RU2622907C1 - Тепловой генератор электрической энергии для космического аппарата - Google Patents

Тепловой генератор электрической энергии для космического аппарата Download PDF

Info

Publication number
RU2622907C1
RU2622907C1 RU2016108186A RU2016108186A RU2622907C1 RU 2622907 C1 RU2622907 C1 RU 2622907C1 RU 2016108186 A RU2016108186 A RU 2016108186A RU 2016108186 A RU2016108186 A RU 2016108186A RU 2622907 C1 RU2622907 C1 RU 2622907C1
Authority
RU
Russia
Prior art keywords
thermal
solar
generator
gap
electrical
Prior art date
Application number
RU2016108186A
Other languages
English (en)
Inventor
Флюр Рашитович Исмагилов
Ирек Ханифович Хайруллин
Вячеслав Евгеньевич Вавилов
Владимир Игоревич Бекузин
Валентина Владимировна Айгузина
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Уфимский государственный авиационный технический университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Уфимский государственный авиационный технический университет" filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Уфимский государственный авиационный технический университет"
Priority to RU2016108186A priority Critical patent/RU2622907C1/ru
Application granted granted Critical
Publication of RU2622907C1 publication Critical patent/RU2622907C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. turbine
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N10/00Electric motors using thermal effects

Abstract

Изобретение относится к электротехнике и может применяться для создания генераторов на космических аппаратах, в которых солнечная тепловая энергия преобразуется в электрическую. Технический результат заключается в снижении удельной массы теплового генератора, обеспечении выработки электрической энергии из солнечной тепловой энергии как при прямом воздействии на него солнечного потока, так и в области тени. Тепловой генератор содержит n объединенных между собой преобразователей тепловой энергии в электрическую, каждый из которых содержит корпус, выполненный из материала с возможностью экранирования электромагнитного излучения, с расположенной внутри электрической обмоткой. Над ней с зазором установлен постоянный магнит с закрепленной над ним теплоизолирующей пластиной и пластиной с высоким значением коэффициента теплового расширения, которая закреплена верхней стороной в корпусе. Изменение ее линейных размеров под действием солнечного теплового потока позволяет изменить величину зазора между постоянным магнитом и электрической обмоткой. Каждый из n объединенных преобразователей тепловой энергии в электрическую может содержать пластины с различными высокими значениями коэффициента теплового расширения. 1 з.п. ф-лы, 1 ил.

Description

Изобретение относится к области энергетики и может применяться для создания генераторов на космических аппаратах, в которых солнечная тепловая энергия преобразуется в электрическую энергию.

Известен ряд солнечных батарей космического аппарата, преобразующих солнечную тепловую энергию в электрическую.

В частности, известна солнечная батарея космического аппарата (патент РФ №2574057, B64G 1/44, опубл. 27.01.2016), которая снабжена штангой в виде шарнирно соединенных корневого и телескопического звеньев и выполнена в форме складываемых гармошкой створок. В транспортном положении звенья сложены вместе, а створки уложены в контейнеры с основаниями и крышками. Крышки и основания закреплены соответственно на звеньях и развернуты длинными сторонами вдоль оси сложенной штанги. Поворотная панель служит для поджатия створок к крышке и их поворота на 45° для равномерного схода.

Недостатками известного устройства являются невысокая эффективность солнечной батареи из-за длительности пребывания в области тени, а также из-за ухудшения выработки электрической энергии при нагревании солнечной панели, необходимость стабилизации космического аппарата при разворачивании солнечной батареи и при движении космического аппарата.

Известна магнитотепловая энергогенерирующая система (патент РФ №2210839, Н01М 8/06; H02N 10/00; H02N 11/00, опубл. 20.08.2003), содержащая один блок электрохимических топливных элементов, топливный резервуар, узел подачи топлива, блок отвода продуктов химической реакции, сборник тепла и блок автоматического управления, преобразователь тепловой энергии в электрическую, выполненный в виде симметричной разветвленной магнитной цепи с тремя сердечниками, изготовленными из тонких электрически изолированных листов магнитомягкого материала с высокой магнитной проницаемостью. В два крайних сердечника с вторичными обмотками встроены рабочие вставки, выполненные в виде плотно упакованных сборок из тонких ферромагнитных пластин с трехмерным рельефом на их поверхности, характеризующиеся большим скачком намагниченности при температуре точки Кюри и малой остаточной намагниченностью. Ферромагнитные пластины соприкасаются друг с другом в точках, образованных выпуклостями трехмерного рельефа и образующих множество параллельных каналов для интенсификации теплообмена. Питание магнитной цепи известного магнитотеплового генератора может осуществляться постоянным магнитом (вместо центрального сердечника с первичной обмоткой устанавливается постоянный магнит) и использования для нагрева рабочих вставок природных источников тепловой энергии, например солнечного излучения.

Недостатками известного магнитотеплового генератора являются сложность конструкции, необходимость в блоках подачи и отвода тепла и топлива, ограниченные функциональные возможности относительно применения на космических аппаратах.

Наиболее близким по технической сущности и достигаемому результату к заявленному тепловому генератору электрической энергии для космического аппарата является тепловой генератор (заявка РФ №2010109704, F01B 29/10, опубл. 20.09.2011), включающий цилиндр, в котором размещен поршень и рабочая жидкость, при этом поршень снабжен постоянными магнитами, пересекающими своим полем во время движений поршня электрические обмотки, расположенные вдоль и поперек на стенках рабочего цилиндра, индуцируя электродвижущую силу (ЭДС).

Недостатками известного магнитотеплового генератора являются сложность конструкции, необходимость в блоках подачи и отвода рабочей жидкости, ограниченные функциональные возможности относительно применения на космических аппаратах.

Задача изобретения - упрощение конструкции, расширение функциональных возможностей теплового генератора электрической энергии для космического аппарата, преобразующего солнечную тепловую энергию в электрическую.

Техническим результатом изобретения является снижение удельной массы теплового генератора электрической энергии, обеспечение выработки электрической энергии из солнечной тепловой энергии тепловым генератором на космическом аппарате как при прямом воздействии на него солнечного потока (нагревании), так и в области тени (охлаждении).

Поставленная задача решается и технический результат достигается тем, что тепловой генератор электрической энергии для космического аппарата, содержащий постоянные магниты, электрическую обмотку, индуцирующую электродвижущую силу, согласно изобретению, содержит n объединенных между собой преобразователей тепловой энергии в электрическую, каждый из которых содержит корпус, выполненный из материала с возможностью экранирования электромагнитного излучения, с расположенной внутри электрической обмоткой, над ней с зазором установлен постоянный магнит с закрепленной над ним теплоизолирующей пластиной и пластиной с высоким значением коэффициента теплового расширения, которая закреплена верхней стороной в корпусе и изменение линейных размеров которой под действием солнечного теплового потока позволяет изменить величину зазора между постоянным магнитом и электрической обмоткой.

Кроме того, каждый из n объединенных между собой преобразователей тепловой энергии в электрическую может содержать пластины с различными высокими значениями коэффициента теплового расширения.

Существо изобретения поясняется чертежом, на котором изображен тепловой генератор электрической энергии для космического аппарата в продольном разрезе.

Тепловой генератор электрической энергии для космического аппарата содержит (чертеж) n объединенных между собой преобразователей тепловой энергии в электрическую, каждый из которых содержит корпус 1, выполненный из материала с возможностью экранирования электромагнитного излучения, с расположенной внутри электрической обмоткой 2, над ней с зазором 3 установлен постоянный магнит 4 с закрепленной над ним теплоизолирующей пластиной 5 и пластиной с высоким значением коэффициента теплового расширения 6, которая закреплена верхней стороной в корпусе 1 и изменение линейных размеров которой под действием солнечного теплового потока 7 позволяет изменить величину зазора 3 между постоянным магнитом 4 и электрической обмоткой 2. Выводы 8 электрической обмотки 2 выведены к внешней стороне корпуса 1.

Тепловой генератор электрической энергии для космического аппарата работает следующим образом.

При поступлении солнечного теплового потока 7 на пластину с высоким значением коэффициента теплового расширения 6 она, нагреваясь, увеличивает линейные размеры, при этом нагрева постоянного магнита 4 не происходит из-за наличия теплоизолирующей пластины 5. Поскольку пластина с высоким значением коэффициента теплового расширения 6 закреплена в корпусе 1 верхней стороной, постоянный магнит 4 движется в сторону обмотки, уменьшая тем самым зазор 3. Вследствие этого индукция магнитного поля в зазоре 3 увеличивается. При прекращении поступления солнечной тепловой энергии, вызванном движением космического аппарата, на пластину с высоким значением коэффициента теплового расширения 6 она, охлаждаясь, уменьшает линейные размеры. При этом зазор 3 будет увеличиваться, а индукция магнитного поля в зазоре 3 уменьшаться. Изменение магнитного поля в зазоре 3 приводит к возникновению ЭДС в электрической обмотке 2. При подключении выводов 8 к нагрузке по электрической обмотке 2 начнет протекать электрический ток.

Итак, заявленное изобретение позволяет упростить конструкцию, расширить функциональные возможности теплового генератора электрической энергии для космического аппарата.

В результате снижается удельная масса теплового генератора электрической энергии для космического аппарата, обеспечивается выработка электрической энергии как при прямом воздействии на него солнечного потока (нагревании), так и в области тени (охлаждении), кроме того, для работы теплового генератора электрической энергии не требуется система стабилизации космического аппарата.

Claims (2)

1. Тепловой генератор электрической энергии, содержащий постоянные магниты, электрическую обмотку, индуцирующую электродвижущую силу, отличающийся тем, что содержит n объединенных между собой преобразователей тепловой энергии в электрическую, каждый из которых содержит корпус, выполненный из материала с возможностью экранирования электромагнитного излучения, с расположенной внутри электрической обмоткой, над ней с зазором установлен постоянный магнит с закрепленной над ним теплоизолирующей пластиной и пластиной с высоким значением коэффициента теплового расширения, которая закреплена верхней стороной в корпусе и изменение линейных размеров которой под действием солнечного теплового потока позволяет изменить величину зазора между постоянным магнитом и электрической обмоткой.
2. Тепловой генератор электрической энергии по п. 1, отличающийся тем, что каждый из n объединенных между собой преобразователей тепловой энергии в электрическую содержит пластины с различными высокими значениями коэффициента теплового расширения.
RU2016108186A 2016-03-09 2016-03-09 Тепловой генератор электрической энергии для космического аппарата RU2622907C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016108186A RU2622907C1 (ru) 2016-03-09 2016-03-09 Тепловой генератор электрической энергии для космического аппарата

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016108186A RU2622907C1 (ru) 2016-03-09 2016-03-09 Тепловой генератор электрической энергии для космического аппарата

Publications (1)

Publication Number Publication Date
RU2622907C1 true RU2622907C1 (ru) 2017-06-21

Family

ID=59241278

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016108186A RU2622907C1 (ru) 2016-03-09 2016-03-09 Тепловой генератор электрической энергии для космического аппарата

Country Status (1)

Country Link
RU (1) RU2622907C1 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1823761A3 (ru) * 1990-12-17 1996-11-10 Высоковольтный научно-исследовательский центр Всесоюзного электротехнического института им.В.И.Ленина Устройство для прямого преобразования тепловой энергии высокотемпературной плазмы в электрическую энергию
US6427444B1 (en) * 1999-05-26 2002-08-06 Seiko Epson Corporation Method and device for converting thermal energy and device with the thermal energy converting device
CN104485886A (zh) * 2014-12-30 2015-04-01 河海大学常州校区 磁纳米流体平板式光伏热电联产装置
RU2551484C2 (ru) * 2013-10-11 2015-05-27 Общество с ограниченной ответственностью "Константин Чайкин" Электрический прибор времени, способ и устройство для получения электроэнергии, приводящей в действие электрический прибор времени

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1823761A3 (ru) * 1990-12-17 1996-11-10 Высоковольтный научно-исследовательский центр Всесоюзного электротехнического института им.В.И.Ленина Устройство для прямого преобразования тепловой энергии высокотемпературной плазмы в электрическую энергию
US6427444B1 (en) * 1999-05-26 2002-08-06 Seiko Epson Corporation Method and device for converting thermal energy and device with the thermal energy converting device
RU2551484C2 (ru) * 2013-10-11 2015-05-27 Общество с ограниченной ответственностью "Константин Чайкин" Электрический прибор времени, способ и устройство для получения электроэнергии, приводящей в действие электрический прибор времени
CN104485886A (zh) * 2014-12-30 2015-04-01 河海大学常州校区 磁纳米流体平板式光伏热电联产装置

Similar Documents

Publication Publication Date Title
Mogorovic et al. 100 kW, 10 kHz medium-frequency transformer design optimization and experimental verification
Kazmierkowski et al. Unplugged but connected: Review of contactless energy transfer systems
Tan et al. Design and performance of a bidirectional isolated DC–DC converter for a battery energy storage system
Zhong et al. A novel single-layer winding array and receiver coil structure for contactless battery charging systems with free-positioning and localized charging features
Bolund et al. Flywheel energy and power storage systems
US8720198B2 (en) System and method for electrically-coupled thermal cycle
Lindh et al. Direct liquid cooling method verified with an axial-flux permanent-magnet traction machine prototype
KR970002342B1 (ko) 분리 가능한 유도성 결합기
Kostenko et al. Electrical machines
US8154144B2 (en) Linear generator with a primary part and a secondary part for power generation in a wave-driven power station and wave-driven power station
JP2011050127A (ja) 非接触給電装置
US10033178B2 (en) Linear electromagnetic device
US8304957B2 (en) Thermomagnetic generator device and energy converting method
JP6335327B2 (ja) レーダーパワーシステム及び大規模pfn充電のための慣性エネルギ貯蔵システム及びハイドロフルオロエーテル電力変圧器スキーム
Aditya et al. Design guidelines to avoid bifurcation in a series–series compensated inductive power transfer system
EP2369288A1 (en) Energy transfer system comprising a phase change material
Liu et al. Research on a permanent magnet tubular linear generator for direct drive wave energy conversion
US9455084B2 (en) Variable core electromagnetic device
AU2008231826B2 (en) Device and method for converting energy
EP2132793B1 (en) Generator device and method
CN103858307A (zh) 非接触式充电电池、非接触式充电器
JPH07194061A (ja) 交流機械用冷却装置
US20110017282A1 (en) Energy transfer through coupling from photovoltaic modules
US10574091B2 (en) Enclosures for high power wireless power transfer systems
US20140320249A1 (en) Reactor

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20180310