RU2713498C1 - Способ обзорной активно-пассивной латерационной радиолокации воздушно-космических объектов - Google Patents

Способ обзорной активно-пассивной латерационной радиолокации воздушно-космических объектов Download PDF

Info

Publication number
RU2713498C1
RU2713498C1 RU2019123488A RU2019123488A RU2713498C1 RU 2713498 C1 RU2713498 C1 RU 2713498C1 RU 2019123488 A RU2019123488 A RU 2019123488A RU 2019123488 A RU2019123488 A RU 2019123488A RU 2713498 C1 RU2713498 C1 RU 2713498C1
Authority
RU
Russia
Prior art keywords
objects
values
coordinates
radar
angles
Prior art date
Application number
RU2019123488A
Other languages
English (en)
Inventor
Альберт Леонидович Джиоев
Алексей Александрович Косогор
Иван Степанович Омельчук
Геннадий Леонтьевич Фоминченко
Original Assignee
Федеральное государственное унитарное предприятие "Ростовский-на-Дону научно-исследовательский институт радиосвязи" (ФГУП "РНИИРС")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное унитарное предприятие "Ростовский-на-Дону научно-исследовательский институт радиосвязи" (ФГУП "РНИИРС") filed Critical Федеральное государственное унитарное предприятие "Ростовский-на-Дону научно-исследовательский институт радиосвязи" (ФГУП "РНИИРС")
Priority to RU2019123488A priority Critical patent/RU2713498C1/ru
Application granted granted Critical
Publication of RU2713498C1 publication Critical patent/RU2713498C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/04Systems determining presence of a target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/42Simultaneous measurement of distance and other co-ordinates
    • G01S13/426Scanning radar, e.g. 3D radar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/46Indirect determination of position data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/46Indirect determination of position data
    • G01S13/48Indirect determination of position data using multiple beams at emission or reception
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/66Radar-tracking systems; Analogous systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/12Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves by co-ordinating position lines of different shape, e.g. hyperbolic, circular, elliptical or radial
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/14Determining absolute distances from a plurality of spaced points of known location
    • G01S5/145Using a supplementary range measurement, e.g. based on pseudo-range measurements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

Изобретение относится к области радиотехники и может быть использовано в наземных системах обзорной радиолокации. Достигаемый технический результат – высокоточное определение координат и траекторий перемещающихся в пространстве воздушно-космических объектов (ВКО) в расширенной рабочей зоне. Технический результат достигается за счет разработки операций способа многопозиционной активно-пассивной радиолокации и вывода математических соотношений, позволяющих определить значения модулей скорости движения объектов, их пространственных курсовых углов и углов пикирования (кабрирования), а также за счет определения структуры и порядка функционирования РЛС, реализующей способ обзорной активно-пассивной латерационной радиолокации ВКО. 2 ил.

Description

Изобретение относится к области радиотехники и может быть использовано в системах обзорной многопозиционной активно-пассивной радиолокации для высокоточного местоопределения лоцируемых воздушно-космических объектов (ВКО), определения их скоростей и траекторий движения в пространстве, для улучшения разрешающей способности по угловым координатам (УК).
В настоящее время основным источником информации о перемещении ВКО в пространстве являются радиолокационные системы (РЛС), позволяющие решать задачи обнаружения, определения местоположения и измерения параметров траекторий ВКО, а также распознавания их типов. Эти системы должны быть быстродействующими и высокоточными, так как современные ВКО могут перемещаться по сложным траекториям с большими (в том числе гиперзвуковыми) скоростями.
Наиболее распространенным типом РЛС для наблюдения за ВКО являются активные однопозиционные системы, измеряющие дальности и УК объектов, то есть РЛС угломерно-дальномерного типа. Необходимые точность измерения дальности и разрешающая способность по дальности в этих РЛС могут быть обеспечены путем использования широкополосных зондирующих сигналов с внутриимпульсной угловой модуляцией и сжатием импульсов при приеме. Необходимая точность измерения УК обеспечивается путем применения антенн РЛС с узкими диаграммами направленности (ДН), однако для этого требуются большие, зачастую трудно реализуемые антенны. Таким образом, точность местоопределения ВКО радиолокационными системами зависит, в основном, от точности измерения УК.
Высокая точность угловых измерений может быть обеспечена, как известно, моноимпульсным методом [1 - Леонов А.И., Фомичев К.И. Моноимпульсная радиолокация - М.: Радио и связь, 1984. - 312 с.]. Высокое быстродействие РЛС достигается за счет использования обзорных режимов работы, позволяющих одновременно определить координаты всех ВКО, находящихся в общей зоне парциальных ДН. Задача повышения точности измерения УК и расширения рабочей зоны при однопозиционной обзорной моноимпульсной пеленгации и повышения скорости измерений УК решена в предложенном ранее способе [2 - патент 2583849, РФ, G01S 3/14, H01Q 25/02. Способ цифровой обработки сигналов при обзорной моноимпульсной амплитудной суммарно-разностной пеленгации с использованием антенной решетки (варианты) и обзорный моноимпульсный амплитудный суммарно-разностный пеленгатор с использованием антенной решетки и цифровой обработки сигналов / Джиоев А.Л., Омельчук И.С., Фоминченко Г.Л., Фоминченко Г.Г., Яковленко В.В. Заявл. 13.04.2015, опубл. 10.05.2016]. Этот способ и пеленгатор на его основе позволяют путем выбора угла разноса парциальных ДН и вида весовой функции (ВФ) сформировать пеленгационную характеристику (ПХ) устройства, практически линейную в рабочей зоне, равной раствору моноимпульсной группы лучей (МГЛ) по уровню половинной мощности и обеспечить моноимпульсное измерение УК с точностью не хуже 0,01 от величины этой зоны. Однако способ [2] не предназначен для определения параметров траекторий ВКО и скоростей их движения.
В типовых обзорных РЛС стробы сопровождения по дальности и углам существенно различаются - размер строба по дальности намного меньше размера строба по УК [3 - патент 2480782, РФ. Способ и устройство разрешения движущихся целей по угловым направлениям в обзорных РЛС / Ирхин В.И., Замятина И.Н. Заявл. 6.10.2011, опубл. 27.04.2013]. Для обеспечения же улучшенных характеристик РЛС разрешение по угловым координатам (в линейном измерении) должно быть близким к разрешению по дальности. Линейное разрешение, например, по азимуту составляет на дальности D величину
Figure 00000001
где,ϑ0,5 - ширина ДН по уровню минус 3 дБ. При равномерном распределении поля по апертуре антенны ϑ0,5=λ/d (d - азимутальный размер апертуры, λ - длина волны), тогда линейное разрешение
Figure 00000002
то есть оно обратно пропорционально размеру апертуры. Поэтому очевидный путь улучшения разрешающей способности по УК (при неизменной длине волны) - увеличение размера апертуры антенны.
Существенное улучшение точности измерения местоположения ВКО возможно при использовании нескольких разнесенных в пространстве станций, объединенных с помощью системы ретрансляции данных в многопозиционную систему [4 - Кондратьев B.C., Котов А.Ф., Марков Л.Н. Многопозиционные радиотехнические системы. М.: Радио и связь, 1986, 264 с]. Кроме этого, многопозиционные системы позволяют измерять вектор скорости объекта, увеличить разрешающую способность и повысить защищенность от активных и пассивных помех. Поэтому они представляют интерес для решения рассматриваемых проблем.
Способ измерения координат с повышенной точностью с помощью многопозиционной РЛС известен, например, из патента [5 - Патент 2515571, РФ, G01S 13/46. Способ определения координат цели в трехпозиционной дальномерной радиолокационной системе / Машков Г.М., Борисов Е.Г. Заявлен 5.10.2012, опубликован 10.05.2014], который является аналогом заявляемого изобретения. Он позволяет, кроме координат, определять скорость цели и скорость ее изменения. Для этого излучение зондирующих и прием отраженных сигналов осуществляют на каждой позиции системы, там же измеряют дальности до цели и скорости изменения дальности. Измеряют две суммы дальностей от одной позиции до цели и от цели до двух других позиций, а также три попарные разности дальностей и скорости их изменения, по которым вычисляют уточненные значения дальности и скорости их изменения по приведенным формулам.
Однако в [5] не обеспечено определение направлений движения целей (объектов), углов пикирования (кабрирования), а также не строятся траектории их движения в пространстве. Также не рассмотрены способы улучшения разрешающей способности по УК, хотя улучшение разрешающей способности является важным направлением совершенствования РЛС, позволяющим осуществить селекцию элементов групповых объектов (ЭГО). Следовательно, улучшение точности определения координат и траекторий ВКО, а также их углового разрешения при локации в расширенной рабочей зоне, является актуальным.
Наиболее близким по технической сущности к заявляемому способу является способ [6 - патент 2279105, РФ, G01S 13/42, G01S 13/72, G01S 17/42. Комплексный способ определения координат и параметров траекторного движения авиационно-космических объектов, наблюдаемых группировкой станций слежения / Мамошин В.Р. Заявл. 2.08.2004, опубл. 27.06.2006], принятый за прототип. В нем на взаимодействующих станциях синхронно измеряют координаты объектов и, используя известные базовые расстояния между станциями, определяют первичные параметры траекторного движения наблюдаемых объектов. Значения этих параметров по межстанционным дуплексным каналам транслируют на каждую станцию группировки, где избыточное количество алгоритмов локального комплексирования используют для получения дополнительной информации о параметрах траекторного движения объектов. После этого формируют сигналы управления дальномерными и угломерными каналами станций при вынужденном прерывании их нормального функционирования. Далее значения параметров передают на пункты контроля, где их представляют в единой земной базисной системе координат и после статистической обработки получают уточненные оценки параметров траекторного движения объектов.
К недостаткам прототипа [6] применительно к задаче определения координат, скоростей и траекторий движения в пространстве лоцируемых ВКО относятся:
- использование значений наклонных дальностей и пространственных составляющих скоростей объектов при расчете проекций координат на горизонтальной плоскости, что вносит дополнительные погрешности при построении траекторий движения объектов;
- излишние затраты времени на статистическую обработку избыточной неравноточной информации о параметрах движения ВКО.
Технических решений, устраняющих эти проблемы при высокоточном определении координат и траекторий перемещающихся в пространстве ВКО в расширенной рабочей зоне, авторами предлагаемого изобретения не обнаружено.
Техническая проблема, решение которой обеспечивается при осуществлении предлагаемого изобретения, заключается в создании РЛС, позволяющей достичь высокоточного местоопределения ВКО, определения их скоростей, пространственных курсовых углов и углов пикирования (кабрирования), а также траекторий движения в пространстве.
Для решения указанной технической проблемы предлагается способ обзорной активно-пассивной латерационной моноимпульсной радиолокации, при котором
образуют многопозиционную РЛС из трех активных трехкоординатных угломерно-дальномерных радиолокаторов (РЛ), размещенных на местности в точках, образующих равносторонний треугольник со сторонами, величины которых равны d, основание треугольника ориентировано по оси абсцисс прямоугольной системы координат 0xyz, а высота, равная
Figure 00000003
ориентирована по оси ординат этой системы координат и восстановлена из точки, соответствующей ее началу 0, в которой размещен центральный пункт управления (ЦПУ), соединенный с радиолокаторами системы дуплексными каналами информационной связи (КИС),
используют в радиолокаторах цифровые антенные решетки или антенные решетки с цифровой обработкой сигналов, применяя на их раскрывах весовые функции Хэмминга, формируют моноимпульсные группы лучей с общим фазовым центром и пеленгационные характеристики, при специальном выборе углов смещения лучей βсм и εсм линейные в рабочих зонах ΔβПХ по азимуту и ΔεПХ по углу места и перекрывающие всю ширину МГЛ,
разбивают заданную область обзора пространства (телесный угол) на участки размером ΔβПХ по азимуту и ΔεПХ по углу места и, последовательно устанавливая равносигнальные направления моноимпульсных групп лучей радиолокаторов в центры этих участков, излучая зондирующие импульсы и принимая отраженные от лоцируемых воздушно-космических объектов сигналы в течение интервала наблюдения на каждом участке разбиения, осуществляют обзор упомянутой области, констатируя обнаружение в ней совокупности
Figure 00000004
объектов,
измеряют, с привязкой к системе единого времени, и запоминают для каждого из обнаруженных объектов значения отсчетов наклонных дальностей и угловых координат, вычисляемых относительно упомянутых равносигнальных направлений путем решения линейных пеленгационных уравнений,
выбирают из совокупности
Figure 00000004
наиболее динамичные
Figure 00000005
объектов для определения их параметров движения и траекторий.
Согласно изобретению:
в данный момент времени используют в активном режиме лишь один из РЛ, а два других работают на прием, образуя с активным радиолокатором бистатические пары с базами d,
рассчитывают оценочные значения прямоугольных координат воздушно-космических объектов относительно точки стояния активного РЛ по измеренным значениям их сферических координат,
пересчитывают эти значения координат объектов к точке местонахождения ЦПУ,
рассчитывают оценочные значения угловых координат объектов относительно точек стояния радиолокаторов, работающих в пассивном режиме,
транслируют полученные значения угловых координат на пассивные РЛ, наводят их антенные системы на объекты,
принимают отраженные от объектов сигналы и транслируют их на ЦПУ, определяют суммарно-дальномерным методом наклонные дальности
Figure 00000006
относительно точек стояния радиолокаторов, где
Figure 00000007
- точки нахождения ВКО на траектории,
рассчитывают уточненные прямоугольные координаты l-го объекта в точке
Figure 00000008
траектории по формулам
Figure 00000009
Figure 00000010
Figure 00000011
вычисляют уточненные прямоугольные координаты всех L объектов, запоминают их значения, повторяют расчеты прямоугольных координат точек
Figure 00000012
для моментов времени
Figure 00000013
где
Figure 00000014
и также запоминают их значения, определяют приращения прямоугольных координат
Figure 00000015
за время Tобз=tk+1-tk,
используют уточненные значения координат для селекции отдельных объектов из состава групп,
вычисляют точные значения сферических координат объектов относительно точки нахождения ЦПУ,
наклонной дальности
Figure 00000016
азимута
Figure 00000017
и угла места
Figure 00000018
определяют приращения величин
Figure 00000019
за время обзора Тобз заданного сектора пространства,
рассматривают пространственные перемещения объектов как их движение по вспомогательным наклонным плоскостям
Figure 00000020
образованным векторами наклонных дальностей и отрезками траекторий объектов, рассчитывают величины углов
Figure 00000021
между векторами наклонных дальностей как длины гипотенуз сферических прямоугольных треугольников с катетами
Figure 00000022
в виде
Figure 00000023
определяют расстояния, пройденные объектами за интервал времени Тобз, как
Figure 00000024
и модули скоростей движения объектов
Figure 00000025
вычисляют значения пространственных курсовых углов лоцируемых объектов
Figure 00000026
а также текущие значения их углов пикирования (кабрирования)
Figure 00000027
периодически повторяя операции по обзору заданного сектора пространства, измерению первичных параметров (дальностей, угловых координат) и расчету параметров движения (векторов скорости и углов пикирования, кабрирования), строят криволинейные траектории движения лоцируемых объектов, аппроксимированные векторными отрезками
Figure 00000028
используют расчетные значения пространственных курсовых углов и скоростей движения объектов для определения высокоточных значений упрежденных на время
Figure 00000029
координат объектов.
Техническим результатом, достигаемым при использовании предлагаемого изобретения, является разработка операций предложенного способа многопозиционной активно-пассивной радиолокации, вывод математических соотношений, позволяющих определить значения модулей скорости движения ВКО, их пространственных курсовых углов и углов пикирования (кабрирования), а также определение структуры и порядка функционирования РЛС, реализующей предложенный способ. При использовании предложенного способа появляется возможность обнаружения маневров ВКО, использования устойчивых алгоритмов сопровождения маневрирующих объектов и построения траекторий их движения. Также эффективно решаются вопросы целераспределения, целеуказания и селекции отдельных объектов при их перемещении в составе групп.
Предлагаемое изобретение не известно в современной радиотехнике, а также не известны источники информации, содержащие сведения об аналогичных технических решениях, имеющих признаки, сходные с совокупностью признаков, отличающей заявляемое решение от прототипа, а также имеющих свойства, совпадающие со свойствами заявляемого решения. Поэтому можно считать, что оно обладает существенными отличиями, вытекает из них неочевидным образом и, следовательно, соответствует критериям «новизна» и «изобретательский уровень».
Сущность изобретения поясняется следующими фигурами:
фигура 1 - геометрия задачи в прямоугольной системе координат;
фигура 2 - структурная схема системы, реализующей предложенный способ.
При реализации предложенного способа выполняется следующая последовательность операций.
1. Образуют многопозиционную РЛС из трех активных трехкоординатных угломерно-дальномерных РЛ, размещенных на местности в точках 1-3 (фигура 1), образующих равносторонний треугольник со сторонами, величины которых равны d, основание треугольника ориентировано по оси абсцисс прямоугольной системы координат 0xyz, а высота, равная
Figure 00000030
ориентирована по оси ординат этой системы координат и восстановлена из точки, соответствующей ее началу 0, в которой размещен ЦПУ, соединенный с радиолокаторами системы дуплексными КИС.
2. Используют в радиолокаторах цифровые антенные решетки или антенные решетки с цифровой обработкой сигналов, применяя на их раскрывах весовые функции Хэмминга, формируют моноимпульсные группы лучей с общим фазовым центром и пеленгационные характеристики, при специальном выборе углов смещения лучей βсм и εсм линейные в рабочих зонах ΔβПХ по азимуту и ΔεПХ по углу места и перекрывающие всю ширину МГЛ.
3. Разбивают заданную область обзора пространства (телесный угол) на участки размером ΔβПХ по азимуту и ΔεПХ по углу места и, последовательно устанавливая равносигнальные направления моноимпульсных групп лучей радиолокаторов в центры этих участков, излучая зондирующие импульсы и принимая отраженные от лоцируемых воздушно-космических объектов сигналы в течение интервала наблюдения на каждом участке разбиения, осуществляют обзор упомянутой области, констатируя обнаружение в ней совокупности
Figure 00000031
объектов.
4. Измеряют, с привязкой к системе единого времени, и запоминают для каждого из обнаруженных объектов значения отсчетов наклонных дальностей и угловых координат, вычисляемых относительно упомянутых равносигнальных направлений путем решения линейных пеленгационных уравнений.
5. Выбирают из совокупности
Figure 00000032
наиболее динамичные
Figure 00000033
объектов для определения их параметров движения и траекторий.
6. Используют в данный момент времени в активном режиме лишь один из РЛ, при этом два других работают на прием, образуя с активным РЛ бистатические пары с базами d.
7. Рассчитывают оценочные значения прямоугольных координат ВКО относительно точки стояния активного РЛ по измеренным значениям их сферических координат.
8. Пересчитывают эти значения координат объектов к точке местонахождения ЦПУ.
9. Рассчитывают оценочные значения угловых координат объектов относительно точек стояния радиолокаторов, работающих в пассивном режиме.
10. Транслируют полученные значения угловых координат на пассивные РЛ и наводят их антенные системы на объекты.
11. Принимают отраженные от объектов сигналы и транслируют их на ЦПУ, определяют суммарно-дальномерным методом наклонные дальности
Figure 00000034
относительно точек стояния радиолокаторов, где
Figure 00000035
- точки нахождения ВКО на траектории.
12. Рассчитывают уточненные прямоугольные координаты l-го объекта в точке
Figure 00000036
траектории по формулам
Figure 00000037
13. Вычисляют уточненные прямоугольные координаты всех L объектов, запоминают их значения, повторяют расчеты прямоугольных координат точек
Figure 00000038
для моментов времени
Figure 00000039
где
Figure 00000040
и также запоминают их значения; определяют приращения прямоугольных координат
Figure 00000041
за время обзора То6з=tk+1-tk.
14. Используют уточненные значения координат для селекции отдельных объектов из состава групп.
15. Вычисляют точные значения:
сферических координат объектов относительно точки нахождения ЦПУ, наклонной дальности
Figure 00000042
азимута
Figure 00000043
и угла места
Figure 00000044
16. Определяют приращения величин
Figure 00000045
за время обзора Тобз заданного сектора пространства.
17. Рассматривают пространственные перемещения объектов как их движение по вспомогательным наклонным плоскостям
Figure 00000046
образованным векторами наклонных дальностей и отрезками траекторий объектов, рассчитывают величины углов
Figure 00000047
между векторами наклонных дальностей как длины гипотенуз сферических прямоугольных треугольников с катетами
Figure 00000048
в виде
Figure 00000049
18. Определяют расстояния, пройденные объектами за интервал времени Тобз, как
Figure 00000050
и модули скоростей движения объектов
Figure 00000051
19. Вычисляют значения пространственных курсовых углов лоцируемых объектов
Figure 00000052
а также текущие значения их углов пикирования (кабрирования)
Figure 00000053
20. Периодически повторяя операции по обзору заданного сектора пространства, измерению первичных параметров (дальностей, угловых координат) и расчету параметров движения (векторов скорости и углов пикирования, кабрирования), строят криволинейные траектории движения лоцируемых объектов, аппроксимированные векторными отрезками
Figure 00000054
21. Используют расчетные значения пространственных курсовых углов и скоростей движения объектов для определения высокоточных значений упрежденных на время
Figure 00000055
координат объектов.
Примером системы, реализующей предложенный способ, является трехпозиционная активно-пассивная радиолокационная система, структурная схема которой приведена на фигуре 2, где приняты следующие обозначения:
1 - радиолокатор 1 (РЛ1);
2 - радиолокатор 2 (РЛ2);
3 - радиолокатор 3 (РЛ3);
4 - центральный пункт управления (ЦПУ);
5 - передатчик (ПРД);
6 - блок делителей мощности (БДМ);
7 - блок приемо-передающих модулей (БППМ);
8 - антенная решетка (АР);
9 - синхронизатор (СХ);
10 - синтезатор частот (СЧ);
11 - устройство управления (УУ);
12 - устройство запоминания отсчетов весовой функции (УЗОВФ);
13 - вычислитель пеленгационных характеристик (ВПХ);
14 - вычислитель углов смещения максимумов ДН в МГЛ от РСН и коэффициентов разложения функции, описывающей ПХ (ВУСКР);
15 - блок умножителей и маршрутизатор потока данных (БУМПД);
16 - диаграммообразующее устройство (ДОУ);
17 - блок обнаружителей и измерителей дальностей (БОИД);
18 - блок измерителей угловых рассогласований (БИУР);
19 - приемо-передающее устройство обмена данными и ретрансляции сигналов (ППУОД);
191-194 - приемо-передающие устройства обмена данными и ретрансляции сигналов (ППУОД1-ППУОД4);
20 - устройство интерфейсное (УИ);
21 - блок формирования меток единого времени (БФМЕВ);
22 - блок анализа обстановки (БАО);
23 - блок вычислителя координат наведения (БВКН);
24 - блок вычислителя дальностей (БВД);
25 - блок вычислителя точных прямоугольных угловых координат (БВТПУК);
26 - блок селекции (БС);
27 - блок вычислителя точных сферических координат (БВТСК);
28 - блок вычислителя модулей скоростей, пространственных курсовых углов и углов пикирования (БВСКУ);
29 - блок вычислителя траекторий (БВТ);
30 - блок вычислителя прогнозируемых координат (БВПК);
На фигуре 2 использованы дополнительные сокращения:
ВС - вышестоящая система,
ИД - исходные данные,
КИС - канал информационной связи,
КУ - команда управления,
ПД - поток данных,
СГ - сигнал гетеродина,
СИ - синхроимпульс,
СП - сигнал передатчика.
Активно-пассивная РЛС содержит (фигура 2) РЛ1 1, РЛ2 2 и РЛ3 3, соединенные с ЦПУ 4 дуплексными КИС 1, КИС 2 и КИС 3, соответственно. В состав РЛ1 1 входит ПРД 5, выход которого подключен ко входу БДМ 6, выходы которого соединены с входами 1вх…Ωвх БППМ 7. Входы-выходы 1вв…Ωвв БППМ 7 соединены с одноименными входами-выходами АР 8, а выходы 1вых…Ωвых БППМ 7 подключены к сигнальным входам 1вх…Ωвх БУМПД 15.
Первый выход СХ 9 соединен со вторым входом ПРД 5, первый вход которого подключен к первому выходу СЧ 10, второй выход которого подключен к первому управляющему входу 1у БУМПД 15, а ко второму управляющему входу 2у БУМПД 15 подключен второй выход УУ 11, первый выход которого соединен со входом СЧ 10.
Третий выход СХ 9 соединен со вторым входом БОИД 17, а четвертый выход СХ 9 подключен ко второму входу ППУОД 19, к первому входу которого подключен восьмой выход УУ 11. Ко входу СХ 9 подключен пятый выход УУ 11, а второй выход СХ 9 соединен с третьим управляющим входом 3у БУМПД 15. Сигнальный выход БУМПД 15 подключен к сигнальному входу ДОУ 16, первый выход которого подключен к первому входу БОИД 17, а второй выход - ко входу БИУР 18, выход которого соединен с седьмым входом УУ 11. К шестому входу УУ 11 подключен выход БОИД 17. Третий выход УУ 11 соединен с первыми управляющими входами 1у БППМ 7 и ДОУ 16, а четвертый выход УУ 11 - со вторым управляющим входом 2у ДОУ 16. Девятый выход УУ 11 подключен к шестому входу ППУОД 19, пятый выход которого соединен с десятым входом УУ 11.
Одиннадцатый выход УУ 11 подключен ко входу УЗОВФ 12, первый выход которого подключен к первому входу ВПХ 13, а второй выход - к двенадцатому входу УУ 11. Тринадцатый выход УУ 11 подключен ко второму входу ВПХ 13, выход которого соединен со входом ВУСКР 14. Выход ВУСКР 14 подключен к четырнадцатому входу УУ 11.
Третий вход и четвертый выход ППУОД 19 дуплексным КИС1 соединены соответственно со вторым выходом и первым входом ППУОД2 192, входящего в состав ЦПУ 4.
Состав РЛ2 2 и РЛ3 3 аналогичен составу РЛ1 1. Их ППУОД (на фиг. 2 не показаны) дуплексными КИС2 и КИС3 так же соединены с ППУОД3 193 и ППУОД4 194, входящими в состав ЦПУ 4.
Третий вход и четвертый выход ППУОД2 192 подключены соответственно к четвертому выходу и третьему входу УИ 20, а третий вход и четвертый выход ППУОД3 193 - к шестому выходу и пятому входу УИ 20. Третий вход и четвертый выход ППУОД4 194 подключены соответственно к восьмому выходу и седьмому входу УИ 20, к девятому входу которого подключен выход БФМЕВ 21. Первый вход и второй выход УИ 20 подключены соответственно к четвертому выходу и третьему входу ППУОД1 191, первый выход и второй вход которого являются границей РЛС (соединяются с вышестоящей системой).
В состав РЛС введены вновь БАО 22, БВКН23, БВД 24, БВТПУК 25, БС 26, БВТСК 27, БВСКУ 28, БВТ 29 и БВПК 30. Первый вход и второй выход БАО 22 подключены соответственно к десятому выходу и одиннадцатому входу УИ 20, а первый вход и второй выход БВКН 23 - соответственно к двенадцатому выходу и тринадцатому входу УИ 20. Первый вход и второй выход БВД 24 подключены соответственно к четырнадцатому выходу и пятнадцатому входу УИ 20, а первый вход и второй выход БВТПУК 25 - соответственно к шестнадцатому выходу и семнадцатому входу УИ 20. Первый вход и второй выход БС 26 подключены соответственно к восемнадцатому выходу и девятнадцатому входу УИ 20, а первый вход и второй выход БВТСК 27 - соответственно к двадцатому выходу и двадцать первому входу УИ 20. Первый вход и второй выход БВСКУ 28 подключены соответственно к двадцать второму выходу и двадцать третьему входу УИ 20, а первый вход и второй выход БВТ 29 - соответственно к двадцать четвертому выходу и двадцать пятому входу УИ 20. При этом первый вход и второй выход БВПК 30 соединены соответственно с двадцать шестым выходом и двадцать седьмым входом УИ 20.
Активно-пассивная РЛС работает следующим образом.
После включения электропитания команда управления с первого выхода УУ 11 радиолокатора 1 подается на СЧ 10, где синтезируются сигнал передатчика, который с первого выхода СЧ 10 поступает на первый вход ПРД 5, и сигнал гетеродина, который со второго выхода СЧ 10 поступает на первый управляющий вход 1у БУМПД 15.
Со второго выхода УУ 11 подаются команды управления на второй управляющий вход 2у БУМПД 15. Также команды управления подаются с третьего выхода УУ 11 на первые управляющие входы 1у БППМ 7 и ДОУ 16.
Аналогичные операции, как и последующие, осуществляются в РЛ2 2 и РЛ3 3 с использованием объединяющих все радиолокаторы системы дуплексных КИС. Для этого с девятого выхода УУ 11 команды подаются на ППУОД 19, а затем по КИС1 на ППУОД2 192 и поступают через УИ 20, ППУОД3 193 и КИС2 - на РЛ2 2, а через УИ 20, ППУОД4 194 и КИС3-на РЛ3 3. Эти трехкоординатные угломерно-дальномерные РЛ1 1, РЛ2 2 и РЛ3 3 для осуществления локации ВКО размещены на местности так, что образуют равносторонний треугольник со сторонами, величины которых равны d, основание ориентировано по оси абсцисс, а высота, равная
Figure 00000056
ориентирована по оси ординат и восстановлена из точки, соответствующей началу общей системы координат 0xyz.
Геометрия задачи показана на фигуре 1, где в точках 1, 2, 3 находятся РЛ1, РЛ2 и РЛ3 соответственно, а в точке А1 - лоцируемый объект, движущийся на рассматриваемом участке траектории прямолинейно и равномерно с произвольным углом пикирования/кабрирования на высоте Н над поверхностью земли, которая считается плоской. Если объект движется по криволинейной траектории, то осуществляется ее кусочно-линейная аппроксимация. ВКО перемещается в пространстве со скоростью V, являющейся модулем вектора скорости V.
В упомянутых радиолокаторах применяют цифровые антенные решетки или антенные решетки с цифровой обработкой сигналов и, используя на их раскрывах весовые функции Хэмминга, формируют в пространстве моноимпульсные группы лучей с общим фазовым центром. Выбирают специальные углы смещения βсм и εсм максимумов ДН в МГЛ от РСН и направляют их с четвертого выхода УУ 11 на второй управляющий вход 2у ДОУ 16, обеспечивая линейность пеленгационных характеристик радиолокаторов в рабочих зонах ΔβПХ по азимуту и ΔεПХ по углу места, перекрывающих всю ширину МГЛ. На этот же вход 2у направляют отсчеты ВФ и коэффициенты разложения функции, описывающей ПХ.
По командам с пятого выхода УУ 11, поступающим на вход СХ 9, с его первого выхода поступают на второй вход ПРД 5 синхроимпульсы, которые подаются также со второго выхода СХ 9 на третий управляющий вход 3у БУМПД 15, с третьего выхода СХ 9 на второй вход БОИД 17 и с четвертого выхода СХ 9 на второй вход ППУОД 19.
ПРД 5 генерирует зондирующие импульсы, которые подаются через БДМ 6 на входы 1вх…Ωвх БППМ 7, где эти импульсы усиливаются в канальных усилителях мощности и, после прохождения через канальные циркуляторы, с входов-выходов 1вв…Ωвв поступают в АР 8, антенные элементы которой излучают зондирующие импульсы в заданную область пространства.
Отраженные от лоцируемых ВКО сигналы принимают антенными элементами АР 8 и направляют в БППМ 7, каждый модуль которого содержит циркулятор, малошумящий усилитель (МШУ) и аналого-цифровой преобразователь (АЦП). Со входа модуля сигнал через циркулятор поступает в канальный МШУ и далее преобразуется на промежуточную частоту, а затем подвергается аналого-цифровому преобразованию. С выходов 1вых…Ωвых БППМ 7 отсчеты смеси эхо-сигналов и шумов подаются на сигнальные входы 1вх…Ωвх БУМПД 15, где формируется соответствующий поток данных. Он с выхода БУМПД 15 направляется на сигнальный вход ДОУ 16, где осуществляется его весовая обработка путем умножения на отсчеты функции W(x, у) Хэмминга.
Отсчеты ВФ Хэмминга извлекаются из устройства УЗОВФ 12 по команде, поступающей с одиннадцатого выхода УУ 11, и подаются со второго выхода УЗОВФ 12 на двенадцатый вход УУ 11. На первый вход ВПХ 13 с первого выхода УЗОВФ 12 подаются отсчеты ВФ, а на второй вход - ИД с тринадцатого выхода УУ 11. Значения ПХ направляются с выхода ВПХ 13 на вход ВУСКР 14, где вычисляются углы смещения максимумов ДН в МГЛ от РСН, которые вместе с коэффициентами разложения функции, описывающей ПХ, подаются на четырнадцатый вход УУ 11.
В ДОУ 16 формируется моноимпульсная группа лучей с общим фазовым центром, состоящая из двух пар лучей, смещенных от РСН на углы
Figure 00000057
по азимуту и
Figure 00000058
по углу места, обеспечивая в моноимпульсной РЛС линейные ПХ с размером ΔβПХ по азимуту и ΔεПХ по углу места, соответственно.
При поступлении с первого выхода ДОУ 16 на первый вход БОИД 17 суммарного сигнала определяют, с учетом поступающего на второй вход синхроимпульсов с третьего выхода СХ 9, время запаздывания эхо-сигналов и дальности до лоцируемых объектов, после чего направляют эти данные с выхода БОИД 17 на шестой вход УУ 11.
Обзор пространства осуществляют за счет сканирования МГЛ, для чего разбивают заданную область обзора пространства на (I+1)×(K+1) участков с размером каждого ΔβПХ вдоль азимутального и ΔεПХ вдоль угломестного направлений. Затем последовательно устанавливая РСН моноимпульсной группы лучей в центры участков
Figure 00000059
где
Figure 00000060
- номера участков разбиения по азимуту и углу места соответственно, осуществляют дискретный обзор упомянутой области обзора. В течение интервала наблюдения Δt на каждом участке разбиения производят обнаружение всей совокупности
Figure 00000061
лоцируемых объектов.
Со второго выхода ДОУ 16 значения углов отклонения от РСН подаются на вход БИУР 18, где вычисляются значения приращений азимутов и углов места, которые с выхода БИУР 18 поступают на седьмой вход УУ 11.
Измеряют с привязкой к системе единого времени с использованием данных БФМЕВ21 и запоминают для каждого из обнаруженных объектов значения отсчетов наклонных дальностей и угловых координат, вычисляемых относительно равносигнальных направлений путем решения соответствующих линейных уравнений с использованием коэффициентов линейных частей разложений пеленгационных характеристик в ряды Маклорена как функций углов βсм и εсм.
При поступлении из УИ 20 сигналов в БАО 22 осуществляют их анализ и выбирают из совокупности
Figure 00000061
объектов наиболее динамичные
Figure 00000062
для определения их параметров движения и траекторий. Используют в данный момент времени в активном режиме лишь один из РЛ, при этом два других работают на прием, образуя с активным РЛ бистатические пары с базами d. Результаты анализа подают в УИ 20 и используют в БВКН 23 для расчета оценочных значений прямоугольных координат ВКО относительно точки стояния активного РЛ по измеренным значениям их сферических координат.
Пересчитывают в БВКН 23 эти значения координат объектов к точке местонахождения центрального пункта управления и рассчитывают оценочные значения угловых координат целей относительно точек стояния радиолокаторов, работающих в пассивном режиме. Результаты направляют в УИ 20.
С использованием БВД 24 транслируют полученные значения угловых координат на пассивные радиолокаторы и наводят их антенные системы на объекты. Принимают отраженные от объектов сигналы и транслируют их на центральный пункт управления, где, для обеспечения необходимой разрешающей способности системы по угловым координатам, определяют суммарно-дальномерным методом наклонные дальности
Figure 00000063
относительно точек стояния радиолокаторов.
Так же с использованием БВТПУК 25 рассчитывают уточненные прямоугольные координаты
Figure 00000064
объекта в точке
Figure 00000065
траектории по формулам
Figure 00000066
а затем вычисляют уточненные прямоугольные координаты всех L объектов, запоминают их значения, повторяют расчеты прямоугольных координат точек
Figure 00000067
для моментов времени
Figure 00000068
где
Figure 00000069
и также запоминают их значения.
Далее в БС 26 используют уточненные значения координат для селекции отдельных объектов из состава групп, а в БВТСК 27 вычисляют точные значения сферических координат объектов, в том числе, объектов из состава групп, относительно точки нахождения ЦПУ.
С использованием БВСКУ 28 определяют приращения
Figure 00000070
Figure 00000071
причем рассматривают пространственные перемещения объектов как их движение по вспомогательным наклонным плоскостям
Figure 00000072
образованным векторами наклонных дальностей и отрезками траекторий объектов, рассчитывают величины углов
Figure 00000073
между векторами наклонных дальностей, являющиеся аналогами угловых координат объектов, равные длинам гипотенуз сферических прямоугольных треугольников с катетами
Figure 00000074
и соответствующие угловым размерам проекций на небесную сферу путей объектов, пройденных за интервалы времени
Figure 00000075
как
Figure 00000076
и определяют расстояния, пройденные объектами за интервал времени
Figure 00000077
как
Figure 00000078
а модули скорости движения объектов как
Figure 00000079
В БВСКУ 28 также вычисляют значения пространственных курсовых углов лоцируемых объектов
Figure 00000080
и значения углов пикирования (кабрирования) объектов
Figure 00000081
В БВТ 29, периодически повторяя операции по обзору заданного сектора пространства, измерению первичных параметров (дальностей, угловых координат) и расчету параметров движения, строят криволинейные траектории движения лоцируемых объектов, аппроксимированные векторными отрезками
Figure 00000082
В БВПК 30 используют расчетные значения пространственных курсовых углов и скоростей движения объектов для определения высокоточных значений упрежденных на время
Figure 00000083
координат объектов.
Выходным устройством РЛС является ППУОД 1 191, служащее для использования через УИ 20 полученных значений и обмена данными с вышестоящей системой.
Предложенный способ на основе измерения наклонных дальностей R1, R2, R3 со среднеквадратическими отклонениями (СКО) σR обеспечивает:
- высокоточное определение прямоугольных координат хк, ук, zk ВКО в соответствии с формулами (1-3), СКО которых определяются соотношениями
Figure 00000084
где
Figure 00000085
Figure 00000086
- расчет сферических координат объектов относительно начала координат в соответствии с формулами (4-6), СКО которых определяются выражениями
Figure 00000087
где
Figure 00000088
Figure 00000089
где
Figure 00000090
- определение длины Sk путей, пройденных ВКО за время Тобз, в соответствии с формулой (8), СКО которых определяется выражением
Figure 00000091
где
Figure 00000092
- расчет значений модулей векторов скорости ВКО в соответствии с формулой (9), СКО которых определяются выражением
Figure 00000093
- определение значений пространственных курсовых углов γk объектов в соответствии с формулой (10), СКО которых равно
Figure 00000094
где
Figure 00000095
Figure 00000096
В частном случае, когда R1=R2=R3=100 км, ε=45 град, σR=3 м, i=4, VR=200 м/c, Тобз=10 сек, длина пройденного ВКО пути будет Sk=2×103 м; σxkykzkR0k=16,9 м; σSk=12 м; σVk=1,7 м/с; σγk=0,12 град.
При этом относительные величины СКО наклонных дальностей, модулей векторов скорости и пространственных курсовых углов составят:
Figure 00000097
Для комплексной оценки качества предложенного способа определим величину среднеквадратической погрешности местоопределения ВКО.
СКО пространственного местоопределения объекта при независимости результатов первичных измерений, как показано в [7 - Бакулев П.А. Радиолокационные системы. М: Радиотехника. 2007. 376 с.], равна
Figure 00000098
где ϕ1 - угол между третьей поверхностью положения и линией положения на плоскости;
Figure 00000099
- СКО местоположения объекта на плоскости;
ϕ - угол пересечения линий положения (для дальномерного способа - окружностей) на плоскости;
KЛП1,2 - коэффициенты погрешности определения линий положения (для дальномерного способа KЛП=1);
Figure 00000100
- погрешности измерения дальностей.
Для предложенного латерационного способа имеем
Figure 00000101
а
Figure 00000102
где
Figure 00000103
R000 - сферические координаты ВКО с началом координат в точке 0.
В случае, когда i=4, σR=3 м, R0=105 м, β0=30° и ϕ1=30°, СКО определения пространственного местоположения объекта дальномерным способом равна 68 м.
Для защиты системы, реализующей предложенный способ, от шумовых помех входящие в ее состав радиолокаторы могут работать как одиночные угломерно-дальномерные станции, образовывать бистатические пары или работать как двухпозиционные пассивные угломерные станции.
При этом СКО определения пространственных положений объектов равны [7]:
- для угломерно-дальномерного режима работы радиолокаторов системы
Figure 00000104
где σУК - погрешность измерения угловых координат;
- для угломерного режима работы
Figure 00000105
В этих режимах работы СКО определения пространственных положений объектов существенно возрастают, измерения становятся неравноточными, а величины ошибок при k=4, σУК=0,1 град, R0=105 м, β00=30° равны соответственно 250 м и 2270 м.
В прототипе для обеспечения надежной работы группировки разнотипных станций осуществляется статистическая обработка данных, полученных от неравноточных измерителей первичных параметров, функционирующих в различных режимах: дальномерном, угломерно-дальномерном, угломерно-доплеровском и угломерном. В этом случае наиболее вероятными значениями измеряемых параметров являются их средневзвешенные значения;
Figure 00000106
Wi отдельных значений которых обратно пропорциональны квадратам соответствующих СКО. Дисперсия средневзвешенного значения определяется [8 - Корн Г., Корн Т. Справочник по математике. М., 1974. 832 с] по формуле:
Figure 00000107
Так, при использовании в составе системы трех станций (дальномерной, угломерно-дальномерной и угломерной), у которых σПМО равны 68, 250 и 2270 м с весами измерений 9,99, 0,98 и 0,9, среднеквадратическая ошибка пространственного местоположения составит 790 м, что в 11,6 раза больше, чем СКО предложенной латерационной системы.
Реализация заявляемого способа не встречает затруднений при современном уровне развития радиотехники и устройств цифровой обработки сигналов. Возможность реализации предложенного способа обеспечивает ему критерий «промышленная применимость».
По сравнению с прототипом, использование операций предложенного способа обеспечивает:
- возможность высокоточного измерения прямоугольных координат ВКО и их наклонных дальностей относительно начала координат с относительными среднеквадратическими отклонениями
Figure 00000108
- определение модулей векторов скоростей объектов с относительными СКО
Figure 00000109
- возможность измерения пространственных курсовых углов ВКО с относительными среднеквадратическими отклонениями
Figure 00000110
- определение местоположения объектов с СКО, меньшей в 11,6 раз.
Все это дает возможность селекции отдельных элементов перемещающихся в пространстве групповых объектов и раздельного построения траекторий их движения.

Claims (19)

  1. Способ обзорной активно-пассивной латерационной радиолокации воздушно-космических объектов, при котором образуют многопозиционную радиолокационную систему из трех активных трехкоординатньгх угломерно-дальномерных радиолокаторов, размещенных на местности в точках, образующих равносторонний треугольник со сторонами, величины которых равны d, основание треугольника ориентировано по оси абсцисс прямоугольной системы координат 0xyz, а высота, равная
    Figure 00000111
    ориентирована по оси ординат этой системы координат и восстановлена из точки, соответствующей ее началу 0, в которой размещен центральный пункт управления, соединенный с радиолокаторами системы дуплексными каналами информационной связи, используют в радиолокаторах цифровые антенные решетки или антенные решетки с цифровой обработкой сигналов, применяя на их раскрывах весовые функции Хэмминга, формируют моноимпульсные группы лучей с общим фазовым центром и пеленгационные характеристики, при специальном выборе углов смещения лучей βсм и εсм линейные в рабочих зонах ΔβПХ по азимуту и ΔεПХ по углу места и перекрывающие всю ширину моноимпульсных групп лучей, разбивают заданную область обзора пространства на участки размером ΔβПХ по азимуту и ΔεПХ по углу места и, последовательно устанавливая равносигнальные направления моноимпульсных групп лучей радиолокаторов в центры этих участков, излучая зондирующие импульсы и принимая отраженные от лоцируемых воздушно-космических объектов сигналы в течение интервала наблюдения на каждом участке разбиения, осуществляют обзор упомянутой области, констатируя обнаружение в ней совокупности
    Figure 00000112
    объектов, измеряют, с привязкой к системе единого времени, и запоминают для каждого из обнаруженных объектов значения отсчетов наклонных дальностей и угловых координат, вычисляемых относительно упомянутых равносигнальных направлений путем решения линейных пеленгационных уравнений, выбирают из совокупности
    Figure 00000113
    наиболее динамичные
    Figure 00000114
    объекты для определения их параметров движения и траекторий,
  2. отличающийся тем, что в данный момент времени используют в активном режиме лишь один из радиолокаторов, а два других работают на прием, образуя с активным радиолокатором бистатические пары с базами d, рассчитывают оценочные значения прямоугольных координат воздушно-космических объектов относительно точки стояния активного радиолокатора по измеренным значениям их сферических координат, пересчитывают эти значения координат объектов к точке местонахождения центрального пункта управления, рассчитывают оценочные значения угловых координат объектов относительно точек стояния радиолокаторов, работающих в пассивном режиме, транслируют полученные значения угловых координат на пассивные радиолокаторы, наводят их антенные системы на объекты, принимают отраженные от объектов сигналы и транслируют их на центральный пункт управления, определяют суммарно-дальномерным методом наклонные дальности
    Figure 00000115
    относительно точек стояния радиолокаторов, где
    Figure 00000116
    - точки нахождения воздушно-космических объектов на траектории, рассчитывают уточненные прямоугольные координаты
    Figure 00000117
    объекта в точке
    Figure 00000118
    траектории по формулам
  3. Figure 00000119
  4. вычисляют уточненные прямоугольные координаты всех L объектов, запоминают их значения, повторяют расчеты прямоугольных координат точек
    Figure 00000120
    для моментов времени
    Figure 00000121
    где
    Figure 00000122
    и также запоминают их значения, определяют приращения прямоугольных координат
    Figure 00000123
    за время обзора Тобз=tk+1-tk, используют уточненные значения координат для селекции отдельных объектов из состава групп, вычисляют точные значения сферических координат объектов относительно точки нахождения центрального пункта управления, наклонной дальности
  5. Figure 00000124
  6. азимута
  7. Figure 00000125
  8. и угла места
  9. Figure 00000126
  10. определяют приращения величин
    Figure 00000127
    за время обзора Тобз заданного сектора пространства, рассматривают пространственные перемещения объектов как их движение по вспомогательным наклонным плоскостям
    Figure 00000128
    образованным векторами наклонных дальностей и отрезками траекторий объектов, рассчитывают величины углов
    Figure 00000129
    между векторами наклонных дальностей как длины гипотенуз сферических прямоугольных треугольников с катетами
    Figure 00000130
    в виде
  11. Figure 00000131
  12. определяют расстояния, пройденные объектами за интервал времени Тобз, как
  13. Figure 00000132
    и модули скоростей движения объектов
  14. Figure 00000133
  15. вычисляют значения пространственных курсовых углов лоцируемых объектов
  16. Figure 00000134
  17. а также текущие значения их углов пикирования/кабрирования
  18. Figure 00000135
  19. периодически повторяя операции по обзору заданного сектора пространства, измерению первичных параметров - дальностей, угловых координат, расчету параметров движения -векторов скорости и углов пикирования/кабрирования, строят криволинейные траектории движения лоцируемых объектов, аппроксимированные векторными отрезками
    Figure 00000136
    используют расчетные значения пространственных курсовых углов и скоростей движения объектов для определения высокоточных значений упрежденных на время
    Figure 00000137
    координат объектов.
RU2019123488A 2019-07-19 2019-07-19 Способ обзорной активно-пассивной латерационной радиолокации воздушно-космических объектов RU2713498C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019123488A RU2713498C1 (ru) 2019-07-19 2019-07-19 Способ обзорной активно-пассивной латерационной радиолокации воздушно-космических объектов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019123488A RU2713498C1 (ru) 2019-07-19 2019-07-19 Способ обзорной активно-пассивной латерационной радиолокации воздушно-космических объектов

Publications (1)

Publication Number Publication Date
RU2713498C1 true RU2713498C1 (ru) 2020-02-05

Family

ID=69624874

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019123488A RU2713498C1 (ru) 2019-07-19 2019-07-19 Способ обзорной активно-пассивной латерационной радиолокации воздушно-космических объектов

Country Status (1)

Country Link
RU (1) RU2713498C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2735744C1 (ru) * 2020-03-27 2020-11-06 Федеральное государственное унитарное предприятие "Ростовский-на-Дону научно-исследовательский институт радиосвязи" (ФГУП "РНИИРС") Способ обзорной однопозиционной трилатерационной некогерентной радиолокации воздушных целей
RU2759198C1 (ru) * 2020-06-30 2021-11-10 Федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный университет телекоммуникаций им. проф. М.А. Бонч-Бруевича" Способ определения координат и параметров движения целей в дальномерной многопозиционной радиолокационной системе
RU2766569C1 (ru) * 2021-05-31 2022-03-15 Федеральное государственное бюджетное образовательное учреждение высшего образования "Рязанский государственный радиотехнический университет имени В.Ф. Уткина" Способ наблюдения за движущимися объектами многопозиционной системой приемников

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1118011A1 (en) * 1998-09-03 2001-07-25 Wherenet, Inc. Network for multi-lateration with circularly polarized antenna
RU2279105C2 (ru) * 2004-08-02 2006-06-27 Владимир Романович Мамошин Комплексный способ определения координат и параметров траекторного движения авиационно-космических объектов, наблюдаемых группировкой станций слежения
JP2012202806A (ja) * 2011-03-25 2012-10-22 Toshiba Corp マルチラテレーションシステム
WO2013136648A1 (ja) * 2012-03-14 2013-09-19 日本電気株式会社 広域マルチラテレーションシステム、中央局及びそれらに用いる二次元位置算出方法
US8559971B1 (en) * 2011-04-05 2013-10-15 Exelis, Inc. Determination of state vector, timing, and navigation quality metrics from reception of SBS transmissions
RU2515571C1 (ru) * 2012-10-05 2014-05-10 Федеральное государственное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный университет телекоммуникаций им. проф. М.А. Бонч-Бруевича" Способ определения координат цели в трехпозиционной дальномерной радиолоокационной системе
RU2538105C2 (ru) * 2013-05-14 2015-01-10 ОТКРЫТОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО "НИИ измерительных приборов-Новосибирский завод имени Коминтерна" /ОАО "НПО НИИИП-НЗиК"/ Способ определения координат целей и комплекс для его реализации
RU2661357C1 (ru) * 2017-09-28 2018-07-16 Федеральное государственное унитарное предприятие "Ростовский-на-Дону научно-исследовательский институт радиосвязи" (ФГУП "РНИИРС") Способ обзорной пассивной однопозиционной моноимпульсной трёхкоординатной угломерно-разностно-доплеровской локации перемещающихся в пространстве радиоизлучающих объектов
RU2673877C2 (ru) * 2017-05-04 2018-12-03 Акционерное общество "Концерн воздушно-космической обороны "Алмаз-Антей" Способ обзора пространства и сопровождения трассы цели (варианты) и радиолокационный комплекс для его осуществления (варианты)

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1118011A1 (en) * 1998-09-03 2001-07-25 Wherenet, Inc. Network for multi-lateration with circularly polarized antenna
RU2279105C2 (ru) * 2004-08-02 2006-06-27 Владимир Романович Мамошин Комплексный способ определения координат и параметров траекторного движения авиационно-космических объектов, наблюдаемых группировкой станций слежения
JP2012202806A (ja) * 2011-03-25 2012-10-22 Toshiba Corp マルチラテレーションシステム
US8559971B1 (en) * 2011-04-05 2013-10-15 Exelis, Inc. Determination of state vector, timing, and navigation quality metrics from reception of SBS transmissions
WO2013136648A1 (ja) * 2012-03-14 2013-09-19 日本電気株式会社 広域マルチラテレーションシステム、中央局及びそれらに用いる二次元位置算出方法
RU2515571C1 (ru) * 2012-10-05 2014-05-10 Федеральное государственное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный университет телекоммуникаций им. проф. М.А. Бонч-Бруевича" Способ определения координат цели в трехпозиционной дальномерной радиолоокационной системе
RU2538105C2 (ru) * 2013-05-14 2015-01-10 ОТКРЫТОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО "НИИ измерительных приборов-Новосибирский завод имени Коминтерна" /ОАО "НПО НИИИП-НЗиК"/ Способ определения координат целей и комплекс для его реализации
RU2673877C2 (ru) * 2017-05-04 2018-12-03 Акционерное общество "Концерн воздушно-космической обороны "Алмаз-Антей" Способ обзора пространства и сопровождения трассы цели (варианты) и радиолокационный комплекс для его осуществления (варианты)
RU2661357C1 (ru) * 2017-09-28 2018-07-16 Федеральное государственное унитарное предприятие "Ростовский-на-Дону научно-исследовательский институт радиосвязи" (ФГУП "РНИИРС") Способ обзорной пассивной однопозиционной моноимпульсной трёхкоординатной угломерно-разностно-доплеровской локации перемещающихся в пространстве радиоизлучающих объектов

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2735744C1 (ru) * 2020-03-27 2020-11-06 Федеральное государственное унитарное предприятие "Ростовский-на-Дону научно-исследовательский институт радиосвязи" (ФГУП "РНИИРС") Способ обзорной однопозиционной трилатерационной некогерентной радиолокации воздушных целей
RU2759198C1 (ru) * 2020-06-30 2021-11-10 Федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный университет телекоммуникаций им. проф. М.А. Бонч-Бруевича" Способ определения координат и параметров движения целей в дальномерной многопозиционной радиолокационной системе
RU2766569C1 (ru) * 2021-05-31 2022-03-15 Федеральное государственное бюджетное образовательное учреждение высшего образования "Рязанский государственный радиотехнический университет имени В.Ф. Уткина" Способ наблюдения за движущимися объектами многопозиционной системой приемников

Similar Documents

Publication Publication Date Title
Kanhere et al. Position locationing for millimeter wave systems
RU2682661C1 (ru) Способ активной обзорной моноимпульсной радиолокации с инверсным синтезированием апертуры антенны
EP0237223B1 (en) Passive ranging method and apparatus
US8229472B2 (en) System and method for enabling determination of a position of a transponder
RU2713498C1 (ru) Способ обзорной активно-пассивной латерационной радиолокации воздушно-космических объектов
US20090111483A1 (en) Positioning system and method
RU2735744C1 (ru) Способ обзорной однопозиционной трилатерационной некогерентной радиолокации воздушных целей
RU2557808C1 (ru) Способ определения наклонной дальности до движущейся цели пассивным моностатическим пеленгатором
RU2661357C1 (ru) Способ обзорной пассивной однопозиционной моноимпульсной трёхкоординатной угломерно-разностно-доплеровской локации перемещающихся в пространстве радиоизлучающих объектов
Hmam Scan-based emitter passive localization
RU2506605C2 (ru) Дальномерный способ и устройство определения координат источника радиоизлучения
CN104267420A (zh) 一种星载对运动目标的三维定位方法、装置和系统
RU2699552C1 (ru) Способ пассивной однопозиционной угломерно-доплеровской локации перемещающихся в пространстве радиоизлучающих объектов
RU2275649C2 (ru) Способ местоопределения источников радиоизлучения и пассивная радиолокационная станция, используемая при реализации этого способа
RU2402034C1 (ru) Радиолокационный способ определения углового положения цели и устройство для его реализации
RU2717970C1 (ru) Способ обзорной трехкоординатной двухпозиционной латерационной радиолокации авиационно-космических объектов
RU2643168C2 (ru) Способ измерения высоты, истинной скорости летательного аппарата и наклона вектора скорости летательного аппарата относительно горизонта, устройство бортовой радиолокационной станции, использующее способ
RU2298805C2 (ru) Способ определения координат источника радиоизлучения (варианты) и радиолокационная станция для его реализации
RU113022U1 (ru) Наземно-космическая радиолокационная система
RU2660159C1 (ru) Способ определения угла сноса летательного аппарата бортовой радиолокационной станцией
CN116400293A (zh) 伪单站高精度无源定位系统
RU2687240C1 (ru) Способ определения параметров движения и траекторий воздушных объектов при полуактивной бистатической радиолокации
RU2713633C1 (ru) Способ контроля геометрии крупногабаритных объектов
RU38509U1 (ru) Система многопозиционного определения координат загоризонтных объектов по излучениям их радиолокационных станций
Kumar et al. Performance analysis of TDOA and FDOA for missile tracking application using extended Kalman filter