RU2713501C1 - Устройство доплеровской обработки и сжатия фазоманипулированных радиолокационных сигналов - Google Patents

Устройство доплеровской обработки и сжатия фазоманипулированных радиолокационных сигналов Download PDF

Info

Publication number
RU2713501C1
RU2713501C1 RU2018140699A RU2018140699A RU2713501C1 RU 2713501 C1 RU2713501 C1 RU 2713501C1 RU 2018140699 A RU2018140699 A RU 2018140699A RU 2018140699 A RU2018140699 A RU 2018140699A RU 2713501 C1 RU2713501 C1 RU 2713501C1
Authority
RU
Russia
Prior art keywords
doppler
signal
input
phase
processing
Prior art date
Application number
RU2018140699A
Other languages
English (en)
Inventor
Герман Анатольевич Ершов
Евгений Александрович Синицын
Леонид Борисович Фридман
Хан Ян Ламович Ву
Михаил Иванович Недобежкин
Original Assignee
Акционерное общество "Ордена Трудового Красного Знамени Всероссийский научно-исследовательский институт радиоаппаратуры" (АО "ВНИИРА")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "Ордена Трудового Красного Знамени Всероссийский научно-исследовательский институт радиоаппаратуры" (АО "ВНИИРА") filed Critical Акционерное общество "Ордена Трудового Красного Знамени Всероссийский научно-исследовательский институт радиоаппаратуры" (АО "ВНИИРА")
Priority to RU2018140699A priority Critical patent/RU2713501C1/ru
Application granted granted Critical
Publication of RU2713501C1 publication Critical patent/RU2713501C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/10Systems for measuring distance only using transmission of interrupted, pulse modulated waves
    • G01S13/26Systems for measuring distance only using transmission of interrupted, pulse modulated waves wherein the transmitted pulses use a frequency- or phase-modulated carrier wave
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/10Systems for measuring distance only using transmission of interrupted, pulse modulated waves
    • G01S13/26Systems for measuring distance only using transmission of interrupted, pulse modulated waves wherein the transmitted pulses use a frequency- or phase-modulated carrier wave
    • G01S13/28Systems for measuring distance only using transmission of interrupted, pulse modulated waves wherein the transmitted pulses use a frequency- or phase-modulated carrier wave with time compression of received pulses
    • G01S13/284Systems for measuring distance only using transmission of interrupted, pulse modulated waves wherein the transmitted pulses use a frequency- or phase-modulated carrier wave with time compression of received pulses using coded pulses
    • G01S13/286Systems for measuring distance only using transmission of interrupted, pulse modulated waves wherein the transmitted pulses use a frequency- or phase-modulated carrier wave with time compression of received pulses using coded pulses frequency shift keyed
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/42Simultaneous measurement of distance and other co-ordinates
    • G01S13/44Monopulse radar, i.e. simultaneous lobing
    • G01S13/449Combined with MTI or Doppler processing circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/52Discriminating between fixed and moving objects or between objects moving at different speeds
    • G01S13/522Discriminating between fixed and moving objects or between objects moving at different speeds using transmissions of interrupted pulse modulated waves
    • G01S13/524Discriminating between fixed and moving objects or between objects moving at different speeds using transmissions of interrupted pulse modulated waves based upon the phase or frequency shift resulting from movement of objects, with reference to the transmitted signals, e.g. coherent MTi
    • G01S13/5244Adaptive clutter cancellation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/52Discriminating between fixed and moving objects or between objects moving at different speeds
    • G01S13/522Discriminating between fixed and moving objects or between objects moving at different speeds using transmissions of interrupted pulse modulated waves
    • G01S13/524Discriminating between fixed and moving objects or between objects moving at different speeds using transmissions of interrupted pulse modulated waves based upon the phase or frequency shift resulting from movement of objects, with reference to the transmitted signals, e.g. coherent MTi
    • G01S13/5246Discriminating between fixed and moving objects or between objects moving at different speeds using transmissions of interrupted pulse modulated waves based upon the phase or frequency shift resulting from movement of objects, with reference to the transmitted signals, e.g. coherent MTi post processors for coherent MTI discriminators, e.g. residue cancellers, CFAR after Doppler filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/52Discriminating between fixed and moving objects or between objects moving at different speeds
    • G01S13/522Discriminating between fixed and moving objects or between objects moving at different speeds using transmissions of interrupted pulse modulated waves
    • G01S13/524Discriminating between fixed and moving objects or between objects moving at different speeds using transmissions of interrupted pulse modulated waves based upon the phase or frequency shift resulting from movement of objects, with reference to the transmitted signals, e.g. coherent MTi
    • G01S13/53Discriminating between fixed and moving objects or between objects moving at different speeds using transmissions of interrupted pulse modulated waves based upon the phase or frequency shift resulting from movement of objects, with reference to the transmitted signals, e.g. coherent MTi performing filtering on a single spectral line and associated with one or more range gates with a phase detector or a frequency mixer to extract the Doppler information, e.g. pulse Doppler radar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/285Receivers
    • G01S7/292Extracting wanted echo-signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating

Abstract

Устройство доплеровской обработки и сжатия фазоманипулированных радиолокационных сигналов относится к радиолокации и может быть использовано для разработки и совершенствования устройств обработки фазоманипулированных радиолокационных сигналов. Достигаемый технический результат - повышение разрешающей способности по скорости при обнаружении летательных аппаратов. Указанный результат достигается введением блока весовой обработки эхо-сигналов и блока весовой обработки эталонного сигнала. 6 ил.

Description

Изобретение относится к радиолокации и может быть использовано для разработки и модернизации устройств доплеровской обработки и сжатия фазоманипулированных радиолокационных сигналов, что обеспечивает повышение тактико-технических характеристик и эффективности использования первичных радиолокационных станций (РЛС).
В радиолокационных станциях, работающих в импульсном режиме, повышение разрешающей способности по дальности (при сохранении энергии сигнала) может быть достигнуто благодаря использованию внутриимпульсной модуляции, в частности, фазовой манипуляции и последующей обработкой (сжатием по времени) отраженных радиолокационных сигналов. При этом большая длительность радиоимпульсов обеспечивает энергию сигнала, необходимую для обнаружения летательных аппаратов (ЛА), а внутриимпульсная фазовая манипуляция и сжатие - заданное разрешение по дальности.
В настоящее время широкое распространение получило использование сигналов с фазовой манипуляцией 0-π между временными элементами длинного радиоимпульса, выполненной в соответствии с кодами Баркера. Последующая оптимальная или подоптимальная обработка таких сигналов обеспечивает их сжатие по времени до величины, соответствующей длительности одного элемента [1].
Устройство доплеровской обработки и сжатия фазоманипулированных радиолокационных сигналов является составной частью приемопередающего тракта РЛС и обеспечивает когерентное накопление и доплеровскую фильтрацию фазоманипулированного (ФМ) сигнала с повышенным разрешением по скорости ЛА, а также сжатие ФМ сигнала.
Наиболее близким по технической сущности к предлагаемому устройству является устройство обработки фазоманипулированных радиолокационных сигналов, выбранное в качестве прототипа [2] (фиг. 1), содержащее схему стробирования (1), запоминающее устройство (2), подоптимальные фильтры (30÷3N-1), где N - количество доплеровских каналов, блок доплеровского накопления (4) и формирователь эталонного сигнала (5) с соответствующими связями.
При сжатии ФМ сигнала подавление боковых лепестков обеспечивается при соответствии спектра обрабатываемого сигнала коэффициенту передачи подоптимального фильтра устройства обработки фазоманипулированных радиолокационных сигналов в спектральной области. Однако в реальной аппаратуре коэффициент передачи приемо-передающего тракта РЛС вносит искажения в спектр сигнала, что может привести к ухудшению характеристик его сжатия.
С целью компенсации искажений ФМ сигнала импульсная характеристика (ИХ) подоптимального фильтра устройства обработки фазоманипулированных радиолокационных сигналов формируется с использованием оценки параметров зондирующего сигнала, прошедшего через приемопередающий тракт РЛС (эталонного сигнала), что позволяет автоматически подстраивать подоптимальный фильтр под искажения эхо-сигнала. При этом коэффициент передачи подоптимального фильтра в спектральной области соответствует спектру эхо-сигнала, т.к. эталонный и эхо-сигналы проходят через один и тот же приемо-передающий тракт.
Импульсная характеристика подоптимального фильтра при отсутствии доплеровского сдвига частоты имеет вид
Figure 00000001
где λ(n) - ИХ подоптимального фильтра при отсутствии доплеровского сдвига частоты;
Figure 00000002
- элементарный (немодулированный) импульс; n - номер дискреты (отсчета); ns - количество дискрет в одном элементе ФМ сигнала; δ(n) - дельта-функция; F и F-1 - операторы соответственно прямого и обратного дискретных преобразований Фурье;
Figure 00000003
- ИХ кодирующего фильтра; a i=±1; nB - количество элементов ФМ сигнала.
Доплеровский набег фазы принятого сигнала за время Tp, равное длительности одного элемента ФМ сигнала, определяется выражением
ΔϕDDTp=2vRTpC,
где ΔϕD - доплеровский набег фазы принятого сигнала; Tp - длительность одного элемента ФМ сигнала; ƒD - доплеровский сдвиг частоты; λC - длина волны излучаемого сигнала; vR - радиальная скорость движения цели.
Импульсная характеристика подоптимального фильтра с учетом доплеровского сдвига частоты имеет вид
Figure 00000004
где λD(n) - ИХ подоптимального фильтра с учетом доплеровского сдвига частоты; T - период дискретизации сигнала; j - мнимая единица; * - символ свертки.
Устройство - прототип работает следующим образом: на вход 1 схемы стробирования (1) с цифрового фазового детектора приемного тракта РЛС поступает входной сигнал: в моменты времени, соответствующие излучению зондирующих импульсов, поступают отсчеты эталонного сигнала, в остальные моменты времени - отсчеты эхо-сигнала. На вход 2 схемы стробирования (1) с синхронизатора в моменты времени, соответствующие излучению зондирующих импульсов, поступает сигнал Строб. При этом с выхода 4 схемы стробирования (1) эталонный сигнал поступает на вход 1 запоминающего устройства (2) и записывается в запоминающее устройство (2) по синхросигналу, поступающему на вход 2 запоминающего устройства (2).
В остальные моменты времени с выхода 3 схемы стробирования (1) эхо-сигнал поступает на блок доплеровского накопления (4). С выходов 2÷(N+1) блока доплеровского накопления (4) на входы 1 подоптимальных фильтров 30÷3N-1, образующих N доплеровских каналов, поступает эхо-сигнал 1.
Каждый доплеровский канал настроен на эхо-сигналы с доплеровским сдвигом частоты, равным
Figure 00000005
где ƒDi - доплеровский сдвиг частоты, соответствующий i-ому доплеровскому каналу; ƒDmax - доплеровский сдвиг частоты, соответствующий (N-1)-ому доплеровскому каналу; i=0÷(N-1) - номер доплеровского канала.
Эталонный сигнал, записанный в запоминающее устройство (2), поступает в виде запомненного эталонного сигнала на выход 3 запоминающего устройства (2). Запомненный эталонный сигнал без доплеровского сдвига частоты κ(n) поступает с выхода 3 запоминающего устройства (2) на вход 1 формирователя эталонного сигнала (5).
С выходов 2÷(N+1) формирователя эталонного сигнала (5) на входы 2 подоптимальных фильтров 30÷3N-1, образующих N доплеровских каналов, поступает эталонный сигнал 1
κi D(n)=κ(n)ехр(2πjƒDinT),
где i=0÷(N-1), κi D(n) - эталонный сигнал 1 в i-ом доплеровском канале;
κ(n) - эталонный сигнал без доплеровского сдвига частоты.
В каждом подоптимальном фильтре 30, 31, …, 3N-1 выполняется сжатие эхо-сигнала 1 из i-го доплеровского канала с эталонным сигналом 1, соответствующим доплеровскому сдвигу частоты ƒDi.
Использование N подоптимальных фильтров позволяет выполнять сжатие ФМ сигнала с учетом доплеровского сдвига частоты, что обеспечивает сохранение характеристик эффективности сжатия сигналов, отраженных от движущихся ЛА.
Импульсная характеристика подоптимальных фильтров 30, 31, …, 3N-1 с учетом доплеровского сдвига частоты имеет вид
Figure 00000006
где i=0÷(N-1), λDi(n) - ИХ подоптимальных фильтров 30, 31, …, 3N-1.
Выходы подоптимальных фильтров 30÷3N-1 являются выходами устройства обработки фазоманипулированных радиолокационных сигналов.
На фиг. 2 показано распределение по доплеровским каналам эхо-сигнала с доплеровским сдвигом частоты ƒDi (i=63, N=128), соответствующим 63-ему доплеровскому каналу.
В блоке доплеровского накопления (4) по каждому из элементов дальности осуществляется N - точечное дискретное преобразование Фурье (ДПФ). В результате этой процедуры, для каждого из элементов разрешения по дальности формируется массив, содержащий N спектральных линий доплеровской частоты. Из-за конечного количества точек ДПФ, в результате выполнения операции дискретного преобразования Фурье будут иметь место краевые эффекты. В результате эхо-сигнал 1 на выходах 2÷(N+1) блока доплеровского накопления (4) искажается, что приводит к снижению разрешающей способности по скорости. При этом сильный эхо-сигнал одного ЛА может искажать или полностью маскировать слабый эхо-сигнал другого ЛА (при попадании эхо-сигналов на один и тот же элемент разрешения по дальности).
На фиг. 3 показано искажение эхо-сигнала 1 с доплеровским сдвигом частоты
Figure 00000007
соответствующим среднему положению между 63-им и 64-ым доплеровскими каналами.
На фиг. 4 приведено искажение эхо-сигнала 1 в логарифмическом масштабе. Как следует из фиг. 4, относительный уровень эхо-сигнала при отстройке на 2 доплеровских канала (по сравнению с его пиковым уровнем на 63 доплеровском канале) составил около минус 14 дБ, при отстройке на 63 доплеровских канала - минус 38 дБ. Следовательно, данное устройство обработки фазоманипулированных радиолокационных сигналов не обеспечивает сохранение характеристик эффективности сжатия в части разрешающей способности по скорости.
Задачей создания изобретения является увеличение разрешающей способности по скорости ЛА.
Указанная задача достигается тем, что в устройство доплеровской обработки и сжатия фазоманипулированных радиолокационных сигналов, содержащее схему стробирования (1), запоминающее устройство (2), блок доплеровского накопления (4), подоптимальные фильтры (30÷3N-1), где N - количество доплеровских каналов, формирователь эталонного сигнала (5) с соответствующими связями, дополнительно введены блок весовой обработки эхо-сигналов (6) и блок весовой обработки эталонного сигнала (7), которые обеспечивают значительное снижение уровня указанных сигналов в соседних доплеровских каналах, причем третий выход схемы стробирования (1) соединен со входом блока весовой обработки эхо-сигналов (6), выход которого соединен с блоком доплеровского накопления (4), третий выход запоминающего устройства (2) соединен со входом блока весовой обработки эталонного сигнала (7), выход которого соединен с формирователем эталонного сигнала (5).
На фиг. 5 приведена функциональная схема предлагаемого устройства доплеровской обработки и сжатия фазоманипулированных радиолокационных сигналов.
Предлагаемое устройство работает следующим образом: на вход 1 схемы стробирования (1) с цифрового фазового детектора приемного тракта РЛС поступает входной сигнал: в моменты времени, соответствующие излучению зондирующих импульсов, поступают отсчеты эталонного сигнала, в остальные моменты времени - отсчеты эхо-сигнала. На вход 2 схемы стробирования (1) с синхронизатора в моменты времени, соответствующие излучению зондирующих импульсов, поступает сигнал Строб. При этом с выхода 4 схемы стробирования (1) эталонный сигнал поступает на вход 1 запоминающего устройства (2) и записывается в запоминающее устройство (2) по синхросигналу, поступающему на вход 2 запоминающего устройства (2).
В остальные моменты времени с выхода 3 схемы стробирования (1) эхо-сигнал поступает на блок весовой обработки эхо-сигналов (6). С выхода блока весовой обработки (6) эхо-сигнал поступает на вход блока доплеровского накопления (4). С выходов 2÷(N+1) блока доплеровского накопления (4) на входы 1 подоптимальных фильтров 30÷3N-1, образующих N доплеровских каналов, поступает эхо-сигнал 1.
Эталонный сигнал, записанный в запоминающее устройство (2), поступает в виде запомненного эталонного сигнала на выход 3 запоминающего устройства (2). Запомненный эталонный сигнал без доплеровского сдвига частоты κ(n) поступает с выхода 3 запоминающего устройства (2) на вход блока весовой обработки эталонного сигнала (7), с выхода которого эталонный сигнал поступает на вход 1 формирователя эталонного сигнала (5).
С выходов 2÷(N+1) формирователя эталонного сигнала (5) на входы 2 подоптимальных фильтров 30÷3N-1, образующих N доплеровских каналов, поступает эталонный сигнал 1.
Выходы подоптимальных фильтров 30÷3N-1 являются выходами устройства доплеровской обработки и сжатия фазоманипулированных радиолокационных сигналов.
На фиг. 6 в логарифмическом масштабе показано распределение по доплеровским каналам выходного сигнала устройства доплеровской обработки и сжатия фазоманипулированных радиолокационных сигналов (при использовании весового окна Кайзера [3] с параметром β=4; доплеровский сдвиг частоты сигнала
Figure 00000008
При этом относительный уровень выходного сигнала при отстройке на 2 доплеровских канала (по сравнению с его пиковым уровнем на 63 доплеровском канале) составил не более минус 39 дБ, а при отстройке на 63 доплеровских канала - минус 57 дБ; энергетические потери от оконного взвешивания - не более 1 дБ.
Из сравнения фиг. 4 и фиг. 6 следует, что предлагаемое устройство доплеровской обработки и сжатия фазоманипулированных радиолокационных сигналов обеспечивает увеличение разрешающей способности по скорости, выражающееся в значительном снижении уровня выходного сигнала в соседних доплеровских каналах относительно предложенного в [2] технического решения (приблизительно на 25 дБ и 19 дБ при отстройке соответственно на 2 и 63 доплеровских канала).
Эффективность устройства доплеровской обработки и сжатия фазоманипулированных радиолокационных сигналов подтверждена при его использовании в аппаратуре первичной обработки информации, разработанной на предприятии.
Использование устройства доплеровской обработки и сжатия фазоманипулированных радиолокационных сигналов в аппаратуре первичной обработки информации позволило значительно повысить разрешающую способность по скорости и снизить уровень выходного сигнала в соседних доплеровских каналах (приблизительно на 25 дБ и 19 дБ при отстройке соответственно на 2 и 63 доплеровских канала).
ЛИТЕРАТУРА
1 Теоретические основы радиолокации. М.: Советское радио, 1970 / Под ред. Ширмана Я.Д. - с. 137-139.
2 Патент 2628405 (РФ). Устройство обработки фазоманипулированных радиолокационных сигналов. Опубл. в бюллетене, 2017. №23.
3 Kaiser, J.F., "Nonrecursive Digital Filter Design Using the I0 - sinh Window Function, "Proc. 1974 IEEE Symp. Circuits and Systems, (April 1974), pp. 20-23.

Claims (1)

  1. Устройство доплеровской обработки и сжатия фазоманипулированных радиолокационных сигналов, содержащее схему стробирования, запоминающее устройство, N подоптимальных фильтров, где N - количество доплеровских каналов, блок доплеровского накопления, формирователь эталонного сигнала, причем на первый вход схемы стробирования с цифрового фазового детектора поступает входной сигнал, на второй вход схемы стробирования с синхронизатора поступает сигнал Строб, четвертый выход схемы стробирования соединен с первым входом запоминающего устройства, на второй вход которого поступает синхросигнал, выходы 2÷(N+1) блока доплеровского накопления соединены с первыми входами подоптимальных фильтров, выходы формирователя эталонного сигнала 2÷(N+1) соединены со вторыми входами N подоптимальных фильтров, причем выходы подоптимальных фильтров являются выходами устройства, отличающееся тем, что в него дополнительно введены блок весовой обработки эхо-сигналов, вход которого соединен с третьим выходом схемы стробирования, а выход - со входом блока доплеровского накопления, и блок весовой обработки эталонного сигнала, вход которого соединен с выходом запоминающего устройства, а выход - со входом формирователя эталонного сигнала.
RU2018140699A 2018-11-16 2018-11-16 Устройство доплеровской обработки и сжатия фазоманипулированных радиолокационных сигналов RU2713501C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018140699A RU2713501C1 (ru) 2018-11-16 2018-11-16 Устройство доплеровской обработки и сжатия фазоманипулированных радиолокационных сигналов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018140699A RU2713501C1 (ru) 2018-11-16 2018-11-16 Устройство доплеровской обработки и сжатия фазоманипулированных радиолокационных сигналов

Publications (1)

Publication Number Publication Date
RU2713501C1 true RU2713501C1 (ru) 2020-02-05

Family

ID=69625321

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018140699A RU2713501C1 (ru) 2018-11-16 2018-11-16 Устройство доплеровской обработки и сжатия фазоманипулированных радиолокационных сигналов

Country Status (1)

Country Link
RU (1) RU2713501C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2782574C1 (ru) * 2021-12-28 2022-10-31 федеральное государственное автономное образовательное учреждение высшего образования "Южный федеральный университет" Устройство цифровой обработки сигналов в импульсно-доплеровской рлс с компенсацией чм доплеровских сигналов за один период излучения и приема пачки радиоимпульсов

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2155970C2 (ru) * 1997-06-10 2000-09-10 Государственное предприятие "Ульяновский механический завод" Цифровое устройство доплеровской обработки квадратурных импульсных видеосигналов
WO2001016554A2 (en) * 1999-09-02 2001-03-08 Mcewan Technologies, Llc Ssb pulse doppler sensor and active reflector system
US6295017B1 (en) * 1988-06-27 2001-09-25 Raytheon Company Jammer detection and tracking system
JP2013088347A (ja) * 2011-10-20 2013-05-13 Mitsubishi Electric Corp レーダ装置
RU2594005C1 (ru) * 2015-09-01 2016-08-10 Иван Васильевич Колбаско Способ обработки радиолокационного сигнала в импульсно-доплеровской рлс
EP3109662A1 (en) * 2015-06-26 2016-12-28 Delphi Technologies, Inc. Radar signal processing for automated vehicles
RU2628405C1 (ru) * 2016-07-29 2017-08-16 Акционерное общество "Ордена Трудового Красного Знамени Всероссийский научно-исследовательский институт радиоаппаратуры" (АО "ВНИИРА") Устройство обработки фазоманипулированных радиолокационных сигналов
RU2657462C1 (ru) * 2017-06-28 2018-06-14 федеральное государственное автономное образовательное учреждение высшего образования "Южный федеральный университет" Устройство цифровой обработки сигналов в импульсно-доплеровской рлс с компенсацией чм доплеровских сигналов

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6295017B1 (en) * 1988-06-27 2001-09-25 Raytheon Company Jammer detection and tracking system
RU2155970C2 (ru) * 1997-06-10 2000-09-10 Государственное предприятие "Ульяновский механический завод" Цифровое устройство доплеровской обработки квадратурных импульсных видеосигналов
WO2001016554A2 (en) * 1999-09-02 2001-03-08 Mcewan Technologies, Llc Ssb pulse doppler sensor and active reflector system
JP2013088347A (ja) * 2011-10-20 2013-05-13 Mitsubishi Electric Corp レーダ装置
EP3109662A1 (en) * 2015-06-26 2016-12-28 Delphi Technologies, Inc. Radar signal processing for automated vehicles
RU2594005C1 (ru) * 2015-09-01 2016-08-10 Иван Васильевич Колбаско Способ обработки радиолокационного сигнала в импульсно-доплеровской рлс
RU2628405C1 (ru) * 2016-07-29 2017-08-16 Акционерное общество "Ордена Трудового Красного Знамени Всероссийский научно-исследовательский институт радиоаппаратуры" (АО "ВНИИРА") Устройство обработки фазоманипулированных радиолокационных сигналов
RU2657462C1 (ru) * 2017-06-28 2018-06-14 федеральное государственное автономное образовательное учреждение высшего образования "Южный федеральный университет" Устройство цифровой обработки сигналов в импульсно-доплеровской рлс с компенсацией чм доплеровских сигналов

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2782574C1 (ru) * 2021-12-28 2022-10-31 федеральное государственное автономное образовательное учреждение высшего образования "Южный федеральный университет" Устройство цифровой обработки сигналов в импульсно-доплеровской рлс с компенсацией чм доплеровских сигналов за один период излучения и приема пачки радиоимпульсов
RU2792418C1 (ru) * 2022-01-02 2023-03-22 Акционерное общество "Челябинский Радиозавод "Полет" Многоканальное устройство обработки фазоманипулированных радиолокационных сигналов

Similar Documents

Publication Publication Date Title
KR101908196B1 (ko) Fmcw 레이더에서의 주파수 변조 방식
US6646587B2 (en) Doppler radar apparatus
US5151702A (en) Complementary-sequence pulse radar with matched filtering following doppler filtering
US5808580A (en) Radar/sonar system concept for extended range-doppler coverage
JP6632342B2 (ja) 合成開口レーダなどのレーダの受信データの圧縮
US5784026A (en) Radar detection of accelerating airborne targets
EP1929327B1 (en) Signal acquisition system and method for ultra-wideband (uwb) radar
EP0557660B1 (en) Signal processor
US5140332A (en) Short pulse radar system with a long pulse transmitter
EP0818691A1 (fr) Procédé et dispositif de détection de cibles pour radar doppler à impulsions non ambigu à large bande
EP0292556A1 (en) PULSE COMPRESSION RADAR APPARATUS WITH FREQUENCY DOMAIN FOR ELIMINATION OF FIXED ECHOS.
US8760340B2 (en) Processing radar return signals to detect targets
EP1521097A2 (en) Pulse compression processor
CA2253235A1 (en) Radar/sonar system concept for extended range-doppler coverage
De Martín et al. Sidelobe mitigation in noise radar using sparse signal processing
RU2713501C1 (ru) Устройство доплеровской обработки и сжатия фазоманипулированных радиолокационных сигналов
RU2296345C2 (ru) Способ разрешения целей по дальности радиолокационной станцией и импульсная радиолокационная станция со сжатием импульсов и восстановлением сигналов
Kulpa et al. Pseudonoise waveform design for spectrum sharing systems
RU2628405C1 (ru) Устройство обработки фазоманипулированных радиолокационных сигналов
Taylor Ultra wideband radar
RU2792418C1 (ru) Многоканальное устройство обработки фазоманипулированных радиолокационных сигналов
RU2596229C1 (ru) Способ повышения разрешающей способности по дальности радиолокационной станции
WO2014184760A1 (en) Coherent radar
US3487409A (en) Reflected-beam system
Dwyer Range and Doppler information from fourth-order spectra