RU2439128C1 - Свч-установка для обработки нефтеводяных эмульсий - Google Patents

Свч-установка для обработки нефтеводяных эмульсий Download PDF

Info

Publication number
RU2439128C1
RU2439128C1 RU2010126753/04A RU2010126753A RU2439128C1 RU 2439128 C1 RU2439128 C1 RU 2439128C1 RU 2010126753/04 A RU2010126753/04 A RU 2010126753/04A RU 2010126753 A RU2010126753 A RU 2010126753A RU 2439128 C1 RU2439128 C1 RU 2439128C1
Authority
RU
Russia
Prior art keywords
oil
microwave
uhf
water
coalescentor
Prior art date
Application number
RU2010126753/04A
Other languages
English (en)
Inventor
Александр Викторович Ляшенко (RU)
Александр Викторович Ляшенко
Вячеслав Степанович Бакшутов (RU)
Вячеслав Степанович Бакшутов
Олег Леонидович Сироткин (RU)
Олег Леонидович Сироткин
Эдуард Вячеславович Перовский (RU)
Эдуард Вячеславович Перовский
Борис Николаевич Максименко (RU)
Борис Николаевич Максименко
Николай Трофимович Андрианов (RU)
Николай Трофимович Андрианов
Original Assignee
Открытое акционерное общество "Тантал" (ОАО "Тантал")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Тантал" (ОАО "Тантал") filed Critical Открытое акционерное общество "Тантал" (ОАО "Тантал")
Priority to RU2010126753/04A priority Critical patent/RU2439128C1/ru
Application granted granted Critical
Publication of RU2439128C1 publication Critical patent/RU2439128C1/ru

Links

Images

Landscapes

  • Constitution Of High-Frequency Heating (AREA)
  • Fats And Perfumes (AREA)

Abstract

Изобретение относится к области нефтехимии. Изобретение касается СВЧ установки для обработки нефтеводяных эмульсий. СВЧ-установка содержит СВЧ-генератор, подключенный к волноводу, в котором коаксиально расположен микроволновый коалесцентор, облучаемый рупорными излучателями СВЧ-генератора и выполненный в виде трубы из СВЧ прозрачного материала для прохода нефтеводяной эмульсии с закрепленными внутри трубы увеличивающими площадь смачивания элементами, коалесцентор установлен внутри выполненного из диэлектрического СВЧ прозрачного материала трубопровода для подачи нефтеводяной эмульсии коаксиально последнему, волновод охватывает трубопровод для подачи нефтеводяной эмульсии, рабочая частота СВЧ-генератора составляет от 2400 до 2500 МГц при выходной мощности до 5 кВт или от 905 до 925 МГц при выходной мощности от 5 до 50 кВт с возможностью работы в непрерывном или импульсном режиме, при этом СВЧ-генератор через развязывающее устройство и рупорные излучатели подключен к волноводу, выполненному в виде трубы с 8-угольным поперечным сечением, увеличивающие площадь смачивания элементы изготовлены из поглощающего СВЧ-излучение материала на основе пористой керамики с возможностью нагрева под воздействием СВЧ-излучения до температуры от 70 до 90°С, а на выходе к коалесцентору подсоединен расположенный вертикально центробежный сепаратор статического действия, выполненный в виде обечайки с торцевой стенкой на выходе, в которой выполнено выходное отверстие, в боковой стенке выполнены на разном уровне отверстия для раздельного отвода воды с нижерасположенного уровня и нефти с вышерасположенного уровня, а внутри о�

Description

Изобретение относится к области нефтехимии, в частности к установкам для отделения нефти и других углеводородов (дизтоплива, бензина и др.) от воды, в том числе от минерализованных (солесодержащих) пластовых вод, путем обработки их СВЧ-излучением с разрушение минерализованных нефтеводяных эмульсий с их последующим фракционированием.
Известна установка, содержащая СВЧ-генератор, подключенный через развязывающее устройство к волноводу, внутри которого расположен бокс (коалесцентор) из прозрачного для СВЧ-излучения материала (тефлона), заполненный рифленым полипропиленом. Эмульсия, проходя через волновод, нагревается в боксе СВЧ-излучением и разрушается (см. патент US №4853119, кл. B01D 17/04, 01.08.1989).
Недостатком этой установки является то, что максимально допустимое сечение волновода (45×90 мм), внутри которого еще расположен также и бокс, имеет малую пропускную способность; кроме того, отсутствует возможность регулировки мощности СВЧ-излучения.
Наиболее близкой к изобретению по технической сущности и достигаемому результату является СВЧ установка для обработки нефтеводяных эмульсий, содержащая СВЧ-генератор, подключенный к волноводу, в котором коаксиально расположен микроволновый коалесцентор, расположенный под излучающими СВЧ-энергию рупорными излучателями и выполненный в виде трубы из СВЧ прозрачного материала для прохода нефтеводяной эмульсии с закрепленными внутри трубы увеличивающими площадь смачивания элементами (см. патент RU №2338775, кл. C10G 33/02, 20.11.2008).
Однако в данной установке не представляется возможным получить глубокое разделение фаз воды и нефти, так как на поверхности холодных СВЧ-прозрачных листов и вблизи них вязкость водонефтяной эмульсии настолько велика, что это затрудняет интенсивное движение капель воды, необходимое для их соударения и укрупнения с последующим осаждением в отстойнике.
Задачей, на решение которой направлено настоящее изобретение, является обеспечение возможности обессоливания водонефтяных эмульсий с глубоким фракционированием фаз воды и нефти и их последующим разделением.
Технический результат заключается в повышении качества нефти на выходе из установки и повышение ее производительности.
Указанная задача решается, а технический результат достигается за счет того, что СВЧ установка для обработки нефтеводяных эмульсий содержит СВЧ-генератор, подключенный к волноводу, в котором коаксиально расположен микроволновый коалесцентор, облучаемый рупорными излучателями СВЧ генератора и выполненный в виде трубы из СВЧ прозрачного материала для прохода нефтеводяной эмульсии с закрепленными внутри трубы увеличивающими площадь смачивания элементами, коалесцентор установлен внутри выполненного из диэлектрического СВЧ прозрачного материала трубопровода для подачи нефтеводяной эмульсии коаксиально последнему, волновод охватывает трубопровод для подачи нефтеводяной эмульсии, рабочая частота СВЧ-генератора составляет от 2400 до 2500 МГц при выходной мощности до 5 кВт или от 905 до 925 МГц при выходной мощности от 5 до 50 кВт с возможностью работы в непрерывном или импульсном режиме, при этом СВЧ-генератор через развязывающее устройство и рупорные излучатели подключен к волноводу, выполненному в виде трубы с 8-угольным поперечным сечением, увеличивающие площадь смачивания элементы изготовлены из поглощающего СВЧ-излучение материала на основе пористой керамики с возможностью нагрева под воздействием СВЧ-излучения до температуры от 70 до 90°С, а на выходе к коалесцентору подсоединен расположенный вертикально центробежный сепаратор статического действия, выполненный в виде обечайки с торцевой стенкой на выходе, в которой выполнено выходное отверстие, в боковой стенке выполнены на разном уровне отверстия для раздельного отвода воды с нижерасположенного уровня и нефти с вышерасположенного уровня, а внутри обечайки размещено устройство для закрутки поступающего в него потока.
Увеличивающие площадь смачивания элементы могут быть выполнены в виде лопастей, закрепленных на стенках коалесцентора.
Увеличивающие площадь смачивания элементы могут быть выполнены в виде установленных вдоль коалесцентора трубчатых элементов.
Коалеесцентор, предпочтительно снабжен автономным замкнутым циркуляционным нагревательным контуром, выполненным из охватывающего трубчатые элементы трубопровода, причем последний изготовлен из тефлона, заполненного циркулирующим через него раствором эмульсии, образованной коллоидным раствором золь-гель наночастиц окислов металлов и/или графита в растворителе, нагревающихся под воздействием СВЧ-излучения до температуры от 70 до 90°С.
В качестве окислов металлов могут быть использованы FeO, TiO2, CuO.
В качестве растворителей могут быть использованы вода, а также растворы солей, сахара или этиленгликоля.
В ходе проведенных ислледований было выявлено, что разрушение (коалесценция) нефтеводяной эмульсии, состоящей из шариков микрокапсул типа «вода в нефти», СВЧ-излучениями основано на том, что нефть «прозрачна» для СВЧ-излучения, а вода его хорошо поглощает. При этом происходит интенсивный селективный нагрев капель воды и, как следствие, разрушение бронирующих нефтяных оболочек на их поверхности, так как оболочки состоят из веществ с низкой температурой плавления - смолы, асфальтены, парафины и т.д. Как результат эмульсия делится на две фазы - нефть и воду, которые можно быстро фракционировать и использовать по назначению.
Применение СВЧ-энергии для этих целей известно. Так, институтом Carnegie Mellon Research Institute (CMRI) (г. Питсбург, США) для фирмы Imperial Petroleum Recovery Corp. были разработаны СВЧ-системы для разделения шламов, образующихся в сталелитейной промышленности, и шламов «сырой» нефти. В процессе их СВЧ-обработки загрязненный металлом нефтешлам смешивается с веществом типа моющего средства и облучается СВЧ-излучением в проточной системе, а затем жидкость проходит через центрифугу для разделения твердых фракций (преимущественно железо и окись железа), нефти и воды. Твердые фракции можно повторно использовать в промышленности, нефть может быть продана как топливо, а вода, после отделения от нее деэмульсификатора, подается на очистные сооружения (см. Dagani R. «Молекулярные чудеса СВЧ». Труды I-го Международного Конгресса по СВЧ. Вашингтон, 1997). Однако подобные методы обработки СВЧ-излучением требуют использования специальных химических добавок - деэмульсификаторов, при этом образуются отходы, утилизировать которые сложно и дорого. Было выявлено, что представляется возможным в значительной степени упростить установку для СВЧ обработки нефтеводяных эмульсий, чего удалось добиться за счет того, что коалесцентор установлен внутри выполненного из диэлектрического СВЧ прозрачного материала трубопровода для подачи нефтеводяной эмульсии коаксиально последнему, волновод охватывает трубопровод для подачи нефтеводяной эмульсии, рабочая частота СВЧ-генератора составляет от 2400 до 2500 МГц при выходной мощности до 5 кВт или от 905 до 925 МГц при выходной мощности от 5 до 50 кВт с возможностью работы в непрерывном или импульсном режиме, при этом СВЧ-генератор через развязывающее устройство и рупорные излучатели подключен к волноводу, выполненному в виде трубы с 8-угольным поперечным сечением, увеличивающие площадь смачивания элементы изготовлены из поглощающего СВЧ-излучение материала на основе пористой керамики с возможностью нагрева под воздействием СВЧ-излучения до температуры от 70 до 90°С, а на выходе к коалесцентору подсоединен расположенный вертикально центробежный сепаратор статического действия, выполненный в виде обечайки с торцевой стенкой на выходе, в которой выполнено выходное отверстие, в боковой стенке выполнены на разном уровне отверстия для раздельного отвода воды с нижерасположенного уровня и нефти с вышерасположенного уровня, а внутри обечайки размещено устройство для закрутки поступающего в него потока.
При этом для нефтепроводов диаметром до 300 мм более предпочтительно применять СВЧ-генераторы, в частности магнетроны, работающие как в непрерывном, так и в импульсном режимах излучения на частоте 2450±50 МГц с длиной волны 12 см; выходной мощностью до 5 кВт и потребляемой мощностью до 10 кВт.
Для диаметров труб свыше 300 мм предпочтительно использовать СВЧ-генераторы, работающие на частоте 915±10 МГц с длиной волны 30 см выходной мощностью до 25 и 50 кВт и потребляемой мощностью 35 и 75 кВт соотв.
В качестве СВЧ-прозрачного материала для врезки в нефтепровод может применяться фторопласт (тефлон) и другие термостойкие полимерные материалы; в качестве СВЧ-поглощающего и при этом нагревающегося материала (нагревательного элемента коалесцентора) может применяться содержащая соединения Fe, Ti, Al, Cr, Ni, С и др. пористая керамика на основе глиносодержащих материалов (например, керамика типа КТ-30); могут быть использованы также обычные кирпичные дренажные или канализационные трубы или специальное стекло и погонажные изделия на его основе.
В коалесценторе нефтепровода большого диаметра целесообразно разместить дополнительный источник нагрева нефтеводяной эмульсии, в качестве которого может быть использован намотанный на трубчатые элементы из керамики автономный замкнутый нагревательный контур - трубчатый змеевик из СВЧ-прозрачного материала (тефлона) с отдельной замкнутой системой подачи и циркуляции теплоносителя - жидкости, интенсивно поглощающей СВЧ-излучение и при этом нагревающейся до температур порядка 70-90°С. В качестве таких жидкостей наиболее эффективно использовать так называемые «тепловые наноэмульсии» - коллоидные растворы золь-гель наночастиц FeO, TiO2, графита или СuО в воде, растворах солей типа NaCl и СаСl2, сахара, этиленгликоля, что позволяет увеличить нагрев нефтеводяной эмульсии практически вдвое и повысить температуру эмульсии, сокращая время на ее СВЧ-обработку, что, в свою очередь, снижает энергозатраты на обработку нефтеводяной эмульсии.
По сравнению с известными вышеуказанными установками время обработки эмульсии удалось увеличить с обычных ≈ 0,7 сек до 2 мин. Таким образом, процесс разрушения эмульсии здесь происходит во время ее естественного движения (перекачки) по нефтепроводу, а разделение фаз осуществляется в отдельном центробежном сепараторе статического действия, что экспериментально подтверждает возможность разрушения водонефтяной эмульсии СВЧ-излучением до следов (содержание воды 0,03%) за счет селективного нагрева глобул воды, устраняющего защитный слой на их поверхности.
На фиг.1 схематически представлена СВЧ установка для обработки нефтеводяных эмульсий.
На фиг.2 представлен поперечный разрез волновода с увеличивающими площадь смачивания элементами, которые выполнены в виде лопастей, закрепленных на стенках коалесцентора.
На фиг.3 представлен поперечный разрез волновода с увеличивающими площадь смачивания элементами, которые выполнены в виде установленных вдоль коалесцентора трубчатых элементов.
СВЧ установка для обработки нефтеводяных эмульсий содержит СВЧ-генератор 1, подключенный к волноводу 2, в котором коаксиально расположен микроволновый коалесцентор 3, облучаемый рупорными излучателями 4 СВЧ-генератора 1 и выполненный в виде трубы из СВЧ прозрачного материала для прохода нефтеводяной эмульсии с закрепленными внутри трубы увеличивающими площадь смачивания элементами 5. Коалесцентор 3 установлен внутри выполненного из диэлектрического СВЧ прозрачного материала трубопровода 6 для подачи нефтеводяной эмульсии коаксиально последнему. Волновод 2 охватывает трубопровод 6 для подачи нефтеводяной эмульсии. Рабочая частота СВЧ-генератора 1 составляет от 2400 до 2500 МГц при выходной мощности до 5 кВт или от 905 до 925 МГц при выходной мощности от 5 до 50 кВт с возможностью работы в непрерывном или импульсном режиме. СВЧ-генератор 1 через развязывающее устройство 7 и рупорные излучатели 4 подключен к волноводу 2, выполненному в виде трубы с 8-угольным поперечным сечением. Увеличивающие площадь смачивания элементы 5 изготовлены из поглощающего СВЧ-излучение материала на основе пористой керамики с возможностью нагрева под воздействием СВЧ-излучения до температуры от 70 до 90°С. На выходе к коалесцентору 3 подсоединен расположенный вертикально центробежный сепаратор 8 статического действия, выполненный в виде обечайки 9 с торцевой стенкой 10 на выходе, в которой выполнено выходное отверстие 11. В боковой стенке обечайки 9 выполнены на разном уровне отверстия 12 и 13 для раздельного отвода воды с нижерасположенного уровня (отверстие 12) и нефти с вышерасположенного уровня (отверстие 13), а внутри обечайки 9 размещено устройство 14 для закрутки поступающего в него потока.
Увеличивающие площадь смачивания элементы 5 выполнены в виде лопастей, закрепленных на стенках коалесцентора 3 или в виде установленных вдоль коалесцентора 3 трубчатых элементов.
Коалесцентор 3 предпочтительно снабжен автономным замкнутым циркуляционным нагревательным контуром, выполненным из охватывающего трубчатые элементы, формирующие увеличивающие площадь смачивания элементы 5, трубопровода 15, причем последний изготовлен из СВЧ прозрачного материала - тефлона, заполненного циркулирующим через него раствором эмульсии, образованной коллоидным раствором золь-геля с наночастицами окислов металлов и/или графита в растворителе, нагревающихся под воздействием СВЧ-излучения до температуры от 70 до 90°С.
СВЧ-генератор 1 подключен к блоку питания 16.
В качестве окислов металлов могут быть использованы FeO, TiO2, CuO.
В качестве растворителей могут быть использованы вода, а также растворы солей, сахара или этиленгликоля.
При работе установки нефтеводяная эмульсия поступает из трубопровода, по которому ее транспортируют в выполненный из диэлектрического СВЧ прозрачного материала участок трубопровода 6 с установленным в нем коалесцентором 3, где нефтеводяная эмульсия нагревается и разрушается под воздействием СВЧ излучения, и далее из коалесцентора 3 полученная в нем нефтеводяная смесь поступает в вертикально установленный центробежный сепаратор 8 статического действия, где смесь закручавается устройством 14 и разделяется на воду и нефть с отводом воды через нижерасположенное отверстие 12 и нефти через вышерасположенное отверстие 13. Имеющиеся в нефтеводяной эмульсии твердые примеси оседают на торцевую стенку 10 и выводятся через выполненное в ней отверстие 11.
В ходе создания установки были проведены испытания, в ходе которых получены приведенные ниже результаты.
Эксперименты были проведены при работе СВЧ-генератора 1, в данном случае магнетрона, в непрерывном и импульсном режимах. Их результаты представлены в таблице 1. Исследовались пробы естественной эмульсии с объемной долей воды 1,2%; максимальное время облучения составляло 10 мин.
Таблица 1
Импульсная мощность, кВт 18 кВт - -
Непрерывная мощность, Вт - 360 1000
Время облучения, мин 10 10 10
% воды в эмульсии 0,03 0,75 0,7
Соли, мг/дм3 14 76 45
В таблице 1 приведены результаты по содержанию воды и солей в отстоявшейся нефти, обработанной в импульсном и непрерывном режимах СВЧ-облучения. По этим результатам очевидны преимущества импульсного режима.
Содержание воды, при одинаковой средней мощности в непрерывном режиме, снизилось практически до следов: 0,03% - в импульсном режиме и 0,7% - в непрерывном режиме; содержание солей, как следствие уменьшения воды, также снизилось: 14 мг/дм3 - в импульсном режиме и 76 мг/дм3 - в непрерывном режиме.
Figure 00000001
Результаты экспериментов со временем обработки 2 мин, приведенные в табл.2, показали, что по сравнению со временем обработки 5 мин и неизменном режиме СВЧ-излучения, содержание воды не изменилось и поэтому 2 мин воздействия СВЧ-излучения было взято за основу для разработки СВЧ установки.
В таблице 2 приведены результаты обработки нефти в различных промыслов (Перелюб и Соколовогорские промыслы). Ниже в таблице 3 приведены результаты обработки Перелюбской нефти при повышенной импульсной мощности и исходном содержании воды (порядка 2%).
Figure 00000002
Расчет затрат электроэнергии проводился для режима с Р 60 Вт и временем обработки 5 мин, и составил 50 кВт/час на одну тонну нефти.
Таким образом, использование СВЧ-энергии для обработки нефтеводяной эмульсии в коалесценторе 3 и ее нагрев позволяет реализовать более длительную обработку эмульсии в процессе ее транспортировки по трубопроводу, что увеличивает время необходимое для разрушения защитного слоя на каплях воды до 2-3 мин вместо 0,7 сек, типичных для ранее известных установок. Разделение фаз после обработки водонефтяной эмульсии СВЧ-излучением происходит в центробежном сепараторе 8 статического действия, из которого обезвоженная нефть затем может поступать на перегонку. Затраты электроэнергии на обезвоживание одной тонны нефти при времени обработки порядка 2 минут составляет около 20 кВт/час.
Изобретение может быть использовано в нефтедобывающей и нефтеперерабатывающей промышленности при ликвидации последствий разливов нефти и нефтепродуктов в результате аварии при их добыче, транспортировке, переработке и хранении.

Claims (6)

1. СВЧ-установка для обработки нефтеводяных эмульсий, содержащая СВЧ-генератор, подключенный к волноводу, в котором коаксиально расположен микроволновый коалесцентор, облучаемый рупорными излучателями СВЧ-генератора и выполненный в виде трубы из СВЧ-прозрачного материала для прохода нефтеводяной эмульсии с закрепленными внутри трубы увеличивающими площадь смачивания элементами, отличающаяся тем, что коалесцентор установлен внутри выполненного из диэлектрического СВЧ-прозрачного материала трубопровода для подачи нефтеводяной эмульсии коаксиально последнему, волновод охватывает трубопровод для подачи нефтеводяной эмульсии, рабочая частота СВЧ-генератора составляет от 2400 до 2500 МГц при выходной мощности до 5 кВт или от 905 до 925 МГц при выходной мощности от 5 до 50 кВт с возможностью работы в непрерывном или импульсном режиме, при этом СВЧ-генератор через развязывающее устройство и рупорные излучатели подключен к волноводу, выполненному в виде трубы с 8-угольным поперечным сечением, увеличивающие площадь смачивания элементы изготовлены из поглощающего СВЧ-излучение материала на основе пористой керамики с возможностью нагрева под воздействием СВЧ-излучения до температуры от 70 до 90°С, а на выходе к коалесцентору подсоединен расположенный вертикально центробежный сепаратор статического действия, выполненный в виде обечайки с торцевой стенкой на выходе, в которой выполнено выходное отверстие, в боковой стенке выполнены на разном уровне отверстия для раздельного отвода воды с нижерасположенного уровня и нефти с вышерасположенного уровня, а внутри обечайки размещено устройство для закрутки поступающего в него потока.
2. Установка по п.1, отличающаяся тем, что увеличивающие площадь смачивания элементы выполнены в виде лопастей, закрепленных на стенках коалесцентора.
3. Установка по п.1, отличающаяся тем, что увеличивающие площадь смачивания элементы выполнены в виде установленных вдоль коалесцентора трубчатых элементов.
4. Установка по п.3, отличающаяся тем, что коалесцентор снабжен автономным замкнутым циркуляционным нагревательным контуром, выполненным из охватывающего трубчатые элементы трубопровода, причем последний изготовлен из тефлона, заполненного циркулирующим через него раствором эмульсии, образованной коллоидным раствором золь-гель наночастиц окислов металлов и/или графита в растворителе, нагревающихся под воздействием СВЧ-излучения до температуры от 70 до 90°С.
5. Установка по п.4, отличающаяся тем, что в качестве окислов металлов используют FeO, TiO2, CuO.
6. Установка по п.4, отличающаяся тем, что в качестве растворителей используют воду, растворы солей, сахара или этиленгликоля.
RU2010126753/04A 2010-07-01 2010-07-01 Свч-установка для обработки нефтеводяных эмульсий RU2439128C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2010126753/04A RU2439128C1 (ru) 2010-07-01 2010-07-01 Свч-установка для обработки нефтеводяных эмульсий

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2010126753/04A RU2439128C1 (ru) 2010-07-01 2010-07-01 Свч-установка для обработки нефтеводяных эмульсий

Publications (1)

Publication Number Publication Date
RU2439128C1 true RU2439128C1 (ru) 2012-01-10

Family

ID=45784026

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010126753/04A RU2439128C1 (ru) 2010-07-01 2010-07-01 Свч-установка для обработки нефтеводяных эмульсий

Country Status (1)

Country Link
RU (1) RU2439128C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111505024A (zh) * 2020-06-08 2020-08-07 中国电子科技集团公司第四十八研究所 一种基于微波技术的含水率复合检测装置及检测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Ляшенко А.В., Прусенко Б.Е., Мещеряков С.В., Бакшутов В.С., Разрушение водонефтяных эмульсий и обезвоживание нефти с применением СВЧ-энергии / Новые технологии для очистки нефтезагрязненных вод, почв, переработки и утилизации нефтешламов. Международная конференция. 10-11 декабря 2001 г. Тезисы докладов. - М.: Издательский дом "Ноосфера", 2001, с.32-33. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111505024A (zh) * 2020-06-08 2020-08-07 中国电子科技集团公司第四十八研究所 一种基于微波技术的含水率复合检测装置及检测方法
CN111505024B (zh) * 2020-06-08 2023-07-04 中国电子科技集团公司第四十八研究所 一种基于微波技术的含水率复合检测装置及检测方法

Similar Documents

Publication Publication Date Title
US10383181B2 (en) RF heating of a dielectric fluid
WO2018014174A1 (en) Ultrasonic separation of a production stream
US20040094421A1 (en) Dual frequency electrostatic coalescence
WO2005030360A1 (fr) Procede et dispositif permettant de desemulsionner une emulsion huile-eau par application d'ultrasons
JP2000317207A (ja) オイル及び水エマルジョンを破壊するための無線周波マイクロ波エネルギー印加装置
US11911715B2 (en) Methods for the separation of at least one emulsion by applying an electrical field and device for carrying out said method
MX2014015027A (es) Separador de petroleo / agua de alta velocidad electroestatico coalescente.
US20160097004A1 (en) Processes for desalting crude oil under dynamic flow conditions
US8653148B2 (en) Microwave process and apparatus for breaking emulsions
CA2760134C (en) Treatment of interface rag produced during heavy crude oil processing
US10336951B2 (en) Desalter emulsion separation by hydrocarbon heating medium direct vaporization
RU2536583C2 (ru) Способ обезвоживания водонефтяной эмульсии
RU2439128C1 (ru) Свч-установка для обработки нефтеводяных эмульсий
EP1970109A1 (en) A method of separating an oil phase and an aqueous phase
CN208414029U (zh) 一种含油废水无害资源化处理技术设备
US20190023995A1 (en) Systems and processes for separating emulsified water from a fluid stream
GB2463274A (en) Apparatus and methods for separating a multiphase fluid
CN205528615U (zh) 微波脱水装置
CN108947041A (zh) 一种含油废水无害资源化处理技术设备
RU2160762C1 (ru) Способ обезвоживания и обессоливания нефти
RU2162725C1 (ru) Способ подготовки нефти к переработке и установка для его осуществления
RU2146549C1 (ru) Установка обезвоживания и обессоливания нефти
GB2463276A (en) Apparatus and method for separating a multiphase fluid
GB2463275A (en) Apparatus and method for separating a multiphase fluid

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20180702