RU2710118C1 - Генератор электрической энергии для космического аппарата - Google Patents

Генератор электрической энергии для космического аппарата Download PDF

Info

Publication number
RU2710118C1
RU2710118C1 RU2016141867A RU2016141867A RU2710118C1 RU 2710118 C1 RU2710118 C1 RU 2710118C1 RU 2016141867 A RU2016141867 A RU 2016141867A RU 2016141867 A RU2016141867 A RU 2016141867A RU 2710118 C1 RU2710118 C1 RU 2710118C1
Authority
RU
Russia
Prior art keywords
spacecraft
generator
electric energy
solar
permanent magnets
Prior art date
Application number
RU2016141867A
Other languages
English (en)
Inventor
Флюр Рашитович Исмагилов
Вячеслав Евгеньевич Вавилов
Валентина Владимировна Айгузина
Original Assignee
федеральное государственное бюджетное образовательное учреждение высшего образования "Уфимский государственный авиационный технический университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by федеральное государственное бюджетное образовательное учреждение высшего образования "Уфимский государственный авиационный технический университет" filed Critical федеральное государственное бюджетное образовательное учреждение высшего образования "Уфимский государственный авиационный технический университет"
Priority to RU2016141867A priority Critical patent/RU2710118C1/ru
Application granted granted Critical
Publication of RU2710118C1 publication Critical patent/RU2710118C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/42Arrangements or adaptations of power supply systems
    • B64G1/44Arrangements or adaptations of power supply systems using radiation, e.g. deployable solar arrays

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Изобретение относится к области энергетики и может применяться для электроснабжения космических аппаратов, в частности космических спутников. В генераторе электрической энергии, содержащем преобразователь тепловой энергии в электрическую с магнитной системой из постоянных магнитов и ферромагнитных пластин, принимающей солнечную тепловую энергию, между двумя ферромагнитными пластинами установлены постоянные магниты и обмотка. Генератор электрической энергии выполнен с возможностью вращения вокруг космического аппарата. Постоянные магниты могут быть выполнены тонкопленочными. Обмотка может быть выполнена из углеродных нанотрубок с высокой электропроводностью. Генератор электрической энергии может быть выполнен с возможностью совместной работы с солнечной батареей. Снижается удельная масса генератора. Обеспечивается выработка электрической энергии из солнечной тепловой энергии генератором как при прямом воздействии на него солнечного потока (нагревании), так и в области тени (охлаждении). 3 з.п. ф-лы, 1 ил.

Description

Изобретение относится к области энергетики и может применяться для электроснабжения космических аппаратов, в частности, космических спутников.
Одним из основных источников электрической энергии на борту космических аппаратов являются солнечные батареи. Они работают долгое время без расхода каких-либо материалов и при этом экологически безопасны, в отличие от ядерных и радиоизотопных источников энергии. Однако при применении солнечных батарей в космосе возникает ряд проблем:
- солнечные батареи располагают или на внешней поверхности аппарата или на раскрывающихся жестких панелях. Для обеспечения максимума отдаваемой батареями энергии перпендикуляр к их поверхности должен быть направлен на Солнце с точностью 10…15°. В случае жестких панелей это достигается или ориентацией самого космического аппарата или специализированной автономной электромеханической системой ориентации солнечных батарей, при этом панели подвижны относительно корпуса аппарата, что может привести к появлению паразитных моментов и сложности стабилизации космических аппаратов в пространстве;
- солнечные батареи со временем деградируют под действием метеорной эрозии, радиационного излучения, термических ударов;
- при затмении батареи в результате маневров или входа в тень планеты выработка солнечной панели прекращается;
- низкий КПД солнечных панелей (от 8 до 26%). При мощности излучения Солнца на орбите Земли в 1367 Вт/м2 это позволяет получить не более 355 Вт на 1 м2.
Известна солнечная батарея космического аппарата (патент РФ №2460676, B64G 1/44, 10.09.2012), включающая в свой состав две панели, состоящие из подпружиненных шарнирно связанных между собой и собранных в пакет створок, устанавливаемых в сложенном положении на раме и закрепленных к борту космического аппарата через опорные узлы с пиросредством, и подпружиненных, шарнирно закрепленных на опорных узлах стяжек, при этом каждая из панелей выполнена из двух полупанелей, состоящих из корневой, средней и крайней створок, установленных на раме, подвижно закрепленной на опорных узлах, при этом полупанели каждой панели соединены между собой с помощью фиксирующих элементов, выполненных в виде подпружиненных прижимов, установленных на раме и связанных посредством тросовой тяги с пиросредством, причем на створках попарно установлены по два кронштейна, а кронштейны, установленные на крайней створке, снабжены осями, которые взаимодействуют в процессе раскрытия панелей с профилированными выступами, выполненными на кронштейнах, установленных на корневой створке, обеспечивая раскрытие панелей «рулонным» способом.
Недостатками известного устройства являются невысокая эффективность солнечной батареи из-за длительности пребывания в области тени, а также из-за ухудшения выработки электрической энергии при нагревании солнечной панели; необходимость стабилизации космического аппарата при разворачивании солнечной батареи.
Известна солнечная батарея для космического аппарата (патент РФ №2525633, H01L 31/042, B64G 1/44, 20.08.2014), которая содержит: панели с приклеенными на них модулями с солнечными элементами, шунтирующий диод; коммутирующие шины, приваренные к лицевой и обратной сторонам шунтирующих диодов и соединяющие лицевую и обратную стороны шунтирующего диода с солнечными элементами, при этом шунтирующий диод установлен в вырезе в углу солнечного элемента, при этом коммутирующие шины выполнены многослойными, состоящими из молибденовой фольги, с двух сторон которой последовательно нанесены слой ванадия или титана, слой никеля и слой серебра соответственно.
Недостатками известного устройства являются невысокая эффективность солнечной батареи из-за длительности пребывания в области тени, а также из-за ухудшения выработки электрической энергии при нагревании солнечной панели; необходимость стабилизации космического аппарата при разворачивании солнечной батареи.
При применении в качестве источника электроэнергии солнечных батарей не используется тепловая энергия солнца, которая идет на нагревание космического аппарата.
Известно устройство, преобразовывающее тепловую энергию в электрическую, - магнитотепловой генератор электрической энергии (патент РФ №2210839, Н01М 8/06; H02N 10/00; H02N 11/00, опубл. 20.08.2003), содержащий один блок электрохимических топливных элементов, топливный резервуар, узел подачи топлива, блок отвода продуктов химической реакции, сборник тепла и блок автоматического управления, а также преобразователь тепловой энергии в электрическую, выполненный в виде симметричной разветвленной магнитной цепи с тремя сердечниками, изготовленными из тонких электрически изолированных листов магнитомягкого материала с высокой магнитной проницаемостью. В два крайних сердечника с вторичными обмотками встроены рабочие вставки, выполненные в виде плотно упакованных сборок из тонких ферромагнитных пластин с трехмерным рельефом на их поверхности, характеризующиеся большим скачком намагниченности при температуре точки Кюри и малой остаточной намагниченностью. Ферромагнитные пластины соприкасаются друг с другом в точках, образованных выпуклостями трехмерного рельефа и образующих множество параллельных каналов для интенсификации теплообмена. Питание магнитной цепи известного магнитотеплового генератора может осуществляться постоянным магнитом (вместо центрального сердечника с первичной обмоткой устанавливается постоянный магнит) с использованием для нагрева рабочих вставок природных источников тепловой энергии, например солнечного излучения. Известное устройство является наиболее близким по технической сущности и достигаемому результату к заявленному генератору электрической энергии для космического аппарата.
Недостатками известного генератора электрической энергии являются: сложность конструкции, необходимость в блоках подачи и отвода тепла и топлива, ограниченные функциональные возможности относительно применения на космических аппаратах.
Задача изобретения - упрощение конструкции, расширение функциональных возможностей генератора электрической энергии для космического аппарата, преобразовывающего солнечную тепловую энергию в электрическую.
Техническим результатом изобретения является снижение удельной массы генератора электрической энергии для космического аппарата, обеспечение выработки электрической энергии из солнечной тепловой энергии генератором электрической энергии для космического аппарата как при прямом воздействии на него солнечного потока (нагревании), так и в области тени (охлаждении).
Поставленная задача решается и технический результат достигается тем, что в генераторе электрической энергии для космического аппарата, содержащем преобразователь тепловой энергии в электрическую с магнитной системой из постоянных магнитов и ферромагнитных пластин, принимающей солнечную тепловую энергию, согласно изобретению, между двумя ферромагнитными пластинами установлены постоянные магниты и обмотка, при этом генератор электрической энергии выполнен с возможностью вращения вокруг космического аппарата.
Кроме того, постоянные магниты могут быть выполнены тонкопленочными.
Кроме того, обмотка может быть выполнена из углеродных нанотрубок с высокой электропроводностью.
Кроме того, генератор электрической энергии для космического аппарата может быть выполнен с возможностью совместной работы с солнечной батареей.
Существо изобретения поясняется чертежами: на фиг. изображен генератор электрической энергии для космического аппарата в поперечном разрезе.
Генератор электрической энергии для космического аппарата содержит преобразователь тепловой энергии в электрическую с магнитной системой из постоянных магнитов 1 и ферромагнитных пластин 2 и 3, принимающий солнечную тепловую энергию. Между двумя ферромагнитными пластинами 2 и 3 установлены постоянные магниты 1 и обмотка 4. Преобразователь тепловой энергии в электрическую установлен на экранируемом корпусе 5. При этом генератор электрической энергии установлен с возможностью вращения вокруг космического аппарата 6.
Изобретение реализуется следующим образом. При поступлении солнечного теплового потока на внешнюю ферромагнитную пластину 2 она нагревается, вместе с ней нагреваются постоянные магниты 1. При прекращении поступления солнечного теплового потока на внешнюю ферромагнитную пластину 2 она охлаждается вместе с постоянными магнитами 1. Изменение температуры постоянного магнита приводит к изменению магнитной индукции, что в свою очередь приводит к возникновению ЭДС в обмотке 4, при подключении выводов которой к нагрузке по ней начнет протекать электрический ток. Вращение генератора электрической энергии вокруг космического аппарата 6 обеспечивает непрерывное изменение температуры постоянного магнита и, следовательно, постоянную выработку электрической энергии.
Применение тонкопленочных постоянных магнитов позволяет значительно уменьшить массу генератора электрической энергии для космического аппарата.
Применение обмоток из углеродных нанотрубок с высокой электропроводностью позволит повысить энергоэффективность генератора электрической энергии для космического аппарата.
Совместное использование генератора электрической энергии для космического аппарата и солнечных батарей позволит увеличить выработку электрической энергии.
Итак, заявленное изобретение позволяет упростить конструкцию, расширить функциональные возможности генератора электрической энергии для космического аппарата.
В результате снижается удельная масса генератора электрической энергии для космического аппарата, обеспечивается выработка электрической энергии как при прямом воздействии на него солнечного потока (нагревании), так и в области тени (охлаждении).

Claims (4)

1. Генератор электрической энергии для космического аппарата, содержащий преобразователь тепловой энергии в электрическую с магнитной системой из постоянных магнитов и ферромагнитных пластин, принимающей солнечную тепловую энергию, отличающийся тем, что между двумя ферромагнитными пластинами установлены постоянные магниты и обмотка, при этом генератор электрической энергии выполнен с возможностью вращения вокруг космического аппарата.
2. Генератор электрической энергии для космического аппарата по п. 1, отличающийся тем, что постоянные магниты выполнены тонкопленочными.
3. Генератор электрической энергии для космического аппарата по любому из пп. 1 или 2, отличающийся тем, что обмотка выполнена из углеродных нанотрубок с высокой электропроводностью.
4. Генератор электрической энергии для космического аппарата по любому из пп. 1, 2 или 3, отличающийся тем, что выполнен с возможностью совместной работы с солнечной батареей.
RU2016141867A 2016-10-25 2016-10-25 Генератор электрической энергии для космического аппарата RU2710118C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016141867A RU2710118C1 (ru) 2016-10-25 2016-10-25 Генератор электрической энергии для космического аппарата

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016141867A RU2710118C1 (ru) 2016-10-25 2016-10-25 Генератор электрической энергии для космического аппарата

Publications (1)

Publication Number Publication Date
RU2710118C1 true RU2710118C1 (ru) 2019-12-24

Family

ID=69023014

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016141867A RU2710118C1 (ru) 2016-10-25 2016-10-25 Генератор электрической энергии для космического аппарата

Country Status (1)

Country Link
RU (1) RU2710118C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5885367A (en) * 1997-03-07 1999-03-23 The United States Of America As Represented By The Secretary Of The Navy Retractable thin film solar concentrator for spacecraft
RU2210839C1 (ru) * 2002-04-09 2003-08-20 Темерко Александр Викторович Электрохимическая магнитотепловая энергогенерирующая система
WO2012132690A1 (ja) * 2011-03-29 2012-10-04 三菱重工業株式会社 宇宙機
RU2540193C1 (ru) * 2013-09-05 2015-02-10 Открытое акционерное общество "Ракетно-космический центр "Прогресс" (ОАО "РКЦ "Прогресс") Космический аппарат
RU2598862C2 (ru) * 2015-01-26 2016-09-27 Федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "Военно-космическая академия имени А.Ф. Можайского" Министерства обороны Российской Федерации Система электроснабжения космического аппарата

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5885367A (en) * 1997-03-07 1999-03-23 The United States Of America As Represented By The Secretary Of The Navy Retractable thin film solar concentrator for spacecraft
RU2210839C1 (ru) * 2002-04-09 2003-08-20 Темерко Александр Викторович Электрохимическая магнитотепловая энергогенерирующая система
WO2012132690A1 (ja) * 2011-03-29 2012-10-04 三菱重工業株式会社 宇宙機
RU2540193C1 (ru) * 2013-09-05 2015-02-10 Открытое акционерное общество "Ракетно-космический центр "Прогресс" (ОАО "РКЦ "Прогресс") Космический аппарат
RU2598862C2 (ru) * 2015-01-26 2016-09-27 Федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "Военно-космическая академия имени А.Ф. Можайского" Министерства обороны Российской Федерации Система электроснабжения космического аппарата

Similar Documents

Publication Publication Date Title
Hyder et al. Spacecraft power technologies
CN108140915A (zh) 电池模块、包括电池模块的电池组以及包括电池组的车辆
Batarseh et al. Emerging opportunities in distributed power electronics and battery integration: Setting the stage for an energy storage revolution
MX2009003656A (es) Bateria electrica que comprende elementos flexibles generadores y un sistema para el acondicionamiento mecanico y termico de los elementos.
Yaqoob et al. A comprehensive review on small satellite microgrids
GB201212779D0 (en) Electricity generating apparatus
US20200185957A1 (en) Integrated power module devices, systems, and methods
CN103730180A (zh) 用于运输应用的贝塔伏特电源
Chen et al. Spacecraft Power System Technologies
RU2710118C1 (ru) Генератор электрической энергии для космического аппарата
Dahbi et al. Design and sizing of electrical power source for a nanosatellite using photovoltaic cells
Rajaram et al. Experimental investigation of solar panel cooling by the use of phase change material
Raffaelle et al. Integrated solar power systems [space power applications]
Khouzam et al. Optimum matching of direct-coupled electromechanical loads to a photovoltaic generator
KR20140051985A (ko) 집광형 광전지 셀을 위한 능동 냉각
Miller et al. Spacecraft power systems
RU2626412C1 (ru) Магнитотепловой генератор для космического аппарата
RU2699242C2 (ru) Способ генерации переменного тока солнечными батареями
JPH11289783A (ja) 太陽発電装置
RU2622907C1 (ru) Тепловой генератор электрической энергии для космического аппарата
Barde 1989–2019: Three decades of power systems evolution through the prism of ESPC
Teofilo Space power systems for the 21st century
Yu et al. Power Technology of Lunar Lander
JP3221884U (ja) 蓄電システム
Raffaelle et al. Integrated thin-film solar power system

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20201026