RU2711183C1 - Тензометрический датчик измерения нагрузки на ось грузового транспортного средства и система для измерения нагрузки на ось грузового транспортного средства - Google Patents

Тензометрический датчик измерения нагрузки на ось грузового транспортного средства и система для измерения нагрузки на ось грузового транспортного средства Download PDF

Info

Publication number
RU2711183C1
RU2711183C1 RU2019108210A RU2019108210A RU2711183C1 RU 2711183 C1 RU2711183 C1 RU 2711183C1 RU 2019108210 A RU2019108210 A RU 2019108210A RU 2019108210 A RU2019108210 A RU 2019108210A RU 2711183 C1 RU2711183 C1 RU 2711183C1
Authority
RU
Russia
Prior art keywords
sensor
strain gauge
housing
axis
cargo vehicle
Prior art date
Application number
RU2019108210A
Other languages
English (en)
Inventor
Андрей Сергеевич Скрипников
Сергей Ильич Матвеев
Андрей Игоревич Кучин
Original Assignee
Общество с ограниченной ответственностью "РД Групп"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "РД Групп" filed Critical Общество с ограниченной ответственностью "РД Групп"
Priority to RU2019108210A priority Critical patent/RU2711183C1/ru
Application granted granted Critical
Publication of RU2711183C1 publication Critical patent/RU2711183C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/16Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G19/00Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups
    • G01G19/08Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for incorporation in vehicles
    • G01G19/12Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for incorporation in vehicles having electrical weight-sensitive devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

Изобретение относится к измерительной технике и может быть использовано для определения веса груза и нагрузки на ось грузовых транспортных средств. Сущность: тензометрический датчик измерения нагрузки на ось грузового транспортного средства состоит из сборки, содержащей две пары перпендикулярно направленных тензорезисторов фольгового типа на основе константана, представляющих собой полномостовую схему Уитсона, наклеенную в геометрическом центре дугообразной, предварительно отполированной ручным или полумеханическим способом до уровня не менее 7 класса чистоты и затем обезжиренной поверхности металлического элемента конструкции датчика. Конструкция датчика содержит интегрированный во внутрь корпуса датчика электронный модуль обработки сигналов тензорезисторной сборки, включающий 32-битный процессор на основе ядра Cortex-M0, высокоточный цифровой датчик температуры для осуществления процесса температурной компенсации, NFC модуль, позволяющий идентифицировать датчик и передавать служебную информацию беспроводным способом на внешнее беспроводное считывающее устройство и CAN интерфейс для проводной передачи данных на монитор системы для дальнейшей обработки и индикации. Металлическая часть корпуса датчика выполнена из легированной стали марки 40CrNiMoA. Пластиковая часть корпуса выполнена из ударопрочного и маслобензостойкого стеклонаполненного полиамида. Все внутренние элементы конструкции защищены демпфирующим влагостойким компаундом марки "Этал-1480ТГ" для общей защиты конструкции датчика от воздействия окружающей среды. Технический результат: увеличение срока службы датчика и сохранение упругих характеристик в условиях постоянных динамических нагрузок и критических температур, увеличения точности измерений. 2 ил.

Description

Изобретение относится к измерительной технике и может быть использовано для определения веса груза и нагрузки на ось грузовых транспортных средств.
Тензометрические датчики нашли широкое применение в различных весоизмерительных системах, испытательных стендах для измерения статических и динамических нагрузок, системах мониторинга зданий и сооружений.
Известен мультиплексный тензометрический мост, описанный в патенте США 4155263 А, опубл. 22.05.1979, в котором система измерения нагрузки тензометрическим датчиком включает в себя пару тензодатчиков, установленных на каждой из одной или нескольких опор груза, таких как оси транспортного средства. Тензодатчики соединяются в мостовой цепи постоянного тока. Мультиплексор содержит пару аналоговых переключателей, которые поочередно подают напряжение от соответствующих выходных клемм моста на усилитель, связанный с переменным током, в виде прямоугольного напряжения амплитуды, равного разности напряжений на выходных клеммах моста. Усиленное прямоугольное напряжение подается на метр как усиленный сигнал постоянного тока, пропорциональный выходному сигналу моста постоянного тока, демультиплексором, включающий дополнительную пару аналоговых переключателей, взаимодействующих с элементами фильтра нижних частот. Демультиплексированный сигнал постоянного тока через измеритель сравнивается операционным усилителем, имеющим положительную обратную связь для гистерезиса, с напряжением на делителе переменного напряжения, чтобы определить, когда было достигнуто пороговое значение нагрузки.
Известен датчик контактного давления, описанный в патенте РФ 2144177 С1 опубл. 10.01.2000 г., который содержит корпус с круглой мембраной, выполненной из металла, прочностные параметры которого повышаются при термообработке. Мембрана жестко соединена по всему периметру с корпусом. В центре мембраны со стороны прилагаемых нагрузок выполнена впадина, имеющая криволинейную форму, соответствующую форме поверхности, контактирующей с датчиком, и имеющая такую площадь, при которой при максимальной нагрузке на датчик напряжения изгиба и среза мембраны не выше допускаемых. С плоской стороны мембраны на ней расположена мостовая схема тензорезисторов. Датчик снабжен защитной лентой, приклеенной к корпусу с плоской стороны мембраны. Способ изготовления датчика заключается в том, что незакаленную мембрану устанавливают на плоскую поверхность и выполняют на одной ее стороне впадину криволинейной формы с заданными глубиной и площадью. Затем мембрану закаливают, закрепляют ее в корпусе и приклеивают на нее мостовую измерительную схему тензорезисторов. Такое выполнение датчика позволяет повысить точность измерений, уменьшить габариты датчика и упростить технологию его изготовления.
Наиболее близким к заявленному техническому решению является датчик веса с тензодатчиками описанный в патенте РФ 2369845 С2 опубл. 10.10.2009 г., в котором тензодатчики нанесены толстым слоем на подложку из электроизоляционного материала, которая предварительно нанесена на металлическое рабочее тело, подвергающееся изгибу. Подложка сформирована в виде пластинки или листа и является плоской и достаточно жесткой, чтобы ее можно было брать в руки и производить манипуляции для ее переноса на рабочее тело, и нанесена на рабочее тело путем наклеивания. Подложка выполнена из керамического материала с модулем Юнга, равным или меньшим модуля Юнга металлического рабочего тела.
Недостатком перечисленных тензометрических датчиков является их чувствительность к перепадам температур, температурные погрешности при измерениях ограничивают их применение в измерительной технике.
Техническим задачей настоящего изобретения является решение этой проблемы. Технический результат изобретения - увеличение срока службы датчика, сохранение упругих характеристик в условиях постоянных динамических нагрузок и критических температур.
Технический результат достигается тем, что тензометрический датчик измерения нагрузки на ось грузового транспортного средства, состоит из сборки, содержащей две пары перпендикулярно направленных тензорезисторов фольгового типа на основе константана, представляющих собой полномостовую схему Уитсона, наклеенную в геометрическом центре дугообразной, предварительно отполированной ручным или полумеханическим способом до уровня не менее 7 класса чистоты и, затем, обезжиренной, поверхности металлического элемента конструкции датчика, содержащей интегрированный во внутрь корпуса датчика электронный модуль обработки сигналов тензорезисторной сборки, включающий 32-битный процессор на основе ядра Cortex-M0, высокоточный цифровой датчик температуры для осуществления процесса температурной компенсации, NFC модуль, позволяющий идентифицировать датчик и передавать служебную информацию беспроводным способом на внешнее беспроводное считывающее устройство и CAN интерфейс для проводной передачи данных на монитор системы для дальнейшей обработки и индикации, при этом, металлическая часть корпуса датчика выполнена из легированной стали марки 40CrNiMoA и имеет геометрическую форму и пропорции, сохраняющие стабильность динамических характеристик датчика в течение периода не менее 5 лет, а пластиковая часть корпуса выполнена из ударопрочного и масло-бензостойкого стеклонаполненного полиамида и все внутренние элементы конструкции защищены демпфирующим влагостойким компаундом марки "Этал-1480ТГ" для общей защиты конструкции датчика от воздействия окружающей среды.
Краткое описание чертежей.
На фиг. 1а представлена схема тензометрического модуля;
На фиг. 1б - схема тензометрического модуля, вид сбоку;
На фиг. 2а - общий вид тензометрического датчика, вид сбоку и
На фиг. 2б - общий вид тензометрического датчика, вид сверху.
Тензометрический датчик измерения нагрузки на ось грузового транспортного средства, схематически представленный на фиг. 1а и 1б, содержит внутри тензорезисторную сборку из четырех тензорезисторов фольгового типа (2), представляющую собой полномостовую схему Уитсона и наклеенную, на, предварительно отшлифованную и обезжиренную, нижнюю дугообразную поверхность металлического элемента (4) конструкции датчика, непосредственно, в геометрическом центре.
Тензорезисторная сборка состоит из двух пар перпендикулярно направленных тензорезисторов фольгового типа на основе константана, обеспечивающего стабильную работу датчика в диапазоне температур от -75 до +175°С, в условиях динамических нагрузок не менее 108 циклов.
Металлическая часть корпуса датчика выполнена из легированной стали марки 40CrNiMoA, которая обладает достаточной надежностью и позволяет сохранить упругие характеристики датчика на протяжении 5-7 лет в условиях постоянных динамических нагрузок.
Конструкция и геометрические пропорции металлической части датчика допускают процессы растяжения и сжатия до уровня деформации ±1500 мкм/м.
Пластиковая часть корпуса (1) выполнена из ударопрочного и масло-бензостойкого стеклонаполненного полиамида и содержит, интегрированный во внутрь датчика, электронный модуль обработки сигналов тензорезисторной сборки, представляющий собой печатную плату с электронными компонентами, содержащую 32-битный процессор на основе ядра Cortex-М0 для обработки данных, температурный датчик для корректировки полученных измерений в зависимости от температуры металлического элемента датчика, NFC модуль для беспроводной передачи данных и CAN интерфейс для проводной передачи данных на монитор системы для дальнейшей обработки и индикации (на чертежах не показан).
NFC модуль представляет собой встроенный в корпус датчика компонент для осуществления коммуникации с внешним считывающим устройством на частоте 13.56 МГц на расстояние до 10 см для целей беспроводной передачи данных со скоростью не менее 212 Кбит/с об идентификационном номере датчика и другой служебной информации (номер партии, дата изготовления, наименование, производитель и др).
Все внутренние элементы конструкции заполнены, для защиты от воздействия внешних факторов в процессе эксплуатации, компаундом марки "Этал-1480ТГ", что обеспечивает рабочее функционирования датчика в условиях критических температур в диапазоне от -40 до +85°С. Также компаунд обладает необходимыми демпфирующими свойствами, что позволяет конструкции датчика выдерживать продолжительные динамические нагрузки до 20g.
Для осуществления процесса измерений уровня деформации оси, корпус датчика оснащен четырьмя крепежными отверстиями (3) и закрепляется при помощи четырех винтов к двум металлическим кронштейнам, предварительно приваренным к верхней поверхности оси транспортного средства с помощью электро-дуговой сварки. Закручивание датчика осуществляется динамометрическим ключом с усилием не более 25 Н/м.
Для обеспечения необходимой точности измерений предусмотрено, что на ось транспортного средства, в зависимости от ее типа, можно установить от 1 до 3 датчиков.

Claims (1)

  1. Тензометрический датчик измерения нагрузки на ось грузового транспортного средства состоит из сборки, содержащей две пары перпендикулярно направленных тензорезисторов фольгового типа на основе константана, представляющих собой полномостовую схему Уитсона, наклеенную в геометрическом центре дугообразной, предварительно отполированной ручным или полумеханическим способом до уровня не менее 7 класса чистоты, затем обезжиренной поверхности металлического элемента конструкции датчика, содержащей интегрированный во внутрь корпуса датчика электронный модуль обработки сигналов тензорезисторной сборки, включающий 32-битный процессор на основе ядра Cortex-M0, высокоточный цифровой датчик температуры для осуществления процесса температурной компенсации, NFC модуль, позволяющий идентифицировать датчик и передавать служебную информацию беспроводным способом на внешнее беспроводное считывающее устройство и CAN интерфейс для проводной передачи данных на монитор системы для дальнейшей обработки и индикации, при этом металлическая часть корпуса датчика выполнена из легированной стали марки 40CrNiMoA, а пластиковая часть корпуса выполнена из ударопрочного и маслобензостойкого стеклонаполненного полиамида, все внутренние элементы конструкции защищены демпфирующим влагостойким компаундом марки «Этал-1480ТГ».
RU2019108210A 2019-06-17 2019-06-17 Тензометрический датчик измерения нагрузки на ось грузового транспортного средства и система для измерения нагрузки на ось грузового транспортного средства RU2711183C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019108210A RU2711183C1 (ru) 2019-06-17 2019-06-17 Тензометрический датчик измерения нагрузки на ось грузового транспортного средства и система для измерения нагрузки на ось грузового транспортного средства

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019108210A RU2711183C1 (ru) 2019-06-17 2019-06-17 Тензометрический датчик измерения нагрузки на ось грузового транспортного средства и система для измерения нагрузки на ось грузового транспортного средства

Publications (1)

Publication Number Publication Date
RU2711183C1 true RU2711183C1 (ru) 2020-01-15

Family

ID=69171624

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019108210A RU2711183C1 (ru) 2019-06-17 2019-06-17 Тензометрический датчик измерения нагрузки на ось грузового транспортного средства и система для измерения нагрузки на ось грузового транспортного средства

Country Status (1)

Country Link
RU (1) RU2711183C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU201365U1 (ru) * 2019-09-30 2020-12-11 Открытое акционерное общество "МИНСКИЙ НИИ РАДИОМАТЕРИАЛОВ" Датчик деформации
RU2777715C1 (ru) * 2021-06-15 2022-08-08 Общество с ограниченной ответственностью "ВЕСА Систем" Способ измерения нагрузки на ось транспортного средства с температурной компенсацией с помощью датчиков деформации (варианты)
WO2022265533A1 (ru) 2021-06-15 2022-12-22 Общество с ограниченной ответственностью "ВЕСА Систем" Способ измерения нагрузки на ось транспортного средства с температурной компенсацией с помощью датчика деформации (варианты)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4155263A (en) * 1978-02-28 1979-05-22 Eaton Corporation Multiplexed strain gauge bridge
US5327791A (en) * 1992-01-16 1994-07-12 Walker Robert R Vehicle beam load measuring system
US7009118B2 (en) * 2003-05-13 2006-03-07 Dynamic Datum Llc Vehicle load weighing system and load cells for such systems
RU2369845C2 (ru) * 2004-03-03 2009-10-10 Себ С.А. Датчик веса
RU2445586C1 (ru) * 2010-11-25 2012-03-20 Виктор Акиндинович Солдатенков Способ измерения веса груза и контроля загрузки транспортного средства и бортовая измерительная система для его осуществления
RU176599U1 (ru) * 2017-06-01 2018-01-24 Сергей Алексеевич Максимов Устройство для определения нагрузки на ось транспортного средства
US20180072549A1 (en) * 2015-04-16 2018-03-15 Abbey Attachments Limited Lifting vehicle incorporating a load monitor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4155263A (en) * 1978-02-28 1979-05-22 Eaton Corporation Multiplexed strain gauge bridge
US5327791A (en) * 1992-01-16 1994-07-12 Walker Robert R Vehicle beam load measuring system
US7009118B2 (en) * 2003-05-13 2006-03-07 Dynamic Datum Llc Vehicle load weighing system and load cells for such systems
RU2369845C2 (ru) * 2004-03-03 2009-10-10 Себ С.А. Датчик веса
RU2445586C1 (ru) * 2010-11-25 2012-03-20 Виктор Акиндинович Солдатенков Способ измерения веса груза и контроля загрузки транспортного средства и бортовая измерительная система для его осуществления
US20180072549A1 (en) * 2015-04-16 2018-03-15 Abbey Attachments Limited Lifting vehicle incorporating a load monitor
RU176599U1 (ru) * 2017-06-01 2018-01-24 Сергей Алексеевич Максимов Устройство для определения нагрузки на ось транспортного средства

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU201365U1 (ru) * 2019-09-30 2020-12-11 Открытое акционерное общество "МИНСКИЙ НИИ РАДИОМАТЕРИАЛОВ" Датчик деформации
RU2777715C1 (ru) * 2021-06-15 2022-08-08 Общество с ограниченной ответственностью "ВЕСА Систем" Способ измерения нагрузки на ось транспортного средства с температурной компенсацией с помощью датчиков деформации (варианты)
WO2022265533A1 (ru) 2021-06-15 2022-12-22 Общество с ограниченной ответственностью "ВЕСА Систем" Способ измерения нагрузки на ось транспортного средства с температурной компенсацией с помощью датчика деформации (варианты)
RU2791185C1 (ru) * 2022-01-27 2023-03-03 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") Реакционный контактный датчик криволинейной формы
RU2784680C1 (ru) * 2022-03-22 2022-11-29 Общество с ограниченной ответственностью "РД Групп" Датчик деформации

Similar Documents

Publication Publication Date Title
US7441466B2 (en) Weight sensor
US6951143B1 (en) Three-axis sensor assembly for use in an elastomeric material
EP0702220B2 (en) Load cell and weighing apparatus using the same
RU2711183C1 (ru) Тензометрический датчик измерения нагрузки на ось грузового транспортного средства и система для измерения нагрузки на ось грузового транспортного средства
EP2189766B1 (en) Measurement of wheel and/or axle load of road vehicles
JP7338508B2 (ja) 測定装置及び測定システム
US5090493A (en) Load cells and scales therefrom
KR940006950B1 (ko) 압전형 가속도센서 및 압전형 가속도센서장치
US20170370789A1 (en) Sensor Arrangement for Indirect Detection of a Torque of a Rotatably Mounted Shaft
ATE47227T1 (de) Piezoresistives kraftmesselement sowie dessen verwendung zur ermittlung von auf ein bauteil einwirkenden kraeften.
US10921176B2 (en) WIM sensor and method for producing the WIM sensor
KR101808928B1 (ko) 스트레인 전송기
US7536919B2 (en) Strain gauge
JP2003515734A (ja) ロードセル
EP1043573A1 (en) Shear beam load cell
EP4047337A1 (en) Measuring device and measuring system
US6865960B2 (en) Capacitive microsystem for recording mechanical deformations, use and operating method
WO2017033730A1 (ja) 圧脈波センサ及び生体情報測定装置
EP2923188A2 (en) Saw sensor arrangements
KR100363681B1 (ko) 스트레인 게이지 부착구
GB2368644A (en) Tester for applying tensile force to a fixing
US9697866B2 (en) Device and method for measuring pitch and roll torques
CN220819269U (zh) 一种单轴微型压向测力传感器
RU2175117C1 (ru) Датчик для измерения продольных усилий
JPH03249530A (ja) 分布型触覚センサ