RU2710760C1 - Износостойкая метастабильная аустенитная сталь - Google Patents

Износостойкая метастабильная аустенитная сталь Download PDF

Info

Publication number
RU2710760C1
RU2710760C1 RU2019132077A RU2019132077A RU2710760C1 RU 2710760 C1 RU2710760 C1 RU 2710760C1 RU 2019132077 A RU2019132077 A RU 2019132077A RU 2019132077 A RU2019132077 A RU 2019132077A RU 2710760 C1 RU2710760 C1 RU 2710760C1
Authority
RU
Russia
Prior art keywords
steel
vanadium
calcium
nickel
impurities
Prior art date
Application number
RU2019132077A
Other languages
English (en)
Inventor
Александр Федорович Дегтярев
Владимир Николаевич Скоробогатых
Фейзулла Алибала оглы Нуралиев
Иван Александрович Щепкин
Александр Сергеевич Кафтанников
Евгений Львович Муханов
Павел Петрович Ананьев
Семен Израилович Концевой
Анна Валериевна Плотникова
Original Assignee
Акционерное общество "Научно-производственное объединение "Центральный научно-исследовательский институт технологии машиностроения", АО "НПО "ЦНИИТМАШ"
Общество с ограниченной ответственностью "ГАН" ООО "ГАН"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "Научно-производственное объединение "Центральный научно-исследовательский институт технологии машиностроения", АО "НПО "ЦНИИТМАШ", Общество с ограниченной ответственностью "ГАН" ООО "ГАН" filed Critical Акционерное общество "Научно-производственное объединение "Центральный научно-исследовательский институт технологии машиностроения", АО "НПО "ЦНИИТМАШ"
Priority to RU2019132077A priority Critical patent/RU2710760C1/ru
Application granted granted Critical
Publication of RU2710760C1 publication Critical patent/RU2710760C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

Изобретение относится к области металлургии, а именно к аустенитным метастабильным сталям, и может найти применение для изготовления изделий, работающих в условиях интенсивного абразивного воздействия или подвергаемых значительным ударным нагрузкам, в том числе для изготовления горнодобывающего и дробильного оборудования, ковшей экскаваторов, траков гусеничных машин, шнеков, бил молотковых дробилок, деталей землеройных и почвообрабатывающих машин. Сталь содержит, мас.%: углерод 0,03-0,10, кремний 0,15-0,50, марганец 3,50-4,0, хром 11,50-12,50, никель 2,80-3,50, азот 0,10-0,25, ванадий 0,30-0,35, титан 0,01-0,025, церий 0,005-0,025, кальций 0,005-0,02, молибден 0,35-0,45, алюминий 0,008-0,05, барий 0,005-0,02, железо и примеси - остальное. Сталь может дополнительно содержать ниобий 0,01-0,10 мас.% и/или цирконий 0,05-0,10 мас.%, а в качестве неизбежных примесей серу не более 0,015 мас.% и фосфор не более 0,015 мас.%. Повышаются прочностные характеристики и износостойкость стали. 2 з.п. ф-лы, 2 табл.

Description

Изобретение относится к области металлургии, а именно к аустенитным метастабильным сталям, и может найти применение для изготовления изделий, работающих в условиях интенсивного абразивного воздействия или подвергаемых значительным ударным нагрузкам, в том числе для изготовления горнодобывающего и дробильного оборудования, ковшей экскаваторов, траков гусеничных машин, шнеков, бил молотковых дробилок, деталей землеройных и почвообрабатывающих машин.
Известна метастабильная аустенитная сталь, содержащая углерод, марганец, кремний, хром, никель, азот, ванадий, титан, алюминий, кальций и железо при следующем соотношении компонентов, мас. %: углерод 0,9-1,3, марганец 6,0-10,0, кремний 0,3-0,7, хром 1,0-1,8, никель 0,7-3,0, азот 0,06-0,12, ванадий 0,1-0,3, титан 0,08-0,15, алюминий 0,05-0,1, кальций 0,01-0,08, железо - остальное. Известная сталь в отливках после закалки имеет аустенитную структуру и обладает высокой износостойкостью при ударном воздействии и удовлетворительной ударной вязкостью при пониженной температуре.
(RU 2017859, С22С 38/58, опубликовано 15.08.1994) Недостатком этой стали является недостаточно высокие механические характеристики при легировании на нижнем уровне, а также повышенная стабильность аустенита при комнатной температуре при легировании на верхнем уровне, в результате чего мартенситное превращение, обеспечивающее высокую износостойкость, при абразивном воздействии не происходит. Мартенситное превращение в этой стали при легировании на верхнем уровне возможно только лишь при низкотемпературной деформации.
Известна также метастабильная аустенитная сталь для высоконагруженных деталей, содержащая углерод, марганец, хром, никель, азот, ванадий, титан, церий, кальций, барий и железо при следующем соотношении компонентов, мас. %: углерод ≤0,06, марганец 7,50-8,50, хром 14,00-16,00, никель 8,50-9,50, азот 0,20-0,40, ванадий 0,90-1,50, титан 0,01-0,20, церий 0,015-0.02, кальций 0,001-0,02, барий 0,001-0,01; железо - остальное. При этом отношение содержания ванадия и титана к азоту и углероду составляет 3,1-3,3. Известная сталь после ковки, закалки и старения обладает повышенными значениями пластичности и вязкости при криогенных температурах.
(RU 2173351, С22С 38/58, опубликовано 10.09.2001).
Недостатками этой стали являются недостаточные механические характеристики при высоком уровне легирования марганцем, хромом, никелем и ванадием, а также повышенная стабильность аустенита при комнатной температуре, в результате чего мартенситное превращение, обеспечивающее высокую износостойкость, при абразивном воздействии не происходит. Мартенситное превращение в этой стали возможно только лишь при низкотемпературной деформации.
Наиболее близкой по технической сущности и достигаемому результату является износостойкая метастабильная аустенитная сталь, содержащая углерод, кремний, марганец, хром, никель, азот, ванадий, титан, церий, кальций и железо при следующем соотношении компонентов, мас. %: углерод 0,10-0,30, кремний 0,10-0,50, марганец 3,50-4,00, хром 11,50-12,50, никель 2,80-3,50, азот 0,20-0,25, ванадий 0,08-0,15, титан 0,01-0,20, церий 0,005-0.03, кальций 0,005-0,02, железо и неизбежные примеси остальное.
(RU 2485203, С22С 38/58, опубликовано 20.06.2013).
Указанная сталь обладает достаточно высокими физико-механическими характеристиками в сечениях до 300 мм. Однако при работе в высокотвердых горных породах для обеспечения высокой износостойкости в деталях сечением 300 мм и выше требуется более высокая прочность, при сохранении высокой ударной вязкости и пластичности.
Задачей и техническим результатом изобретения является повышение прочностных характеристик и износостойкости стали в условиях интенсивного абразивного воздействия или воздействия значительных ударных нагрузок в высокотвердых горных породах.
Технический результат достигается тем, что износостойкая аустенитная метастабильная сталь содержит углерод, кремний, марганец, хром, никель, азот, ванадий, титан, церий, кальций, молибден, алюминий, барий, железо и естественные примеси при следующем соотношении компонентов, мас. %: углерод 0,03-0,10; кремний 0,15-0,50, марганец 3,50-4,0, хром 11,50-12,50, никель 2,80-3,50, азот 0,10-0,25, ванадий 0,30-0,35, титан 0,01-0,025, церий 0,005-0,025, кальций 0,005-0,02, молибден 0,35-0,45, алюминий 0,008-0,05, барий 0,005-0,02, железо и естественные примеси остальное.
Технический результат также достигается тем, что сталь дополнительно содержит, по меньшей мере, один элемент, выбранный из группы, мас. %: ниобий 0,01-0,10, цирконий 0,05-0,10, а содержание неизбежных примесей серы и фосфора не превышает, мас. %: сера не более 0,015, фосфор не более 0,015.
Предлагаемые диапазоны концентраций компонентов являются оптимальными с точки зрения достижения технического результата.
Углерод в концентрации 0,03-0,10 мас. % обеспечивает высокую технологичность в процессе выплавки стали, высокую прочность и износостойкость стали. При более низком содержания углерода снижаются механические свойства и износостойкость стали за счет уменьшения содержания углерода в твердом растворе, а при более высоком содержании углерода ускоряется коалесценция карбидов и карбонитридов, что повышает прочностные характеристики, но снижает ударную вязкость. Кроме того, увеличивается стабильность аустенита, что снижает износостойкость стали при интенсивном абразивном воздействии.
Кремний используется как раскислитель, а также присутствует в исходной шихте. Содержание кремния 0,15-0,50 мас. % является оптимальным. Уменьшение его содержания ниже 0,15 мас. % не обеспечивает достаточной раскисленности стали. Содержание выше 0,50 мас. % отрицательно влияет на вязкопластические свойства хладостойкой стали. Кремний также уменьшает стабильность аустенита.
Оптимальное сочетание содержания хрома, марганца, никеля, молибдена, ванадия, углерода и азота обеспечивает высокую износостойкость стали за счет формирования структуры метастабильного аустенита, способного при интенсивном абразивном воздействии превращаться в мартенсит. Более низкое содержание хрома уменьшает упрочнение твердого раствора, а содержание более чем 12,50 мас. %, нецелесообразно, так как требуемый уровень свойств уже обеспечен.
Минимальное содержание никеля 2,80 мас. % повышает ударную вязкость, установлено исходя из надежной работы массивных толстослойных деталей из хладостойкой стали при рабочей температуре минус 60°С, а максимальное содержание никеля 3,50 мас. % обеспечивает необходимую прочность и ударную вязкость массивных толстослойных деталей, что обеспечивает надежную эксплуатацию.
Совместное легирование молибденом, ванадием и титаном в заявленных пределах наиболее эффективно способствует упрочнению стали за счет твердорастворного и дисперсионного упрочнения, а также улучшения прокаливаемости. При повышении содержания молибдена до 0,35 мас. % растут и вязкопластические свойства стали. Дальнейшее увеличение содержания молибдена не дает заметного эффекта.
Ванадий в присутствии никеля, является эффективным дисперсионным упрочнителем. Оптимальное содержание ванадия в сочетании с титаном и церием обеспечивает вывод азота из твердого раствора, что делает сталь метастабильной и обеспечивает превращение аустенита в мартенсит при абразивном или ударном воздействии. Кроме того, в условиях воздействия ударных нагрузок ванадий усиливает восприимчивость к наклепу.
Добавки ниобия в количестве 0,01-0,10 мас. % упрочняет сталь, а также препятствуют росту аустенитного зерна и способствуют появлению при охлаждении субзеренной структуры, закрепляемой и стабилизируемой дисперсными карбидными частицами. При содержании ниобия менее 0,01 мас. % не обеспечивается достаточное упрочнение. Увеличение содержания ниобия более 0,10 мас. %» приводит к образованию крупных карбонитридов ниобия, снижающих вязкость и экономически нецелесообразно ввиду повышения расходов на легирование.
Температура растворения образующихся карбидов ниобия в аустените выше на 50-70°С, чем карбидов ванадия, в результате чего карбиды ниобия ограничивают рост аустенитного зерна, а карбиды ванадия, выделяющиеся при отпуске способствуют упрочнению стали.
Таким образом, ниобий и ванадий одновременно обеспечивают твердорастворное, зернограничное и дисперсионное упрочнение. Кроме того, введение ниобия приводит к измельчению зерна, что способствует повышению ударной вязкости стали при низких температурах.
Введение в состав стали циркония в 0,05-0,10 мас. % способствует образованию мелкодисперсных карбонитридов циркония размером 25-55 нм, которые позволяет образовать большое количество центров кристаллизации, равномерно распределенных в объеме стали, что обеспечивает однородность физико-механических характеристик по толщине отливки, а также более высокую прочность и ударную вязкость при отрицательных температурах.
Содержание неизбежных примесей серы и фосфора не превышает, мас. %: сера не более 0,015, фосфор не более 0,015. Если содержание фосфора и серы превышает этот предел прочность связывания между соседними кристаллическими зернами падает и уменьшается низкотемпературная ударная вязкость.
Добавки кальция в количестве 0,005-0,025 мас. % затрудняет выделение избыточных фаз по границам зерен, что способствует повышению пластичности и ударной вязкости. Совместное введение в сталь кальция и бария значительно улучшает кинетику процесса взаимодействия кальция с примесями. Барий в большей степени глобуляризует включения, чем кальций. Значительная часть включений приобретает округлую форму. Присадки бария способствуют (по сравнению с кальцием и церием) образованию более мелких глобулей. Модифицирование кальцием и барием измельчает сульфиды и приводит к перераспределению включений в дендритной структуре в результате увеличения сульфидных включений в осях.
Введение в состав стали алюминия в 0,01-0,05 мас. % в сочетании с химически активными элементами кальцием 0,005-0,025 мас. % и церием 0,001-0,020 мас. %) благоприятно изменяет форму неметаллических включений, снижает в стали содержание кислорода и серы, уменьшает количество сульфидных включений, очищает и упрочняет границы зерен и измельчает структуру стали, что приводит к повышению прочности, пластичности и ударной вязкости.
Кальций и церий благоприятно воздействуют и на характер нитридных и карбонитридных включений, способствуют переходу пленочных включений нитридов алюминия в глобулярные комплексы оксисульфонитридных образований.
Таким образом, совместное введение церия, кальция и бария обеспечивает повышение эксплуатационной стойкости за счет высокой прочности при рабочих температурах.
Изобретение можно проиллюстрировать результатами сравнительных испытаний стали по изобретению и стали - ближайшего аналога (таблица 1).
Выплавку сталей проводили в 150-кг индукционной печи с разливкой металла на литые заготовки.
Термическую обработку проводили по следующим режимам:
Режим 1 - Отпуск 620°С, 8 часов, нагрев и охлаждение с печью.
Режим 2 - Режим 1 + нормализация 960±10°С, 4,5 часа + отпуск 640°С, 8 часов.
Режим 3 - Режим 1 + нормализация 960±10°С, 4,5 часа + нормализация 790±10°С, 6 часов + Отпуск 580°С, 8 часов.
Режим 4 - Режим 1 + нормализация 960±10°С, 4,5 часа + нормализация 790±10°С, 6 часов + отпуск 620°С, 8 часов.
Режим 5 - Режим 1 + нормализация 960±10°С, 4,5 часа + нормализация 790±10, 6 часов + отпуск 640°С, 8 часов.
Режим 6 - Режим 1 + закалка от 1030-1050°С, 4,5 часа, охлаждение в воду, + дробеструйная обработка для упрочнения поверхностного слоя стали.
Известную сталь (режим 7) закаливали в воду с температуры 1150°С и отпускали при 650°С в течение 10 часов.
Режимы 2-5 обеспечивают после термической обработки аустенитно-мартенситную структуру. Сталь с аустенитно-мартенситной структурой хорошо работает в абразивной среде.
Режим 6 обеспечивает аустенитную структуру. Сталь с аустенитной структурой способна упрочняться под воздействием абразивно-ударных нагрузок.
Механические свойства сталей оценивали по стандартной методике при комнатной температуре, а износостойкость определяли по результатам абразивной пескоструйной обработки с углом атаки 80 градусов (таблица 2).
Восприимчивость предлагаемой стали к поверхностному наклепу после термической обработки стали по 7 режиму определяется по результатам измерения твердости (КHV), вызванного четырехкратным вдавливанием в образец закаленного шарика диаметром 10 мм с усилием 30 Н. Твердость замеряли в центре лунки прибором Виккерса. Для исследования использовались половинки ударных образцов (таблица 1).
Из представленных данных следует, что сталь по изобретению обеспечивает достижение поставленного технического результата: повышение прочностных характеристик, а также износостойкости стали как в условиях интенсивного абразивного воздействия, так и при абразивно-ударном воздействии.
Figure 00000001
Figure 00000002

Claims (3)

1. Износостойкая аустенитная метастабильная сталь, содержащая углерод, кремний, марганец, хром, никель, азот, ванадий, титан, церий, кальций, железо и примеси, отличающаяся тем, что она дополнительно содержит молибден, алюминий и барий при следующем соотношении компонентов, мас.%: углерод 0,03-0,10, кремний 0,15-0,50, марганец 3,50-4,0, хром 11,50-12,50, никель 2,80-3,50, азот 0,10-0,25, ванадий 0,30-0,35, титан 0,01-0,025, церий 0,005-0,025, кальций 0,005-0,02, молибден 0,35-0,45, алюминий 0,008-0,05, барий 0,005-0,02, железо и примеси остальное.
2. Сталь по п. 1, отличающаяся тем, что она дополнительно содержит по меньшей мере один элемент, выбранный из группы, мас.%: ниобий 0,01-0,10 и цирконий 0,05-0,10.
3. Сталь по п. 1, отличающаяся тем, что содержание неизбежных примесей серы и фосфора не превышает, мас.%: сера не более 0,015 и фосфор не более 0,015.
RU2019132077A 2019-10-10 2019-10-10 Износостойкая метастабильная аустенитная сталь RU2710760C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019132077A RU2710760C1 (ru) 2019-10-10 2019-10-10 Износостойкая метастабильная аустенитная сталь

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019132077A RU2710760C1 (ru) 2019-10-10 2019-10-10 Износостойкая метастабильная аустенитная сталь

Publications (1)

Publication Number Publication Date
RU2710760C1 true RU2710760C1 (ru) 2020-01-13

Family

ID=69171262

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019132077A RU2710760C1 (ru) 2019-10-10 2019-10-10 Износостойкая метастабильная аустенитная сталь

Country Status (1)

Country Link
RU (1) RU2710760C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2784363C1 (ru) * 2021-09-16 2022-11-23 Публичное акционерное общество "Русполимет" Сталь

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2173351C2 (ru) * 1996-12-15 2001-09-10 Санкт-Петербургский государственный университет низкотемпературных и пищевых технологий Метастабильная аустенитная сталь
RU2485203C1 (ru) * 2012-04-28 2013-06-20 Открытое акционерное общество Научно-производственное объединение "Центральный научно-исследовательский институт технологии машиностроения" (ОАО НПО "ЦНИИТМАШ") Износостойкая метастабильная аустенитная сталь
CN103556064A (zh) * 2013-10-25 2014-02-05 丁家伟 亚稳奥氏体高硼高铬低碳耐磨合金钢及其制备方法
CN105385957A (zh) * 2015-11-13 2016-03-09 丹阳嘉伟耐磨材料科技有限公司 一种抗冲击高硼中铬耐磨合金及其制备方法
RU2656911C1 (ru) * 2017-09-15 2018-06-07 Акционерное общество "Научно-производственное объединение "Центральный научно-исследовательский институт технологии машиностроения" АО "НПО "ЦНИИТМАШ" Износостойкая метастабильная аустенитная сталь

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2173351C2 (ru) * 1996-12-15 2001-09-10 Санкт-Петербургский государственный университет низкотемпературных и пищевых технологий Метастабильная аустенитная сталь
RU2485203C1 (ru) * 2012-04-28 2013-06-20 Открытое акционерное общество Научно-производственное объединение "Центральный научно-исследовательский институт технологии машиностроения" (ОАО НПО "ЦНИИТМАШ") Износостойкая метастабильная аустенитная сталь
CN103556064A (zh) * 2013-10-25 2014-02-05 丁家伟 亚稳奥氏体高硼高铬低碳耐磨合金钢及其制备方法
CN105385957A (zh) * 2015-11-13 2016-03-09 丹阳嘉伟耐磨材料科技有限公司 一种抗冲击高硼中铬耐磨合金及其制备方法
RU2656911C1 (ru) * 2017-09-15 2018-06-07 Акционерное общество "Научно-производственное объединение "Центральный научно-исследовательский институт технологии машиностроения" АО "НПО "ЦНИИТМАШ" Износостойкая метастабильная аустенитная сталь

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2784363C1 (ru) * 2021-09-16 2022-11-23 Публичное акционерное общество "Русполимет" Сталь
RU2784363C9 (ru) * 2021-09-16 2023-08-28 Публичное акционерное общество "Русполимет" Сталь

Similar Documents

Publication Publication Date Title
Trudel et al. Effect of composition and heat treatment parameters on the characteristics of austempered ductile irons
US9976204B2 (en) Metal alloys for high impact applications
JP4728883B2 (ja) 低サイクル疲労特性に優れた浸炭焼入れ鋼材及び浸炭焼入れ部品
CN105369130B (zh) 一种多元合金化高强高耐磨钢及热轧板的制造方法
JP7135464B2 (ja) 耐摩耗厚鋼板
KR20180030618A (ko) 새로운 마르텐사이트계 스테인리스 강
EP2582856B1 (en) Method for manufacturing mechanical components made of particularly wear-resistant austempered spheroidal cast iron
Tęcza et al. Changes in impact strength and abrasive wear resistance of cast high manganese steel due to the formation of primary titanium carbides
JP7135465B2 (ja) 耐摩耗厚鋼板
CN109735770A (zh) 含石墨高强韧性贝氏体耐磨钢及其制备方法
KR20120053616A (ko) 내마모성과 내충격성이 향상된 건설기계용 버켓 투스
Boulifa et al. Study of the influence of alloying elements on the mechanical characteristics and wear behavior of a ductile cast iron
RU2710760C1 (ru) Износостойкая метастабильная аустенитная сталь
RU2753397C1 (ru) Отливка из высокопрочной износостойкой стали и способы термической обработки отливки из высокопрочной износостойкой стали
RU2656911C1 (ru) Износостойкая метастабильная аустенитная сталь
RU2485203C1 (ru) Износостойкая метастабильная аустенитная сталь
Behera et al. Effect of copper on the properties of austempered ductile iron castings
Boulifa et al. Effect of alloying elements on the mechanical behavior and wear of austempered ductile iron
US3042512A (en) Wear resistant cast iron
RU2750299C2 (ru) Способ термической обработки отливки из высокопрочной износостойкой стали (варианты)
Alias et al. Development of high strength ductile iron with niobium addition
JP7273295B2 (ja) ボルト用鋼、ボルト、及びボルトの製造方法
SU1355639A1 (ru) Износостойкий чугун
Snizhnoi et al. Details of mining beneficiation equipment made of medium manganese wear-resistant steel
RU2252976C1 (ru) Износостойкий чугун