные характеристики на фиг. 2, фиг. 3, фиг. 5.
Эффект расширения нижней и верхней полосы заграждения, т.е. эффект сужения паразитных полос пропускания, при уменьшении числа четвертьволновых диэлектрических слоев в зеркалах многослойных полосно-пропускающих фильтрах, объясняется следующим. Совокупности четвертьволновых слоев в зеркалах образуют многослойные резонаторы, резонансные частоты которых находятся ниже полосы пропускания. В результате сужается низкочастотная полоса заграждения. Однако каждый слой многослойного зеркала имеет резонансные частоты полуволновых резонансов выше полосы пропускания, что приводит к сужению уже высокочастотной полосы заграждения. При этом, чем больше четвертьволновых слоев в зеркалах, тем уже становятся полосы заграждения в фильтре. А количество слоев в зеркалах определяется не только шириной полосы пропускания, но и контрастом показателей преломления. Чем контраст больше, тем меньше требуется слоев в зеркалах.
Приведенные примеры осуществления изобретения отличаются от известных конструкций фильтров тем, что в них в качестве материалов диэлектрических слоев с высоким показателем преломления используется метаматериалы, повышенные и регулируемые показатели преломления которых позволяют значительно уменьшить число диэлектрических слоев в зеркалах фильтра и тем самым расширить полосы заграждения фильтра.
Фильтр работает следующим образом. Чередующиеся четвертьволновые диэлектрические слои из материалов с высоким и низким показателями преломления, образующие диэлектрические зеркала фильтра, можно рассматривать как фрагмент одномерного фотонного кристалла, который имеет периодические по частоте чередующиеся запрещенные зоны и зоны прозрачности для электромагнитных волн. Зоны прозрачности зеркал являются паразитными полосами пропускания фильтра. Диэлектрические слои полуволновых резонаторов фильтра, взаимодействующие между собой через диэлектрические зеркала, формируют в первой запрещенной зоне зеркал рабочую полосу пропускания фильтра. Полосы заграждения фильтра располагаются в запрещенной зоне зеркал между полосой пропускания и ближайшими паразитными полосами пропускания. Ширина полосы пропускания тем больше, чем больше связь резонаторов друг с другом. Величина же связи соседних резонаторов убывает как с увеличением числа слоев в разделяющем их зеркале, так и с увеличением контраста показателей преломления материалов зеркала. Требуемая величина показателя преломления метаматериала обеспечивается оптимальной величиной относительной объемной концентрации металлических наночастиц в диэлектрической матрице материала. Зависимость показателя преломления метаматериала от относительной объемной концентрации в нем металлических наночастиц может быть рассчитана по формуле, полученной в статье [Беляев Б.А., Тюрнев В.В. Журнал экспериментальной и теоретической физики, 2018, том 154, вып.4 (10), стр. 716]. График этой зависимости для метаматериала, используемого в приведенных примерах, показан на фиг. 6. Равномерность прохождения мощности в полосе пропускания фильтра обеспечивается оптимальными величинами коэффициентов связи соседних резонаторов друг с другом, а крайних резонаторов с внешним пространством.
Таким образом, преимуществом заявляемого оптического многослойного фильтра является уменьшение числа диэлектрических слоев в зеркалах фильтра и увеличение ширины его полос заграждения.
Figure 00000001

Claims (1)

  1. Оптический многослойный полосно-пропускающий фильтр, имеющий зеркально-симметричную конструкцию и содержащий чередующиеся диэлектрические слои из материалов с высоким и низким показателями преломления, в котором все диэлектрические слои с низким показателем преломления выполнены из одного материала, часть диэлектрических слоев имеет полуволновую толщину, и является резонаторами фильтра, а остальные диэлектрические слои имеют четвертьволновую толщину и образуют многослойные диэлектрические зеркала, отделяющие резонаторы фильтра друг от друга и от внешнего пространства, отличающийся тем, что все диэлектрические слои с высокими показателями преломления выполнены из метаматериалов, представляющих собой диэлектрическую матрицу с металлическими наночастицами, оптимальные значения показателей преломления которых для каждого многослойного зеркала и каждого резонатора обеспечиваются оптимальной относительной объемной концентрацией металлических наночастиц в диэлектрической матрице метаматериала.
RU2019117518A 2019-06-05 2019-06-05 Оптический многослойный полосно-пропускающий фильтр RU2713566C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019117518A RU2713566C1 (ru) 2019-06-05 2019-06-05 Оптический многослойный полосно-пропускающий фильтр

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019117518A RU2713566C1 (ru) 2019-06-05 2019-06-05 Оптический многослойный полосно-пропускающий фильтр

Publications (1)

Publication Number Publication Date
RU2713566C1 true RU2713566C1 (ru) 2020-02-05

Family

ID=69625299

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019117518A RU2713566C1 (ru) 2019-06-05 2019-06-05 Оптический многослойный полосно-пропускающий фильтр

Country Status (1)

Country Link
RU (1) RU2713566C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220131333A1 (en) * 2020-10-27 2022-04-28 Honeywell International Inc. Ultraviolet filter for ring laser gyroscope mirrors

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1659445A1 (en) * 2003-06-13 2006-05-24 Nippon Telegraph and Telephone Corporation Variable wavelength optical filter
EP1967872A1 (en) * 2005-12-28 2008-09-10 Murata Manufacturing Co. Ltd. Terahertz-band optical filter, its designing method, and its manufacturing method
CN106019648A (zh) * 2016-05-27 2016-10-12 哈尔滨理工大学 一种基于低电压驱动液晶材料的可调谐太赫兹超材料滤波器及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1659445A1 (en) * 2003-06-13 2006-05-24 Nippon Telegraph and Telephone Corporation Variable wavelength optical filter
EP1967872A1 (en) * 2005-12-28 2008-09-10 Murata Manufacturing Co. Ltd. Terahertz-band optical filter, its designing method, and its manufacturing method
CN106019648A (zh) * 2016-05-27 2016-10-12 哈尔滨理工大学 一种基于低电压驱动液晶材料的可调谐太赫兹超材料滤波器及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220131333A1 (en) * 2020-10-27 2022-04-28 Honeywell International Inc. Ultraviolet filter for ring laser gyroscope mirrors
US11962118B2 (en) * 2020-10-27 2024-04-16 Honeywell International Inc. Ultraviolet filter for ring laser gyroscope mirrors

Similar Documents

Publication Publication Date Title
US7573639B2 (en) Terahertz-band optical filter, designing method thereof, and manufacturing method thereof
US6624945B2 (en) Thin film filters using omnidirectional reflectors
Khani et al. Size reduction of MIM surface plasmon based optical bandpass filters by the introduction of arrays of silver nano-rods
JPS587082B2 (ja) ユウデンタイキヨウシンキフイルタ
US20200373644A1 (en) Waveguide band-pass filter
RU2713566C1 (ru) Оптический многослойный полосно-пропускающий фильтр
WO2019153456A1 (zh) 太赫兹带通滤波器
Yang et al. Compact and wideband octuple-mode filter based on hybrid substrate integrated waveguide and spoof localized surface plasmon structure
JPS63220603A (ja) セラミツク導波管型濾波回路
US20200153076A1 (en) Composite Substrate for Radio Frequency Signals and Method of Manufacturing a Composite Substrate
US20130135062A1 (en) Radio-wave half mirror for millimeter waveband and method of smoothing transmittance
JP3904031B1 (ja) テラヘルツ帯光学フィルタ、その設計方法および製造方法
JPWO2006088155A1 (ja) 誘電体多層周期構造体
Crnojević‐Bengin et al. Left‐handed microstrip lines with multiple complementary split‐ring and spiral resonators
RU2619137C2 (ru) Многослойный полосно-пропускающий фильтр
CN110767965A (zh) 一种具有快速滚降特性的太赫兹全波段波导带通滤波器
RU2579816C1 (ru) Многослойный полосно-пропускающий фильтр
Belyaev et al. One-dimensional photonic crystal bandpass filters.
Ao et al. A tunable Fabry–Perot filter (λ/18) based on all-dielectric metamaterials
Wang et al. Absorptive frequency selective surface with a high selective passband and two absorption bands
RU2547898C1 (ru) Оптический многослойный полосно-пропускающий фильтр
RU2687878C1 (ru) Полосно-пропускающая частотно-селективная поверхность
CA2337223A1 (en) Dual transmission band interference filter
Belyaev et al. Study of Microstrip Models of Bandpass Filters Based on 1D Photonic Crystals.
RU2602695C1 (ru) Полосно-заграждающий фильтр