RU2710181C1 - Система и способ электромагнитного фазоразделения водонефтяной эмульсии - Google Patents

Система и способ электромагнитного фазоразделения водонефтяной эмульсии Download PDF

Info

Publication number
RU2710181C1
RU2710181C1 RU2019125109A RU2019125109A RU2710181C1 RU 2710181 C1 RU2710181 C1 RU 2710181C1 RU 2019125109 A RU2019125109 A RU 2019125109A RU 2019125109 A RU2019125109 A RU 2019125109A RU 2710181 C1 RU2710181 C1 RU 2710181C1
Authority
RU
Russia
Prior art keywords
water
oil
emulsion
phase separation
chamber
Prior art date
Application number
RU2019125109A
Other languages
English (en)
Inventor
Александр Владимирович Богданов
Наталья Ивановна Перевалова
Михаил Ильич Мигунов
Сергей Алексеевич Тарасевич
Виктор Владимирович Хрущев
Иван Викторович Грехов
Лиана Ароновна Ковалева
Расул Рашитович Зиннатуллин
Руслан Фуатович Султангужин
Айдар Фирдависович Габдрафиков
Original Assignee
Общество с ограниченной ответственностью "Газпромнефть Научно-Технический Центр" (ООО "Газпромнефть НТЦ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Газпромнефть Научно-Технический Центр" (ООО "Газпромнефть НТЦ") filed Critical Общество с ограниченной ответственностью "Газпромнефть Научно-Технический Центр" (ООО "Газпромнефть НТЦ")
Priority to RU2019125109A priority Critical patent/RU2710181C1/ru
Application granted granted Critical
Publication of RU2710181C1 publication Critical patent/RU2710181C1/ru
Priority to PCT/RU2019/001013 priority patent/WO2021025588A1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/02Separation of non-miscible liquids
    • B01D17/04Breaking emulsions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/02Separation of non-miscible liquids
    • B01D17/04Breaking emulsions
    • B01D17/042Breaking emulsions by changing the temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/06Separation of liquids from each other by electricity
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G32/00Refining of hydrocarbon oils by electric or magnetic means, by irradiation, or by using microorganisms
    • C10G32/02Refining of hydrocarbon oils by electric or magnetic means, by irradiation, or by using microorganisms by electric or magnetic means
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G33/00Dewatering or demulsification of hydrocarbon oils
    • C10G33/02Dewatering or demulsification of hydrocarbon oils with electrical or magnetic means
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G53/00Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more refining processes
    • C10G53/02Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more refining processes plural serial stages only

Abstract

Изобретение относится к области обработки водонефтяных эмульсий, в частности к системам и способам разделения водонефтяных эмульсий с использованием высокочастотного (ВЧ) и сверхвысокочастотного (СВЧ) излучения. Система для электромагнитного фазоразделения водонефтяной эмульсии содержит проточную СВЧ-камеру с излучателями и проходным каналом, выполненным из прозрачного для микроволнового излучения материала, имеющую вход и выход для эмульсии, и проточную ВЧ-камеру, представляющую собой ВЧ-резонатор, имеющую вход и выход для эмульсии. СВЧ-камера и ВЧ-камера соединены проточным каналом последовательно. Согласно способу предварительно определяют содержание воды в составе эмульсии и значения показателя (В), который определяется по формуле:
Figure 00000004
и характеризует соотношение доли асфальтенов (А) и смол (С) к парафинам (П) в нефти. Далее водонефтяную эмульсию последовательно обрабатывают в электромагнитных (ВЧ и СВЧ) полях в системе для электромагнитного фазоразделения водонефтяной эмульсии в зависимости от содержания воды и значения показателя В: сначала в ВЧ-камере, затем в СВЧ-камере при значении В больше 2,5 и любом содержании воды и при значении В меньше или равном 2,5 и содержании воды в составе эмульсии меньше 50%; сначала в СВЧ-камере, затем с ВЧ-камере при значении В меньше или равном 2,5 и содержании воды больше или равном 50%. Технический результат: увеличение эффективности разделения водонефтяной эмульсии, ускорение процесса разделения фаз. 3 н. и 20 з.п. ф-лы, 2 ил., 2 пр.

Description

Изобретение относится к области обработки водонефтяных эмульсий, в частности к системам и способам разделения водонефтяных эмульсий с использованием высокочастотного (ВЧ) и сверхвысокочастотного (СВЧ) излучения.
Из уровня техники известны устройства и способы для обработки и обезвоживания водонефтяных эмульсий при высокочастотном или сверхвысокочастотном электромагнитном воздействии.
Известны устройство и способ электромагнитного фазоразделения водонефтяной эмульсии из патента РФ №2440169 (опубл. 20.01.2012 г., МПК: B01D 17/06, Е21В 43/34, Н05В 6/78). Устройство состоит из цилиндрической камеры со входным и выходным патрубками для подключения к трубопроводу, внутри которой расположен герметичный радиопрозрачный обтекатель, соединенный с источником СВЧ-энергии. Конструкция устройства позволяет достичь равномерного воздействия на обрабатываемую эмульсию. Общим признаком с заявленной системой является камера со входом и выходом для эмульсии, содержащая источник СВЧ-излучения. Общим признаком с заявленным способом является обработка проходящего через камеру потока водонефтяной эмульсии в электромагнитном поле от источника СВЧ-излучения. Однако, известно, что СВЧ-излучение вызывает поляризацию молекул воды и нагрев глобул воды в составе эмульсии, при этом не воздействует на полярные компоненты нефти. При обработке водонефтяных эмульсий с малым содержанием воды и большим содержанием асфальтосмолистых веществ СВЧ-излучение, без предварительной обработки эмульсии ВЧ-излучением, вызывает перегрев глобул воды с толстыми прочными бронирующими оболочками, состоящими из полярных компонентов нефти, который может привести к локальным разрывам оболочек и переходу эмульсии в более мелкодисперсную фазу, а значит в более устойчивую гетерогенную систему. Также стоит отметить сложность предложенной конструкции и затухание микроволнового излучения при увеличении размеров камеры, в связи с использованием одного устройства ввода и распределения электромагнитной энергии, соединенного с источником СВЧ-энергии.
Известен способ электромагнитного фазоразделения водонефтяной эмульсии из заявки US №20150291456 (опубл. 15.10.2015 г., МПК: C02F 1/48). Устройство, используемое в указанном способе, состоит из камеры, внутри которой коаксиально устанавливается высокопотенциальный электрод. Между высокопотенциальным электродом и камерой создается электромагнитное поле с частотой 1-100 МГц. Ввод эмульсии и отбор нефти с водой производится через специальные штуцеры. Камера устанавливается под определенным углом к горизонту для разделения фаз внутри нее. Общим признаком с заявленной системой является камера для электромагнитной обработки ВЧ-излучением. Общим признаком с заявленным способом является обработка водонефтяной эмульсии ВЧ электромагнитным полем в камере. Однако, высокочастотное излучение, как известно, воздействует только на полярные компоненты нефти, в связи с чем этот способ неэффективен при обработке водонефтяных эмульсий с низким содержанием полярных компонентов нефти (асфальтены и смолы) и с высоким содержанием водной фазы. Это связано с затруднением разрушения бронирующих оболочек глобул воды и коалесценции компонентов нефти в большом объеме воды. Отсутствие электромагнитного воздействия на водную фазу не позволяет обеспечить полное разделение водонефтяной эмульсии.
Наиболее близким аналогом (прототипом) является электромагнитное фазоразделение водонефтяной эмульсии при одновременном воздействии низкочастотного (НЧ) и СВЧ-полей в одном устройстве для разрушения эмульсии (авторское свидетельство SU №749399, опубл. 23.07.1980 г., МПК: B01D 17/06, C10G 33/02). СВЧ-поле воздействует на агрегативную устойчивость водонефтяных эмульсий, а НЧ-поле - на процесс коалесценции капель воды с разрушенными бронирующими оболочками. Общим признаком с заявленной системой является устройство (камера), в котором соосно размещен высокопотенциальный электрод, выполненный в виде трубы, и которое снабжена источником СВЧ-излучения. Общим признаком с заявленным способом является обработка водонефтяной эмульсии в электромагнитных полях. Однако НЧ-излучение малоэффективно при воздействии на полярные компоненты нефти, влияет только на коалесценцию капель воды. В связи с этим в данном способе электромагнитное воздействие направлено на глобулы воды, что является неэффективным в случае фазоразделения эмульсий с большим количеством компонентов нефти.
Техническим результатом по данному изобретению является увеличение эффективности разделения водонефтяной эмульсии и ускорение процесса разделения фаз за счет обеспечения комплексного электромагнитного воздействия.
Это позволяет не только сэкономить время разделения водонефтяных эмульсий, но также снизить расход деэмульгатора и эксплуатационные затраты по деэмульсации эмульсии на нефтяном месторождении за счет снижения температуры водонефтяной эмульсии в отстойном аппарате по сравнению с типовым методом гравитационного отстаивания.
Технический результат достигается за счет использования системы для электромагнитного фазоразделения водонефтяной эмульсии, содержащей проточную СВЧ-камеру с излучателями и проходным каналом, выполненным из прозрачного для микроволнового излучения материала, имеющую вход и выход для эмульсии, и проточную ВЧ-камеру, представляющую собой ВЧ-резонатор, имеющую вход и выход для эмульсии, при этом СВЧ-камера и ВЧ-камера соединены последовательно.
Водонефтяные эмульсии отличаются по содержанию воды, по качественному и количественному составу компонентов нефти, а также по типу (прямые, обратные, множественные водонефтяные эмульсии). Стойкость эмульсии определяется размерами капель, прочностью бронирующих оболочек, возникающих на поверхности капель в результате адсорбции на границе раздела фаз нефть-вода асфальтосмолистых веществ и парафинов.
Система позволяет осуществлять комплексную обработку водонефтяной эмульсии в зависимости от содержания воды и полярных компонентов нефти последовательно либо сначала в СВЧ-камере, затем в ВЧ-камере, либо сначала в ВЧ-камере, затем в СВЧ-камере. При большом содержании воды (больше или равном 50%) в составе эмульсии выбирают последовательность обработки водонефтяной эмульсии в электромагнитном поле в заявленной системе электромагнитного фазоразделения, соответственно, сначала в СВЧ-камере, затем в ВЧ-камере. В СВЧ-камере происходит нагрев воды и разрушение бронирующих оболочек за счет термогидродинамического эффекта. В ВЧ-камере происходит поляризация полярных компонентов нефти, что способствует их слиянию. Высокая эффективность слияния обусловлена предварительным разрушением бронирующих оболочек в СВЧ-камере.
При низком содержании воды (менее 50%) в составе водонефтяной эмульсии обработку проводят сначала в ВЧ-камере, затем в СВЧ-камере. При такой последовательности в ВЧ-камере происходит нагрев и поляризация компонентов нефти, что приводит к частичному разрушению бронирующих оболочек. Последующая обработка в СВЧ-камере приводит к увеличению кинетической энергии молекул воды, что приводит к доразрушению бронирующих оболочек за счет термогидродинамических эффектов, а также способствует ускорению слияния глобул воды. Высокая эффективность разделения эмульсии и слияния капель воды обусловлена предварительным ослаблением связей между полярными компонентами нефти в составе бронирующих оболочек. Таким образом, использование заявленной системы электромагнитного фазоразделения водонефтяной эмульсии обеспечивает достижение технического результата.
Проходной канал в СВЧ-камере может быть выполнен, в частности, из стеклопластика, либо другого диэлектрического прозрачного для микроволнового излучения материала.
СВЧ-камера может иметь прямоугольное или круглое поперечное сечение. Геометрические размеры СВЧ-камеры, в частности ширина и высота для камеры прямоугольного поперечного сечения и диаметр для камеры круглого поперечного сечения, предпочтительно кратны длине волны излучателя (λ), в частности: высота камеры 2λ±5%, ширина 3λ±5%. Это позволяет обеспечить равномерное распространение электромагнитного излучения внутри СВЧ-камеры.
Излучатели СВЧ-камеры могут содержать магнетроны и антенны. Располагать излучатели предпочтительно в шахматном порядке на противоположных, параллельных потоку эмульсии сторонах СВЧ-камеры в случае прямоугольного поперечного сечения СВЧ-камеры и на противоположных образующих сторонах осевого сечения СВЧ-камеры, параллельных потоку эмульсии в случае круглого поперечного сечения СВЧ-камеры. Предпочтительно обеспечить расстояние между излучателями и в том, и в другом случае кратное длине волны излучателей. Более предпочтительно, чтобы расстояние между источниками соответствовало значению 3λ±5%. Длина СВЧ-камеры, таким образом, может определяться количеством используемых излучателей с учетом погрешности. Такое расположение СВЧ-излучателей позволяет обеспечить более полное и равномерное воздействие электромагнитного СВЧ-поля на поток водонефтяной эмульсии.
Заявленную систему для электромагнитного фазоразделения водонефтяной эмульсии предпочтительно выполнить с возможностью изменения последовательности пропускания потока эмульсии через СВЧ-камеру и ВЧ-камеру. Это позволяет использовать систему для электромагнитного фазоразделения при различных составах водонефтяных эмульсий в зависимости от необходимой последовательности электромагнитного воздействия. Такая возможность может быть обеспечена, в частности, за счет системы задвижек, четырехходового клапана или любого другого оборудования, позволяющего изменять последовательность пропускания потока эмульсии через систему.
ВЧ-камера может состоять из двух труб, габаритные соотношения которых удовлетворяют условию коаксиального резонатора, что позволяет обеспечить равномерное воздействие ВЧ-поля на весь объем водонефтяной эмульсии, проходящей через ВЧ-камеру.
Для достижения технического результата предложен способ электромагнитного фазоразделения водонефтяной эмульсии, включающий определение содержания воды в составе эмульсии и обработку водонефтяной эмульсии в электромагнитных полях:
- последовательно в СВЧ-камере, затем в ВЧ-камере, в случае содержания воды в составе эмульсии больше или равном 50%;
- последовательно в ВЧ-камере, затем в СВЧ-камере в случае содержания воды в составе эмульсии меньше 50%.
Заявленный способ позволяет достичь указанный технический результат при выборе соответствующей последовательности электромагнитной обработки в зависимости от содержания воды в составе эмульсии. Как указывалось выше, СВЧ-излучение вызывает поляризацию молекул воды и нагрев воды за счет увеличения кинетической энергии молекул, ВЧ-излучение действует на полярные компоненты нефти (асфальтеносмолистые вещества), вызывая поляризацию их связей.
При содержании воды в эмульсии более 50% выбирают последовательность обработки водонефтяной эмульсии в электромагнитном поле, соответственно, сначала в СВЧ-камере, в которой происходит нагрев воды и разрушение бронирующих оболочек за счет термогидродинамического эффекта, затем в ВЧ-камере, в которой происходит поляризация полярных компонентов нефти, что способствует их слиянию. В случае обработки водонефтяной эмульсии с содержанием воды более 50% сначала в ВЧ-поле происходит поляризация связи компонентов нефти, ослабляющая их, последующий нагрев воды в СВЧ-камере приводит к разрушению бронирующих оболочек, но слияние полярных компонент нефти при такой последовательности электромагнитного воздействия будет более медленным и, соответственно, разделение водонефтяной эмульсии менее эффективным.
При содержании воды менее 50% в составе водонефтяной эмульсии выбирают последовательность обработки в электромагнитном поле, соответственно, сначала в ВЧ-камере, затем в СВЧ-камере. При такой последовательности в ВЧ-камере происходит нагрев и поляризация компонентов нефти, что приводит к частичному разрушению бронирующих оболочек. Последующая обработка в СВЧ-камере приводит к увеличению кинетической энергии молекул воды, что обеспечивает доразрушение бронирующих оболочек за счет термогидродинамических эффектов, а также способствует ускорению слияния глобул воды. В случае предварительной обработки в СВЧ-камере наличие толстых бронирующих оболочек из полярных компонентов нефти может привести к их локальным разрывам и переходу эмульсии в более мелкодисперсную фазу, а значит в более устойчивую гетерогенную систему, как уже указывалось выше. Энергии последующего ВЧ-излучения для разрушения таких устойчивых систем и эффективного разделения эмульсий недостаточно. Таким образом, использование заявленного способа электромагнитного фазоразделения водонефтяной эмульсии обеспечивает достижение указанного технического результата.
Технический результат достигается за счет предложенного способа электромагнитного фазоразделения водонефтяной эмульсии, включающий определение значения показателя (В), который рассчитывается по формуле:
Figure 00000001
и характеризует соотношение доли асфальтенов (А) и смол (С) к парафинам (П) в нефти, и содержания воды в составе эмульсии и обработку водонефтяной эмульсии в электромагнитных полях:
- последовательно в ВЧ-камере, затем в СВЧ-камере, в случае значений показателя В больше 2,5 и любого содержания воды;
- последовательно в СВЧ-камере, затем в ВЧ-камере, в случае значений показателя В меньше или равном 2,5 и содержания воды в составе эмульсии больше или равном 50%;
- последовательно в ВЧ-камере, затем в СВЧ-камере, в случае значений показателя В меньше или равном 2,5 и содержания воды в составе эмульсии меньше 50%.
Показатель В, характеризующий соотношение доли асфальтенов, смол и парафинов в обрабатываемой нефти, определяется по формуле:
Figure 00000002
где А, С, П - доли соответственно асфальтенов, смол и парафинов, показывает преобладание того или иного вида природных стабилизаторов бронирующей оболочки, а именно асфальтенового или парафинового.
Достижение технического результата в данном случае обусловлено тем, что в водонефтяных эмульсиях со значением показателя В больше 2,5 имеет место значительное преобладание асфальтенов и смол. Известно, что чем больше в составе полярных компонентов (асфальтеносмолистых веществ), тем выше устойчивость образующихся эмульсий. В связи с этим, при большом количестве стабилизаторов асфальтенового типа, необходимо первоначально обеспечить ослабление и деструктуризацию их связей за счет воздействия ВЧ-излучения в ВЧ-камере. Последующая СВЧ-обработка в СВЧ-камере приводит к доразрушению бронирующих оболочек за счет термогидродинамических эффектов. Кроме того, предварительное ослабление прочности бронирующих оболочек в ВЧ-поле предотвращает их локальные разрывы при СВЧ-обработке. В связи с этим, эмульсии с таким значением показателя В можно рассматривать как эквивалентные эмульсиям с большим содержанием нефти и необходимо обрабатывать в соответствующей последовательности.
При значении показателя В меньше 2,5 учитывается содержание воды в составе эмульсии и последовательность электромагнитной обработки выбирается в зависимости от содержания воды как указано выше.
Максимальная эффективность воздействия ВЧ-поля на водонефтяную эмульсию достигается при совпадении собственных частот колебаний полярных компонентов нефти (асфальтенов, смол, нафтенов и т.д.), сосредоточенных в бронирующей оболочке, и частоты накладываемого ВЧ электромагнитного поля. В связи с этим, для каждой эмульсии предварительно могут проводиться лабораторные исследования диэлектрических свойств эмульсии для определения области ее дисперсии. Область дисперсии совпадает с областью собственных частот колебаний полярных компонентов нефти. В связи с этим частота электромагнитного воздействия может быть выбрана из этой области.
После обработки в системе электромагнитного фазоразделения водонефтяная эмульсия может быть направлена на последующее гравитационное отстаивание.
Для увеличения эффективности сепарации водонефтяной эмульсии и ускорения этого процесса при больших объемах обрабатываемой водонефтяной эмульсии может быть добавлен деэмульгатор до или после обработки эмульсии в электромагнитных полях. Совместное применение деэмульгатора и системы электромагнитного фазоразделения для сепарации водонефтяной эмульсии позволяет уменьшить количество вводимого деэмульгатора на 60-70% от количества деэмульгатора, используемого при типовом методе гравитационном отстаивании без электромагнитного воздействия.
Использование заявленных системы и способа электромагнитного фазоразделения водонефтяной эмульсии также позволяет снизить эксплуатационные затраты на обеспечение деэмульсации эмульсии на нефтяном месторождении за счет снижения температуры водонефтяной эмульсии. Это связано с тем, что при использовании заявленного технического решения нет необходимости дополнительного нагрева эмульсии для эффективного фазоразделения.
Обработка эмульсии может происходить при перекачивании по нефтепроводу, к которому подключена заявленная система электромагнитного фазоразделения водонефтяной эмульсии.
На фигуре 1 представлена схема системы для обработки водонефтяной эмульсии, содержащая СВЧ- и ВЧ-камеры и поясняющая заявляемое изобретение, где:
1 - система электромагнитного фазоразделения;
2 - СВЧ-камера;
3 - проходной канал в СВЧ-камере, выполненный из прозрачного для микроволнового излучения материала;
4 - СВЧ-излучатели;
5 - ВЧ-камера;
6 - четырехходовой клапан.
На фигуре 2 представлена динамика расслоения водонефтяных эмульсий с различным содержанием воды в зависимости от последовательности обработки эмульсии в ВЧ- и СВЧ-камерах во время гравитационного отстаивания после электромагнитной обработки согласно заявленному изобретению, где:
7 - график динамики расслоения водонефтяной эмульсии с содержанием воды 50% и значением показателя В=1,4 при обработке в электромагнитных полях последовательно в СВЧ-камере, затем в ВЧ-камере;
8 - график динамики расслоения водонефтяной эмульсии с содержанием воды 30% и значением показателя В=4,9 при обработке в электромагнитных полях последовательно в ВЧ-камере, затем в СВЧ-камере;
9 - график динамики расслоения водонефтяной эмульсии с содержанием воды 30% и значением показателя В=4,9 при обработке в электромагнитных полях последовательно в СВЧ-камере, затем в ВЧ-камере;
10 - график динамики расслоения водонефтяной эмульсии с содержанием воды 50% и значением показателя В=1,4 при обработке в электромагнитных полях последовательно в ВЧ-камере, затем в СВЧ-камере.
Система 1 для электромагнитного фазоразделения водонефтяной эмульсии (фиг. 1) содержит проточную СВЧ-камеру 2 с излучателями и проходным каналом 3, выполненным из прозрачного для микроволнового излучения материала, имеющую вход и выход для эмульсии, проточную ВЧ-камеру 5, представляющую собой ВЧ-резонатор, имеющую вход и выход для эмульсии; при этом СВЧ-камера и ВЧ-камера соединены проточным каналом последовательно.
Ниже представлены примеры разделения водонефтяных эмульсий с помощью системы для электромагнитного фазоразделения по заявленному способу для иллюстрации изобретения, но не ограничивающие изобретение.
Пример 1. Для разделения водонефтяной эмульсии использовали систему для электромагнитного фазоразделения, состоящую из последовательно соединенных СВЧ-камеры и ВЧ-камеры. СВЧ-камера выполнена прямоугольного сечения с шириной 24 см, высотой 36 см, длиной 6 м, расстояние между источниками - 36 см, что составляет, соответственно, 2λ±5%, 3λ±5%, 50λ±5% и 3λ±5% при частоте излучения 2,45 ГГц (длина волны около 12,2 см). Проходной канал СВЧ-камеры выполнен из стеклопластика, диаметр канала - 20 см. ВЧ-камера длиной 6 м, состоит из двух стальных труб, внутренняя труба отцентрована при помощи фторопластовых шайб, диаметр внешней трубы 25 см, диаметр внутренней - 7 см. ВЧ электромагнитная энергия обеспечена с помощью радиочастотного кабеля. Предварительно определено содержание воды (30%) в водонефтяной эмульсии и значение показателя В=4,9. В соответствии с заявленным способом выбрана последовательность обработки эмульсии в указанной системе электромагнитного фазоразделения: первоначально поток эмульсии подают в проточную ВЧ-камеру системы электромагнитного фазоразделения, где подвергают воздействию ВЧ-электромагнитного поля с частотой 13,56 МГц, затем поток эмульсии пропускают через проточную СВЧ-камеру, где его подвергают воздействию СВЧ-электромагнитного поля с частотой 2,45 ГГц, после чего направляют на гравитационное отстаивание. Результаты экспериментов представлены на кривой 8 фигуры 2.
Пример 2. Для разделения водонефтяной эмульсии использовали систему для электромагнитного фазоразделения, указанную в примере 1. Предварительно определено содержание воды (50%) в водонефтяной эмульсии и значение показателя В=1,4. В соответствии с заявленным способом выбирают последовательность обработки эмульсии в указанной системе электромагнитного фазоразделения: первоначально поток эмульсии подают в проточную СВЧ-камеру системы электромагнитного фазоразделения, где подвергают воздействию СВЧ-электромагнитного поля с частотой 2,45 ГГц, затем поток эмульсии пропускают через проточную ВЧ-камеру, где его подвергают воздействию ВЧ-электромагнитного поля с частотой 13,56 МГц, после чего направили на гравитационное отстаивание. Результаты экспериментов представлены на кривой 7 фигуры 2.
Дополнительно были проведены исследования эффективности фазоразделения водонефтяных эмульсий выбранных составов при несоответствии последовательности обработки эмульсии в электромагнитных полях согласно заявленному способу. Результаты экспериментов приведены на кривых 9 и 10 фигуры 2.
На фигуре 2 представлена динамика расслоения водонефтяных эмульсий при обработке в электромагнитных полях в соответствии с заявленным способом (кривые 7 и 8) и при несоблюдении последовательности, выбранной согласно указанному способу (кривые 9 и 10).
Из представленных данных видно, что применение неверной последовательности обработки электромагнитными полями как для эмульсии по примеру 1, так и для эмульсии по примеру 2 приводит к уменьшению эффективности фазоразделения водонефтяной эмульсии. Тогда как обработка эмульсий в последовательности согласно заявляемому изобретению, обусловленной значениями показателя В и содержанием воды, приводит к эффективной сепарации эмульсии.
Необходимо отметить, что в представленных примерах использовались сверхустойчивые эмульсии, специально приготовленные в лабораторных условиях. При электромагнитном фазоразделении промысловых водонефтяных эмульсий обеспечивается до 100% разделение фаз.
Как уже указывалось выше, водонефтяные эмульсии с показателем В больше 2,5 можно рассматривать как эквивалентные эмульсиям с большим количеством нефти, в связи с этим представленные примеры подтверждают также достижение технического результата и для эмульсий с показателем В меньше 2,5, но высоким содержанием нефти.
Таким образом, заявленное изобретение обеспечивает ускорение и повышение эффективности сепарации водонефтяных эмульсий различного состава за счет оптимальной последовательной обработки электромагнитным излучением, которое создается в СВЧ- и ВЧ-камерах системы электромагнитного фазоразделения, на соответствующие компоненты водонефтяной эмульсии.

Claims (33)

1. Система для электромагнитного фазоразделения водонефтяной эмульсии, содержащая:
- проточную СВЧ-камеру с излучателями и проходным каналом, выполненным из прозрачного для микроволнового излучения материала, имеющую вход и выход для эмульсии;
- проточную ВЧ-камеру, представляющую собой ВЧ-резонатор, имеющую вход и выход для эмульсии;
- при этом СВЧ-камера и ВЧ-камера соединены проточным каналом последовательно.
2. Система для электромагнитного фазоразделения водонефтяной эмульсии по п. 1, в которой проходной канал в СВЧ-камере выполнен из стеклопластика.
3. Система для электромагнитного фазоразделения водонефтяной эмульсии по п. 1, в которой СВЧ-камера имеет прямоугольное поперечное сечение.
4. Система для электромагнитного фазоразделения водонефтяной эмульсии по п. 1, в которой СВЧ-камера имеет круглое поперечное сечение.
5. Система для электромагнитного фазоразделения водонефтяной эмульсии по п. 3, в которой геометрические размеры СВЧ-камеры, в частности ширина, высота, кратны длине волны излучателя.
6. Система для электромагнитного фазоразделения водонефтяной эмульсии по п. 4, в которой геометрические размеры СВЧ-камеры, в частности диаметр, кратны длине волны излучателя.
7. Система для электромагнитного фазоразделения водонефтяной эмульсии по п. 1, в которой СВЧ-камера и ВЧ-камера соединены проточным каналом последовательно с возможностью изменения последовательности пропускания потока эмульсии через СВЧ-камеру и ВЧ-камеру.
8. Система для электромагнитного фазоразделения водонефтяной эмульсии по п. 7, в которой для изменения последовательности используется система задвижек.
9. Система для электромагнитного фазоразделения водонефтяной эмульсии по п. 7, в которой для изменения последовательности используется четырехходовой клапан.
10. Система для электромагнитного фазоразделения водонефтяной эмульсии по п. 1, в которой каждый излучатель СВЧ-камеры содержит магнетрон и антенну.
11. Система для электромагнитного фазоразделения водонефтяной эмульсии по п. 3, в которой излучатели СВЧ-камеры расположены в шахматном порядке на двух противоположных, параллельных потоку эмульсии сторонах СВЧ-камеры, при этом расстояние между источниками кратно длине волны.
12. Система для электромагнитного фазоразделения водонефтяной эмульсии по п. 4, в которой излучатели СВЧ-камеры расположены в шахматном порядке на противоположных образующих сторонах осевого сечения СВЧ-камеры, параллельных потоку эмульсии, при этом расстояние между источниками кратно длине волны.
13. Система для электромагнитного фазоразделения водонефтяной эмульсии по п. 1, в которой ВЧ-камера представляет собой коаксиальную линию из двух труб, габаритные соотношения которых удовлетворяют условию коаксиального резонатора.
14. Способ электромагнитного фазоразделения водонефтяной эмульсии, включающий определение содержания воды в составе эмульсии и обработку водонефтяной эмульсии в электромагнитных полях:
- последовательно в СВЧ-камере, затем в ВЧ-камере, в случае содержания воды в составе эмульсии больше или равном 50%;
- последовательно в ВЧ-камере, затем в СВЧ-камере в случае содержания воды в составе эмульсии меньше 50%.
15. Способ электромагнитного фазоразделения водонефтяной эмульсии по п. 14, в котором предварительно определяют область дисперсии водонефтяной эмульсии.
16. Способ электромагнитного фазоразделения водонефтяной эмульсии по п. 14, включающий стадию гравитационного отстаивания после обработки в электромагнитных полях.
17. Способ электромагнитного фазоразделения водонефтяной эмульсии по п. 14, отличающийся тем, что перед обработкой в электромагнитных полях в эмульсию добавляют деэмульгатор.
18. Способ электромагнитного фазоразделения водонефтяной эмульсии по п. 14, отличающийся тем, что после обработки в электромагнитных полях в эмульсию добавляют деэмульгатор.
19. Способ электромагнитного фазоразделения водонефтяной эмульсии электромагнитного фазоразделения водонефтяной эмульсии, включающий определение значения показателя (В), который рассчитывается по формуле:
Figure 00000003
и характеризует соотношение доли асфальтенов (А) и смол (С) к парафинам (П) в нефти, и содержания воды в составе эмульсии и обработку водонефтяной эмульсии в электромагнитных полях:
- последовательно в ВЧ-камере, затем в СВЧ-камере, в случае значений показателя В больше 2,5 и любого содержания воды;
- последовательно в СВЧ-камере, затем в ВЧ-камере, в случае значений показателя В меньше или равном 2,5 и содержания воды в составе эмульсии больше или равном 50%;
- последовательно в ВЧ-камере, затем в СВЧ-камере, в случае значений показателя В меньше или равном 2,5 и содержания воды в составе эмульсии меньше 50%.
20. Способ электромагнитного фазоразделения водонефтяной эмульсии по п. 19, в котором предварительно определяют область дисперсии водонефтяной эмульсии.
21. Способ электромагнитного фазоразделения водонефтяной эмульсии по п. 19, включающий стадию гравитационного отстаивания после обработки в электромагнитных полях.
22. Способ электромагнитного фазоразделения водонефтяной эмульсии по п. 19, отличающийся тем, что перед обработкой в электромагнитных полях в эмульсию добавляют деэмульгатор.
23. Способ электромагнитного фазоразделения водонефтяной эмульсии по п. 19, отличающийся тем, что после обработки в электромагнитных полях в эмульсию добавляют деэмульгатор.
RU2019125109A 2019-08-06 2019-08-06 Система и способ электромагнитного фазоразделения водонефтяной эмульсии RU2710181C1 (ru)

Priority Applications (2)

Application Number Priority Date Filing Date Title
RU2019125109A RU2710181C1 (ru) 2019-08-06 2019-08-06 Система и способ электромагнитного фазоразделения водонефтяной эмульсии
PCT/RU2019/001013 WO2021025588A1 (ru) 2019-08-06 2019-12-25 Система и способ электромагнитного фазоразделения водонефтяной эмульсии

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019125109A RU2710181C1 (ru) 2019-08-06 2019-08-06 Система и способ электромагнитного фазоразделения водонефтяной эмульсии

Publications (1)

Publication Number Publication Date
RU2710181C1 true RU2710181C1 (ru) 2019-12-24

Family

ID=69022989

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019125109A RU2710181C1 (ru) 2019-08-06 2019-08-06 Система и способ электромагнитного фазоразделения водонефтяной эмульсии

Country Status (2)

Country Link
RU (1) RU2710181C1 (ru)
WO (1) WO2021025588A1 (ru)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU749399A1 (ru) * 1977-07-11 1980-07-23 Башкирский государственный университет им.40-летия Октября Установка дл разрушени эмульсии
RU2160762C1 (ru) * 2000-08-10 2000-12-20 Общество с ограниченной ответственностью "БИГ-96" Способ обезвоживания и обессоливания нефти
CN1370089A (zh) * 1999-08-17 2002-09-18 Abb研究有限公司 用微波辐射分离乳状液的方法
CN1648213A (zh) * 2005-01-07 2005-08-03 陈列 利用微波对乳化原油进行破乳脱水的方法及实施该方法的装置
US20080221226A1 (en) * 2007-03-07 2008-09-11 Petroleo Brasileiro S.A. Method for the microwave treatment of water-in-oil emulsions
RU2361901C2 (ru) * 2005-02-15 2009-07-20 Сальфко, Инк. Повышение качества нефти в результате комбинированной ультразвуковой и сверхвысокочастотной обработки
RU106130U1 (ru) * 2010-03-17 2011-07-10 Общество с ограниченной ответственностью "Гранат" Устройство для разделения эмульсий полем свч
RU2536583C2 (ru) * 2011-08-04 2014-12-27 Александр Алексеевич Федотов Способ обезвоживания водонефтяной эмульсии

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU749399A1 (ru) * 1977-07-11 1980-07-23 Башкирский государственный университет им.40-летия Октября Установка дл разрушени эмульсии
CN1370089A (zh) * 1999-08-17 2002-09-18 Abb研究有限公司 用微波辐射分离乳状液的方法
RU2160762C1 (ru) * 2000-08-10 2000-12-20 Общество с ограниченной ответственностью "БИГ-96" Способ обезвоживания и обессоливания нефти
CN1648213A (zh) * 2005-01-07 2005-08-03 陈列 利用微波对乳化原油进行破乳脱水的方法及实施该方法的装置
RU2361901C2 (ru) * 2005-02-15 2009-07-20 Сальфко, Инк. Повышение качества нефти в результате комбинированной ультразвуковой и сверхвысокочастотной обработки
US20080221226A1 (en) * 2007-03-07 2008-09-11 Petroleo Brasileiro S.A. Method for the microwave treatment of water-in-oil emulsions
RU106130U1 (ru) * 2010-03-17 2011-07-10 Общество с ограниченной ответственностью "Гранат" Устройство для разделения эмульсий полем свч
RU2536583C2 (ru) * 2011-08-04 2014-12-27 Александр Алексеевич Федотов Способ обезвоживания водонефтяной эмульсии

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
М.Ю. Доломатов и др. "О разрушении углеводородных эмульсий под действием электромагнитных полей", Разработка и эксплуатация нефтяных и газовых месторождений, 2 (108), 2017, с. 39-46. *
М.Ю. Доломатов и др. "О разрушении углеводородных эмульсий под действием электромагнитных полей", Разработка и эксплуатация нефтяных и газовых месторождений, 2 (108), 2017, с. 39-46. Миннигалимов Р.З. "Разработка технологии переработки нефтяных шламов с применением энергии ВЧ и СВЧ электромагнитных полей", автореферат на соискание ученой степени доктора технических наук, Уфа, 2010. *
Миннигалимов Р.З. "Разработка технологии переработки нефтяных шламов с применением энергии ВЧ и СВЧ электромагнитных полей", автореферат на соискание ученой степени доктора технических наук, Уфа, 2010. *

Also Published As

Publication number Publication date
WO2021025588A1 (ru) 2021-02-11

Similar Documents

Publication Publication Date Title
US4582629A (en) Use of microwave radiation in separating emulsions and dispersions of hydrocarbons and water
US6077400A (en) Radio frequency microwave energy method to break oil and water emulsions
US6086830A (en) Radio frequency microwave energy applicator apparatus to break oil and water emulsion
US5914014A (en) Radio frequency microwave energy apparatus and method to break oil and water emulsions
US7705058B2 (en) Method for the microwave treatment of water-in-oil emulsions
US4853119A (en) Microwave emulsion treater with internal coalescer
Check Two-stage ultrasonic irradiation for dehydration and desalting of crude oil: a novel method
CA2943406A1 (en) A method of cracking and/or demulsification of hydrocarbons and/or fatty acids in emulsions
Kovaleva et al. Influence of radio-frequency and microwave electromagnetic treatment on water-in-oil emulsion separation
RU2730324C2 (ru) Способы разделения по меньшей мере одной эмульсии с помощью приложения электрического поля и устройство для осуществления указанного способа
RU2710181C1 (ru) Система и способ электромагнитного фазоразделения водонефтяной эмульсии
RU2536583C2 (ru) Способ обезвоживания водонефтяной эмульсии
EP1970109A1 (en) A method of separating an oil phase and an aqueous phase
US20150291456A1 (en) Electric field induced separation of components in an emulsion
Vega et al. Treatment of waste-water/oil emulsions using microwave radiation
RU2338775C1 (ru) Модульная свч-установка для обезвоживания и обессоливания нефти
CA1205021A (en) Use of microwave radiation in separating emulsions and dispersions of hydrocarbons and water
Kovaleva et al. Destruction of water-in-oil emulsions in electromagnetic fields
GB2457495A (en) RF electromagnetic heating a dielectric fluid
RU2400523C2 (ru) Способ обезвоживания водонефтяных эмульсий воздействием электромагнитного поля
RU2160762C1 (ru) Способ обезвоживания и обессоливания нефти
GB2463274A (en) Apparatus and methods for separating a multiphase fluid
CN104531205A (zh) 一种微波强化静电原油脱水装置
RU2439128C1 (ru) Свч-установка для обработки нефтеводяных эмульсий
GB2463276A (en) Apparatus and method for separating a multiphase fluid