RU2713264C1 - Вибропоглотитель - Google Patents

Вибропоглотитель Download PDF

Info

Publication number
RU2713264C1
RU2713264C1 RU2019111808A RU2019111808A RU2713264C1 RU 2713264 C1 RU2713264 C1 RU 2713264C1 RU 2019111808 A RU2019111808 A RU 2019111808A RU 2019111808 A RU2019111808 A RU 2019111808A RU 2713264 C1 RU2713264 C1 RU 2713264C1
Authority
RU
Russia
Prior art keywords
metal plate
vibration
length
frequency
thickness
Prior art date
Application number
RU2019111808A
Other languages
English (en)
Inventor
Валерий Юлианович Кирпичников
Равиль Исмаилович Кильдеев
Алексей Петрович Кощеев
Валентин Викторович Савенко
Original Assignee
Федеральное государственное унитарное предприятие "Крыловский государственный научный центр"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное унитарное предприятие "Крыловский государственный научный центр" filed Critical Федеральное государственное унитарное предприятие "Крыловский государственный научный центр"
Priority to RU2019111808A priority Critical patent/RU2713264C1/ru
Application granted granted Critical
Publication of RU2713264C1 publication Critical patent/RU2713264C1/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/04Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • F16F7/10Vibration-dampers; Shock-absorbers using inertia effect
    • F16F7/104Vibration-dampers; Shock-absorbers using inertia effect the inertia member being resiliently mounted
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Mechanical Engineering (AREA)
  • Multimedia (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

Изобретение относится к области машиностроения. Вибропоглотитель содержит скрепленные между собой металлическую массу в виде металлической пластины и упругий слой. Толщина металлической пластины составляет от 0,2 до 0,5 толщины демпфируемой конструкции. Длина металлической пластины определяется значением от половины до одной длины изгибной волны. Ширина металлической пластины составляет не менее 0,1 ее длины. Упругий слой выполнен спрессованным из проволоки и имеет толщину равную 5-20 толщинам металлической пластины. Металлическая пластина и проволока в упругом слое выполнены из материала, одинакового с материалом демпфирующей конструкции. Металлическая пластина соединена с демпфируемой конструкцией через установленное в геометрическом центре или в углах упомянутой пластины механическое крепление. Достигается повышение эффективности снижения уровней вибрации на низших резонансных частотах, увеличение срока службы в агрессивных средах. 4 ил.

Description

Изобретение относится к области борьбы с вибрацией от воздействия на конструкции воздушного шума или динамических усилий, возникающих при работе шумящего и (или) виброактивного оборудования, используемого на транспортных средствах различного функционального назначения (суда, самолеты, автомобили и т.д.).
Известно большое количество средств уменьшения вибрации, наиболее распространенными из которых являются вибропоглощающие покрытия и локальные вибропоглотители. Подробное описание принципа действия и конструкции указанных средств приведено, см. например, А.С. Никифоров. Вибропоглощение на судах. Гл. 3 Вибропоглощающие покрытия для судовых конструкций, стр. 53-78 и Гл. 5 Прочие средства вибропоглощения. §17 Локальные вибропоглотители, стр. 87-95. Издательство "Судостроение", Ленинград, 1979 г.
Одним из наиболее распространенных типов вобропоглощающих покрытий является армированное вибропоглощающее покрытие (А.С. Никифоров. Акустическое проектирование судовых конструкций. §6.3 Средства вибропоглощения, стр. 158-161. Издательство "Судостроение", Ленинград, 1990 г.), представляющее собой диссипативный слой резиноподобного материала на который наносится армирующий слой из металла. Одним из недостатков армированного вибропоглощающего покрытия является большая масса, обусловленная как большими размерами покрытия в плане, так и его большой толщиной. Действительно, для повышения эффективности армированное вибропоглощающее покрытие наносят на всю или
Figure 00000001
часть (не менее 60%) поверхности демпфируемой конструкции, а толщина покрытия превышает толщину демпфируемой конструкции в два и более раз.
Для минимизации массы и площади размещения вибропоглощающих устройств вместо армированных вибропоглощающих покрытий используют локальные вибропоглотители, представляющие собой груз (металлическую массу) и упругий слой между грузом и демпфируемой конструкцией (см. А.С. Никифоров. Вибропоглощение на судах. Гл. 5 Прочие средства вибропоглощения. §17 Локальные вибропоглотители, стр. 87-95. Издательство "Судостроение", Ленинград, 1979 г.).
Известно также устройство по техническому решению (US 2011/0012419 А1, 20.01.2011, параг. 0073-0084, фиг. 1-11), являющееся вибропоглотителем, направленным на гашение вибрации балансируемого колеса механического средства путем установки на колесо одного или нескольких связанных друг с другом грузов из металлической массы в виде металлической пластины, соединенной с колесом упругим слоем из полимерной пленки - прототип.
Недостатком прототипа-устройства является малая эффективность снижения уровней вибрации известным устройством на низших резонансных частотах демпфируемой конструкции, а также малый срок службы в агрессивных средах металлической пластины и упругого слоя из полимерной пленки.
Задачей предполагаемого изобретения является повышение эффективности снижения уровней вибрации устройством на низших резонансных частотах демпфируемой конструкции при одновременном увеличении срока службы в агрессивных средах металлической пластины и упругого слоя между металлической пластиной и демпфируемой конструкцией.
Указанная задача решается благодаря тому, что в локальном вибропоглотителе, включающем скрепленные между собой металлическую массу в виде металлической пластины и упругий слой между металлической пластиной и колеблющейся на частоте ƒ демпфируемой конструкцией, по изобретению металлическая пластина имеет толщину h, составляющую от 0,2 до 0,5 толщины демпфируемой конструкции, длину
Figure 00000002
определяемую величиной от половины до одной длины изгибной волны в металлической пластине на частоте ƒ, и ширину b, определяемую значением не менее 0,1 ее длины
Figure 00000003
а упругий слой между металлической пластиной и демпфируемой конструкцией выполнен спрессованным из проволоки, обладающей подпружинивающими свойствами, и имеет толщину, равную 5-20 толщинам металлической пластины. Причем металлическая пластина и проволока в упругом слое выполнены из одинакового и из нержавеющего материала. При этом металлическая пластина соединена с демпфируемой конструкцией через установленное в геометрическом центре или в углах упомянутой пластины механическое крепление, которое отстоит от места с наибольшим уровнем вибрации демпфируемой конструкции на расстоянии, не превышающем 0,1 длины изгибной волны в демпфируемой конструкции на частоте ƒ.
Выполнение металлической пластины толщиной h, составляющей от 0,2 до 0,5 толщины демпфируемой конструкции, длиной
Figure 00000004
определяемой величиной от половины до одной длины изгибной волны в металлической пластине на частоте ƒ, и шириной b, определяемой значением не менее 0,1 ее длины
Figure 00000005
и расположенной между металлической пластиной и демпфируемой конструкцией без зазора упругого слоя из прессованной проволоки, обладающей подпружинивающими свойствами, и изготовления их из одинакового материала, обеспечивает повышение эффективности вибропоглотителя на низших резонансных частотах демпфируемой конструкции за счет настройки низшей резонансной частоты изгибных колебаний металлической пластины выбором ее размеров на частоту ƒ повышенной вибрации демпфируемой конструкции в сравнении с прототипом. При этом из-за возникновения изгибных колебаний металлической пластины на частотах более высоких, чем ее низшая резонансная частота, расширяется частотный диапазон, в котором проявляется эффективность вибропоглотителя.
Выполнение находящейся между металлической пластиной и демпфируемой конструкцией без зазора упругого слоя из спрессованной проволоки, обладающей подпружинивающими свойствами и имеющей толщину, равную 5-20 толщинам металлической пластины, обеспечивает повышение эффективности вибропоглотителя за счет улучшения поглощения колебательной энергии в упругом слое из прессованной проволоки при резонансных колебаниях металлической пластины на частоте ƒ, совпадающей с частотой колебания демпфируемой конструкции, возникающей при передаче повышенной вибрации демпфируемой конструкции на металлическую пластину через механические крепления.
Размещение механических креплений в геометрическом центре или в углах металлической пластины от места с наибольшим уровнем вибрации на расстоянии, не превышающем 0,1 длины изгибной волны в демпфируемой конструкции на частоте ƒ, повышает эффективность вибропоглотителя за счет увеличения потерь колебательной энергии в упругом слое из прессованной проволоки при вибрации демпфируемой конструкции на частоте ƒ.
Выполнение металлической пластины и проволоки в упругом слое из материала, одинакового с материалом демпфирующей конструкции, предотвращает возможность появления на них электрохимической коррозии и благодаря этому повышает срок службы вибропоглотителя в агрессивных средах.
Сущность изобретения поясняется рисунками, где на фиг. 1 представлен предлагаемый вибропоглотитель на демпфируемой конструкции, имеющий механическое крепление в геометрическом центре его металлической пластины, и на фиг. 2 - поперечное сечение по А-А вибропоглотителя на фиг. 1, установленного на демпфируемой конструкции, на фиг. 3 представлен предлагаемый вибропоглотитель на демпфируемой конструкции, имеющий механические крепления в углах металлической пластины, и на фиг. 4 - поперечное сечение по А-А вибропоглотителя на фиг. 3, установленного на демпфируемой конструкции.
Вибропоглотитель содержит металлическую пластину 1, имеющую толщину h, составляющую от 0,2 до 0,5 толщины демпфируемой конструкции 2, длину
Figure 00000006
определяемую величиной от половины до одной длины изгибной волны в металлической пластине на частоте ƒ, и ширину b, определяемую значением не менее 0,1 ее длины
Figure 00000007
а между металлической пластиной и демпфируемой конструкцией без зазора находится слой прессованной проволоки 3, обладающей подпружинивающими свойствами, толщина которого равна 5-20 толщинам металлической пластины (фиг. 1-4).
Металлическая пластина 1 соединена с демпфируемой конструкцией 2, имеющей повышенные уровни вибрации на частоте ƒ, с помощью механических креплений 4, расположенных в геометрическом центре или углах упомянутой пластины (фиг. 1-4). Механические крепления геометрического центра или углов металлической пластины расположены отстоящими от точки с повышенным уровнем вибрации демпфируемой конструкции на расстоянии, не превышающем 0,1 длины изгибной волны в демпфируемой конструкции на частоте ƒ.
В качестве материалов металлической пластины и упругого слоя из прессованной проволоки с подпружинивающими свойствами использован один и тот же нержавеющий материал, за счет чего обеспечивается повышение эффективности вибропоглотителя на низших резонансных частотах демпфируемой конструкции и увеличивается срок службы вибропоглотителя в агрессивных средах.
Предлагаемый вибропоглотитель работает следующим образом.
Демпфируемой конструкцией может являться корпусная или внутрикорпусная конструкция транспортного средства, возбуждаемая воздушным шумом или динамическими усилиями со стороны работающего шумящего и (или) виброактивного механизма. Ею может быть, например, ограждающая конструкция помещения, в котором находится механизм, повышенные вибрации которой являются причиной превышающих нормы уровней вибрации и шума в соседних и более удаленных помещениях транспортного средства. Демпфируемой конструкцией могут являться также днищевая конструкция кормовой оконечности судна, возбуждаемая пульсационными давлениями со стороны гребного винта, или корпус виброактивного механизма, возбуждаемый соударениями движущихся элементов, являющиеся причиной возникновения повышенных вибрации и (или) шума транспортного средства.
Вибрационная энергия, введенная источником в демпфируемую конструкцию 2, распространяется на металлическую пластину 1 через механические крепления. При толщине h металлической пластины 1, составляющей от 0,2 до 0,5 толщины демпфируемой конструкции 2, длине
Figure 00000008
определяемой величиной от половины до одной длины изгибной волны в металлической пластине на частоте ƒ, и шириной b, определяемой значением не менее 0,1 ее длины
Figure 00000009
в ней на частоте ƒ возникают колебания, которые воздействуют на установленный без зазора упругий слой 3 из прессованной проволоки. Колебательный процесс в прессованной проволоке, обладающей подпружинивающими свойствами, сопровождается потерями вибрационной энергии из-за ее преобразования в тепло, а его интенсификация при резонансных колебаниях металлической пластины 1 приводит к увеличению вибропоглощения, что повышает эффективность вибропоглотителя. Потери колебательной энергии в прессованной проволоке возрастают и на резонансных частотах колебаний демпфируемой конструкции 2, превышающих частоту ƒ и совпадающих с более высокими, чем низшая, резонансными частотами изгибных колебаний металлической пластины 1. Это способствует расширению частотного диапазона эффективности вибропоглотителя.
При толщине h металлической пластины 1 меньшей, чем 0,2 часть толщины демпфируемой конструкции 2, уменьшается эффективность вибропоглотителя из-за его малой массы по отношению к массе демпфируемой конструкции. Увеличение толщины h металлической пластины 1 больше 0,5 толщины демпфируемой конструкции 2 приводит к необходимости увеличения длины
Figure 00000010
обеспечивающей уменьшение вибрации на частоте ƒ, и к росту массы вибропоглотителя.
При длине
Figure 00000011
металлической пластины 1 со значениями, меньшими чем половина длины и
Figure 00000012
чем одна длина изгибной волны в металлической пластине на частоте ƒ, ухудшается настройка низшей резонансной частоты ее изгибных колебаний на частоту ƒ вибрации демпфируемой конструкции 2, что приводит к уменьшению эффективности вибропоглотителя.
При ширине b металлической пластины 1 менее 0,1 ее длины уменьшается эффективность вибропоглотителя из-за его малой массы по отношению к массе демпфируемой конструкции 2.
При нахождении упругого слоя из прессованной проволоки 3, обладающей подпружинивающими свойствами, без зазора между металлической пластиной 1 и демпфируемой конструкцией 2, создаются условия для передачи колебательной энергии на прессованную проволоку и создания в ней вибропоглощения.
Выполнение условия, что механические крепления в геометрическом центре или в углах металлической пластины 1 отстоят от места с наибольшим уровнем вибрации на расстоянии, не превышающем 0,1 длины изгибной волны в демпфируемой конструкции 2 на частоте ƒ, способствует наилучшему возбуждению металлической пластины 1 и прессованной проволоки в упругом слое 3, что приводит к увеличению вибропоглощения, т.е. к росту эффективности вибропоглотителя. При
Figure 00000013
отстояниях механических креплений от места с наибольшим уровнем вибрации демпфируемой конструкции 2 уровни колебаний металлической пластины 1 на частоте ƒ уменьшаются, и эффективность вибропоглотителя становится меньшей.
Измерения эффективности технического решения по заявляемому изобретению проводились при установке вибропоглотителя на демпфируемую конструкцию - перфорированную пластину из стали с размерами в плане 0,522×0,371 м и толщиной 1,5⋅10-3 м. Испытания выполнялись при последовательном нахождении демпфируемой конструкции с вибропоглотителем и без него в воздухе и в воде.
Первая низшая резонансная частота изгибных колебаний конструкции в воздухе, на которой регистрировались повышенные уровни ее вибрации, составляла 77 Гц. Металлическая пластина вибропоглотителя с такой же низшей резонансной частотой изгибных колебаний имела толщину 0,6⋅10-3 м и длину
Figure 00000014
равную примерно 0,72 длины изгибной волны в пластине из стали на частоте 77 Гц и определяемую по формуле
Figure 00000015
где λизг - длина изгибной волны на частоте ƒ в металлической пластине толщиной h. Ширина металлической пластины составляла 0,06 м, а толщина упругого слоя 3 из спрессованной проволоки, изготовленной из нержавеющей стали, - 6 мм. Масса вибропоглотителя составляла 4% от массы демпфируемой конструкции. Максимальный уровень вибрации демпфируемой конструкции 2 на частоте 77 Гц был зарегистрирован в ее геометрическом центре - пучности низшей формы ее изгибных колебаний. Механическое крепление геометрического центра вибропоглотителя совмещалось с указанной пучностью изгибных колебаний демпфируемой конструкции 2. При установке вибропоглотителя было достигнуто уменьшение уровня вибрации демпфируемой конструкции на частоте ƒ=77 Гц на величину 22 дБ (~12 раз). Достигнуть такой же эффект на этой частоте при использовании прототипа с массой в 3 раза большей, чем у предлагаемого вибропоглотителя, оказалось невозможным. Эффективность прототипа на той же частоте и с такой же массой, как у испытанного вибропоглотителя, отсутствовала.
При нахождении в воздухе вибропоглотитель уменьшил на 6-15 дБ (2-6 раз) уровни вибрации демпфируемой конструкции также на двадцати более высоких резонансных частотах, где эффект от установки прототипа отсутствовал. Увеличение уровней вибрации пластины на других частотах при установке вибропоглотителя не зарегистрировано.
При испытаниях в воде эффективность вибропоглотителя оказалась несколько меньшей, чем в воздухе. На низшей резонансной частоте (45 Гц) изгибных колебаний демпфируемой конструкции она составила 6 дБ, а на восьми последующих частотах - 6-28 дБ. Такие же результаты были получены при испытаниях вибропоглотителя с узлами крепления в углах металлической пластины.
Предлагаемый вибропоглотитель имеет высокую эффективность снижения уровней вибрации устройством на низших резонансных частотах демпфируемой конструкции и при большем сроке службы в агрессивных средах, что выгодно отличает его от прототипа.

Claims (1)

  1. Вибропоглотитель, включающий скрепленные между собой металлическую массу в виде металлической пластины и упругий слой, установленный между металлической пластиной и демпфируемой конструкцией, колеблющейся на частоте f, отличающийся тем, что металлическая пластина имеет толщину h, составляющую от 0,2 до 0,5 толщины демпфируемой конструкции, длину
    Figure 00000016
    определяемую значением от половины до одной длины изгибной волны в металлической пластине на частоте f, и ширину b, равную не менее 0,1 ее длины
    Figure 00000016
    а упругий слой выполнен спрессованным из проволоки, обладающей подпружинивающими свойствами, и имеет толщину, равную 5-20 толщинам металлической пластины, причем металлическая пластина и проволока в упругом слое выполнены из материала, одинакового с материалом демпфирующей конструкции, при этом металлическая пластина соединена с демпфируемой конструкцией через установленное в геометрическом центре или в углах упомянутой пластины механическое крепление, элементы которого отстоят от места с наибольшим уровнем вибрации на расстояние, не превышающее 0,1 длины изгибной волны в демпфируемой конструкции на частоте ƒ.
RU2019111808A 2019-04-18 2019-04-18 Вибропоглотитель RU2713264C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019111808A RU2713264C1 (ru) 2019-04-18 2019-04-18 Вибропоглотитель

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019111808A RU2713264C1 (ru) 2019-04-18 2019-04-18 Вибропоглотитель

Publications (1)

Publication Number Publication Date
RU2713264C1 true RU2713264C1 (ru) 2020-02-04

Family

ID=69625548

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019111808A RU2713264C1 (ru) 2019-04-18 2019-04-18 Вибропоглотитель

Country Status (1)

Country Link
RU (1) RU2713264C1 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2117336C1 (ru) * 1996-07-23 1998-08-10 Центральный научно-исследовательский институт им.акад.А.Н.Крылова Вибропоглощающее устройство
US20090133958A1 (en) * 2005-08-23 2009-05-28 Airbus Deutschland Gmbh Sound-absorbing element or transport means, in particular for aircraft
US20110012419A1 (en) * 2005-12-28 2011-01-20 Taiho Kogyo Co., Ltd. Wheel balance weight
US20130106037A1 (en) * 2010-07-15 2013-05-02 Nittobo Acoustic Engineering Co, Ltd. Open air layer-type vibration reduction structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2117336C1 (ru) * 1996-07-23 1998-08-10 Центральный научно-исследовательский институт им.акад.А.Н.Крылова Вибропоглощающее устройство
US20090133958A1 (en) * 2005-08-23 2009-05-28 Airbus Deutschland Gmbh Sound-absorbing element or transport means, in particular for aircraft
US20110012419A1 (en) * 2005-12-28 2011-01-20 Taiho Kogyo Co., Ltd. Wheel balance weight
US20130106037A1 (en) * 2010-07-15 2013-05-02 Nittobo Acoustic Engineering Co, Ltd. Open air layer-type vibration reduction structure

Similar Documents

Publication Publication Date Title
US20210237394A1 (en) Acoustic material structure and method for assembling same and acoustic radiation structure
BE1011158A3 (nl) Verbindingsstuk dat de behuizing van een aandrijving met de behuizing van een compressorelement verbindt.
US8276398B2 (en) Methods and apparatus for reducing the noise level outputted by oil separator
KR20110055669A (ko) 소음 저감 장치 및 소음 저감 방법
RU2713264C1 (ru) Вибропоглотитель
RU2451781C1 (ru) Штучный звукопоглотитель
CN216388742U (zh) 声学隔离面板和包括声学隔离面板的组件
RU2688566C1 (ru) Локальный вибропоглотитель
US20070221460A1 (en) Vibration damping device for internal combustion engine
RU2362855C1 (ru) Шумопоглощающая панель
RU2640910C2 (ru) Судовой движитель
RU2687002C1 (ru) Локальный вибропоглотитель
CN108626290A (zh) 一种增强约束阻尼装置
RU2149788C1 (ru) Шумовибродемпфирующий узел панели кузова транспортного средства
KR20110100163A (ko) 차음 구조 및 차음 커버
RU2572177C1 (ru) Вибропоглощающее устройство
CN208236972U (zh) 一种增强约束阻尼装置
JP5238324B2 (ja) 鉄道車両用パネルでの防音方法とそれに用いる鉄道車両用防音パネル構造
Burroughs et al. Acoustic radiation from fluid‐loaded, ribbed cylindrical shells excited by different types of concentrated mechanical drives
JP5219976B2 (ja) 騒音低減構造体
US20050132945A1 (en) Noise reducing device
RU158241U1 (ru) Устройство пассивного гашения низкочастотных вибраций морских объектов, обусловленных работой движителей
CN111710324A (zh) 宽频带吸声结构
RU2117336C1 (ru) Вибропоглощающее устройство
JP2013057709A (ja) 遮音カバー