RU2711867C2 - Способ сборки зубчатых планетарных передач - Google Patents

Способ сборки зубчатых планетарных передач Download PDF

Info

Publication number
RU2711867C2
RU2711867C2 RU2018116781A RU2018116781A RU2711867C2 RU 2711867 C2 RU2711867 C2 RU 2711867C2 RU 2018116781 A RU2018116781 A RU 2018116781A RU 2018116781 A RU2018116781 A RU 2018116781A RU 2711867 C2 RU2711867 C2 RU 2711867C2
Authority
RU
Russia
Prior art keywords
satellites
links
additional
input
wheel
Prior art date
Application number
RU2018116781A
Other languages
English (en)
Other versions
RU2018116781A (ru
RU2018116781A3 (ru
Inventor
Леонид Трофимович Дворников
Семен Павлович Герасимов
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный индустриальный университет" (ФГБОУ ВО СибГИУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный индустриальный университет" (ФГБОУ ВО СибГИУ) filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный индустриальный университет" (ФГБОУ ВО СибГИУ)
Priority to RU2018116781A priority Critical patent/RU2711867C2/ru
Publication of RU2018116781A publication Critical patent/RU2018116781A/ru
Publication of RU2018116781A3 publication Critical patent/RU2018116781A3/ru
Application granted granted Critical
Publication of RU2711867C2 publication Critical patent/RU2711867C2/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/32Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Retarders (AREA)
  • Transmission Devices (AREA)

Abstract

Изобретение относится к машиностроению. Способ сборки зубчатых планетарных передач включает этап соосного соединения ведущего центрального зубчатого колеса через сателлиты с неподвижным зубчатым колесом и выходным звеном-водилом. При увеличении числа сателлитов входное центральное колесо, выходное звено-водило и вновь вводимые сателлиты соединяют дополнительными рычагами в кинематическую цепь, в которой сателлиты передачи вместе с дополнительными рычагами образуют между собой единую статически определимую группу звеньев, имеющую возможность самоустанавливаться между входным звеном и неподвижным колесом с выбором всех зазоров между звеньями. Число вводимых дополнительных рычагов соответственно равно числу вводимых дополнительных сателлитов. Обеспечивается сборка планетарной передачи без зазоров, с равномерно нагружаемыми сателлитами. 1 ил.

Description

Изобретение относится к сборке зубчатых планетарных передач, которые широко применяются в машиностроении.
Известен способ сборки зубчатых передач, при котором скорость вращения входного и выходного звеньев передачи оказываются разными (Артоболевский И.И. / Теория механизмов и машин / изд. «Наука» 1988 г., стр. 153, рисунок 7.19). Пары колес 1-2, 2-3, 3'-4, 4'-5 последовательно вводятся в зацепление, в результате чего скорость вращения входного звена 1 передачи и выходного звена 5 оказываются разными и именно этим добиваются уменьшения скорости (редукции) входного звена передачи.
Недостатком такой передачи является ее громоздкость в осевом направлении. При любом наращивании такой передачи новыми ступенями колес, габариты и объем передачи увеличиваются.
Известен способ устранения этого недостатка ступенчатых зубчатых передач, при котором передача собирается соосной, т.е. геометрические оси входного колеса и выходного звена совмещаются (Артоболевский И.И. / Теория механизмов и машин / изд. «Наука» 1988 г., стр. 156, рисунок 7.23). Однако это достигается тем, что одно из колес, а именно колесо 2 выполняется с подвижной геометрической осью. Это колесо называют сателлитом, рычаг, которым сателлит связывается с неподвижной опорой - водилом, а всю передачу - планетарной. Недостатком такого способа соединения колес является то, что вся передача при этом оказывается неуравновешенной. Эта неуравновешенность возникает из-за того, что центр тяжести сателлита становится подвижным, а потому в нем возникает сила инерции, определяющаяся массой сателлита и нормальным ускорением центра этой массы.
Наиболее близким к предлагаемому изобретению является способ сборки соосных планетарных передач с установкой на водило «Н» нескольких сателлитов - 2, 2',2'' и таким образом, что инерционные силы сателлитов взаимоуравновешиваются (Артоболевский И.И. / Теория механизмов и машин / изд. «Наука» 1988 г., стр. 502, рисунок 24.3). Этот способ имеет самое широкое применение в практике. Однако и у этого способа имеется важный недостаток. Дело в том, что если на водило установлено два и более сателлитов, то передача становится принципиально неработоспособной. Уже при двух сателлитах, теоретически, подвижность системы оказывается равной нулю, т.е. она становится неподвижной. Действительно, подвижность такой плоской системы определяется известной формулой Чебышева П.Л., (Артоболевский И.И. / Теория механизмов и машин/ изд. «Наука» 1988 г. стр. 40 под номером 2,6)
Figure 00000001
где, n - число звеньев цепи,
p5 - число шарниров в цепи,
p4 - число высших пар, т.е. пар зацеплений колес.
Приведенная формула Чебышева П.Л. полностью описывает подвижность планетарной передачи, что доказывается ее использованием профессором Руденко Н.Ф. в его монографии (Руденко Н.Ф. /Планетарные передачи/ изд. «Машгиз» 1947 г., стр. 5, формула 1), а также профессором Кудрявцевым В.Н. в справочнике (Кудрявцев В.Н., Кирдяшев Ю.И. / Планетарные передачи, справочник/ изд. «Машиностроение» 1977 г., стр. 311, формула 19.2).
Для односателлитной передачи, показанной на рисунке 7.23 (Артоболевский И.И. / Теория механизмов и машин/ изд. «Наука» 1988 г., стр. 156), где число подвижных звеньев n=3 (центральное колесо 3, сателлит 2 и водило Н), число шарниров p5=3 и число пар зацепления колес p4=2, по приведенной формуле W=1. Если же установить на водило Н два сателлита, т.е. принять nс=2, nс - число сателлитов, то число звеньев передачи станет равным 4, число пар пятого класса p5=4 и число пар четвертого класса - пар зацепления p4=4. Подвижность передачи при этом по формуле Чебышева П.Л. станет равной нулю W=12-8-4=0? что означает невозможность движения колес. При числе сателлитов, равным трем (nс=3) рис. 24.3 (Артоболевский И.И. / Теория механизмов и машин/ изд. «Наука» 1988 г., стр. 502), передача становится не только неподвижной, но и статически неопределимой (W=-l). При увеличении числа сателлитов до четырех (nс=4)подвижность передачи становится W=-2, т.е. она оказывается дважды статически неопределимой.
В действительности - по опыту, такие передачи остаются подвижными но лишь потому, что передача сил в них осуществляется одним сателлитом, а у остальных сателлитов возникают зазоры с зубьями центральных колес. Это обстоятельство доказано профессором Кудрявцевым В.Н. в его монографии (Кудрявцев В.Н. / Планетарные передачи, монография / изд. «Машиностроение» 1966 г.). В ней на стр. 215, профессор Кудрявцев В.Н. записывает: «В реальной передаче с фиксированными осями центральных колес и водила, вследствие неизбежности погрешностей, касание будет только с одним сателлитом (с сателлитом 1) рисунок 105в, стр. 212. В зацеплении с остальными сателлитами будут зазоры Δ2, Δ3 ... Δαр)».
Таким образом, при сборке широко применяемых в практике многосателлитных передач, во-первых, установка второго, третьего и т.д. сателлитов не повышает передаваемой мощности передачи и, во-вторых, изготовление и установка дополнительных сателлитов требует неоправданных экономических затрат.
Техническая проблема, решаемая предлагаемым изобретением, заключается в сборке планетарной передачи с самоустанавливающимися сателлитами, способными устранять все возможные зазоры и передавать мощность всеми сателлитами без исключения.
Техническая проблема решается тем, что в предлагаемом способе сборки зубчатых передач путем соосного соединения ведущего центрального зубчатого колеса через сателлиты с неподвижным зубчатым колесом и выходным звеном-водилом, согласно изобретению, входное центральное колесо, выходное звено - водило и сателлиты соединяют дополнительными рычагами в кинематическую цепь, в которой сателлиты передачи вместе с дополнительными рычагами образуют между собой единую статически определимую группу звеньев, имеющую возможность самоустанавливаться между входным звеном и неподвижным колесом с выбором всех зазоров между звеньями.
Технический результат, получаемый при использовании предлагаемого изобретения, заключается в том, что сателлиты нагружаются одинаково, т.е. вся мощность передается через все сателлиты, и каждый из них нагружается равными усилиями. По предлагаемому способу в состав передачи входят центральное колесо, водило, сателлиты и дополнительные рычаги, при этом входное центральное колесо, выходное звено - водило, сателлиты и рычаги собираются в единую кинематическую цепь, в которой все сателлиты нагружаются одинаково.
Предлагаемый способ сборки зубчатых планетарных передач имеет строгое аналитическое доказательство, заключающееся в том, что если собирается планетарная передача с (1+nдс) сателлитами, где nдс - дополнительные к первому сателлиты, то общее число подвижных звеньев в ней становится
Figure 00000002
где 2 - это входное звено - центральное зубчатое колесо и выходное звено - водило, а nдр - число дополнительных рычагов. При этом, число (1+nдс) сателлитов образуют (1+nдс) шарниров, входное колесо и водило добавляют в цепь два шарнира в их соединении с неподвижным колесом - стойкой и требуется еще nдр шарниров для присоединения к цепи дополнительных рычагов, т.е. всего кинематических пар - шарниров требуется
Figure 00000003
Кроме того, каждый из сателлитов, входящих в зацепление с центральным колесом, добавляет в цепь по две высших кинематических пары, т.е. всего
Figure 00000004
При этих условиях зависимость (1) для группы звеньев нулевой подвижности (W=0) преобразуется к виду
3[(1+nдс)+2+nдр]-2[(1+nдс)+2+nдр]-2(1+nдс)=0 откуда, раскрывая скобки и группируя члены, получим, что nдр=nдс.
Таким образом, чтобы обеспечить определенность движения всех звеньев планетарной зубчатой передачи при увеличении числа сателлитов, в кинематическую цепь передачи необходимо вводить дополнительные рычаги числом, равным числу дополнительных сателлитов.
На фигуре, иллюстрирующей способ, показан пример сборки трехсателлитной самоустанавливающейся планетарной передачи.
Способ предусматривает установку сателлита I с шарниром А, соединение его трехшарнирным рычагом 1 в шарнир В с сателлитом II. Третьим шарниром С трехшарнирный рычаг 1 соединяется со вторым (2) трехшарнирным рычагом, которым в свою очередь шарниром D соединяется с третьим сателлитом (III), а шарниром Е с рычагом - водилом (3) передачи, входящим в шарнир с неподвижной опорой О.
В этой цепи всего шесть звеньев (I, II, III, 1,2,3), шесть шарниров (A,B,C,D,E,O), шесть кинематических пар зацепления колес (m,n,f,g,k,e,). По формуле (1) при n=6, р5=6, р4=6 подвижность всей цепи W=18-12-6=0, то есть обозначенная цепь является самоустанавливающейся, не распадающейся на более простые группы. Ее особым свойством является то, что через нее обеспечивается движение от ведущего колеса на водило, при гарантированном зацеплении всех трех сателлитов с центральным колесом.
С увеличением числа сателлитов до четырех, пяти, шести и т.д. необходимо вводить соответственно шарниры и пары зацепления (р5 и р4) числом 8, 10, 12 и т.д., при этом нагрузка, передаваемая каждым из сателлитов от центрального колеса к водилу, будет уменьшаться пропорционально числу сателлитов (чем больше сателлитов, тем меньше нагрузка на каждый из них).
Положительный эффект, получаемый при сборке таких передач, заключается в том, что сателлиты передачи соединяются с водилом в кинематическую цепь, включающую в свой состав сателлиты и дополнительные рычажные звенья - рычаги, являющуюся не распадающейся на более простые группы звеньев нулевой подвижности.

Claims (1)

  1. Способ сборки зубчатых планетарных передач, путем соосного соединения ведущего центрального зубчатого колеса через сателлиты с неподвижным зубчатым колесом и выходным звеном-водилом, отличающийся тем, что при увеличении числа сателлитов входное центральное колесо, выходное звено-водило и вновь вводимые сателлиты соединяют дополнительными рычагами в кинематическую цепь, в которой сателлиты передачи вместе с дополнительными рычагами образуют между собой единую статически определимую группу звеньев, имеющую возможность самоустанавливаться между входным звеном и неподвижным колесом с выбором всех зазоров между звеньями, причем число вводимых дополнительных рычагов соответственно равно числу вводимых дополнительных сателлитов.
RU2018116781A 2018-05-04 2018-05-04 Способ сборки зубчатых планетарных передач RU2711867C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018116781A RU2711867C2 (ru) 2018-05-04 2018-05-04 Способ сборки зубчатых планетарных передач

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018116781A RU2711867C2 (ru) 2018-05-04 2018-05-04 Способ сборки зубчатых планетарных передач

Publications (3)

Publication Number Publication Date
RU2018116781A RU2018116781A (ru) 2019-11-05
RU2018116781A3 RU2018116781A3 (ru) 2019-11-05
RU2711867C2 true RU2711867C2 (ru) 2020-01-22

Family

ID=68500386

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018116781A RU2711867C2 (ru) 2018-05-04 2018-05-04 Способ сборки зубчатых планетарных передач

Country Status (1)

Country Link
RU (1) RU2711867C2 (ru)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6206800B1 (en) * 1998-08-21 2001-03-27 Thomson Industries, Inc. Universally adaptable carrier and swing arm for planetary gear assembly
RU2541049C1 (ru) * 2013-12-06 2015-02-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Сибирский государственный индустриальный университет" Самоустанавливающийся трехсателлитный планетарный редуктор
RU2583320C1 (ru) * 2015-01-12 2016-05-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Сибирский государственный индустриальный университет" Самоустанавливающаяся четырёхсателлитная планетарная передача

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6206800B1 (en) * 1998-08-21 2001-03-27 Thomson Industries, Inc. Universally adaptable carrier and swing arm for planetary gear assembly
RU2541049C1 (ru) * 2013-12-06 2015-02-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Сибирский государственный индустриальный университет" Самоустанавливающийся трехсателлитный планетарный редуктор
RU2583320C1 (ru) * 2015-01-12 2016-05-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Сибирский государственный индустриальный университет" Самоустанавливающаяся четырёхсателлитная планетарная передача

Also Published As

Publication number Publication date
RU2018116781A (ru) 2019-11-05
RU2018116781A3 (ru) 2019-11-05

Similar Documents

Publication Publication Date Title
RU2573130C2 (ru) Система передач для транспортного средства
US2749778A (en) Articulated planetary gearing
CN103307231A (zh) 多速行星齿轮组变速器
CN104074935A (zh) 多级变速器
CN104806723A (zh) 具有可作调节运动的齿圈的行星齿轮变速器
CN103363040A (zh) 多速变速器齿轮和离合器结构布置
JP2014098402A (ja) デュアルクラッチ式自動変速機
US4711124A (en) Torque applier
CN105190094A (zh) 周转齿轮系
RU2711867C2 (ru) Способ сборки зубчатых планетарных передач
WO2017094796A1 (ja) 伝動装置及び差動装置
US20170248203A1 (en) Planetary gear train of automatic transmission for vehicles
US20180328447A1 (en) Torsional Vibration Damping Arrangement Having A Phase Shifter And A Magnetic Gear For The Powertrain Of A Vehicle
JPH11270636A (ja) 平行軸歯車減速機
WO2016140618A1 (en) Planetary gear train comprising bevelled gears and a force balancing device
RU2499929C1 (ru) Четырёхсателлитный планетарный редуктор
RU2728880C1 (ru) Способ сборки многосателлитной уравновешенной планетарной передачи
CN110866316B (zh) 基于六自由度齿轮啮合模型的减速器键合图模型优化方法
RU2807784C1 (ru) Двухсателлитный планетарный редуктор
US1730270A (en) Speed-reducing transmission
CN105370850A (zh) 变速装置
RU2814524C1 (ru) Четырехсателлитный планетарный редуктор с двумя выходными валами
CN203067678U (zh) 对称偏心等弧激波轮推动的柱轮传动装置
US20160025191A1 (en) Powertrain for automatic transmission
US4981051A (en) Planetary precession speed changing device