RU2707702C1 - Способ продольного управления самолётом комбинированной схемы - Google Patents

Способ продольного управления самолётом комбинированной схемы Download PDF

Info

Publication number
RU2707702C1
RU2707702C1 RU2019102624A RU2019102624A RU2707702C1 RU 2707702 C1 RU2707702 C1 RU 2707702C1 RU 2019102624 A RU2019102624 A RU 2019102624A RU 2019102624 A RU2019102624 A RU 2019102624A RU 2707702 C1 RU2707702 C1 RU 2707702C1
Authority
RU
Russia
Prior art keywords
control
horizontal tail
signal
aircraft
deviation
Prior art date
Application number
RU2019102624A
Other languages
English (en)
Inventor
Павел Львович Сверканов
Original Assignee
Федеральное государственное унитарное предприятие "Центральный аэрогидродинамический институт имени профессора Н.Е. Жуковского" (ФГУП "ЦАГИ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное унитарное предприятие "Центральный аэрогидродинамический институт имени профессора Н.Е. Жуковского" (ФГУП "ЦАГИ") filed Critical Федеральное государственное унитарное предприятие "Центральный аэрогидродинамический институт имени профессора Н.Е. Жуковского" (ФГУП "ЦАГИ")
Priority to RU2019102624A priority Critical patent/RU2707702C1/ru
Application granted granted Critical
Publication of RU2707702C1 publication Critical patent/RU2707702C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot

Abstract

Изобретение относится к способу управления самолетом комбинированной схемы. Для управления самолетом в систему управления передают сигнал от отклонения рычага управления по тангажу и сигналы по параметрам движения, в системе управления формируют определенным образом управляющие сигналы на переднее и заднее горизонтальное оперение. Обеспечивается повышение несущих свойств статически устойчивого самолета комбинированной схемы, сохранение установленного диапазона эксплуатационных углов атаки. 2 ил.

Description

Предлагаемое изобретение относится к способам продольного управления самолетами комбинированной схемы, имеющими как заднее, так и переднее горизонтальное оперение.
Известен способ непосредственного управления подъемной силой, при котором в дополнение к заднему горизонтальному оперению используют переднее; он реализован на самолетах F-4CCV и YF-16CCV (см.: Цихош Э. Сверхзвуковые самолеты. - М.: Мир, 1983. - Стр. 72-75).
Указанный способ позволяет осуществлять нетрадиционные формы продольного движения самолета - изолированный тангаж, изолированное вертикальное перемещение и поворот фюзеляжа относительно вектора скорости (см.: Гуськов Ю.П., Загайнов Г.И. Управление полетом самолетов. - М: Машиностроение, 1980. - Стр. 141-144), - однако вопросы, связанные с повышением несущих свойств самолета за счет балансировки, при этом не рассматриваются.
Известны также способы управления самолетами схемы «бесхвостка с передним горизонтальным оперением», при которых переднее горизонтальное оперение используют в качестве вспомогательного органа управления продольным движением, а основным органом управления являются элевоны, представляющие собой функциональный аналог заднего горизонтального оперения с меньшим плечом, и способы управления самолетами схемы «утка», на которых переднее горизонтальное оперение является основным органом управления продольным движением (см.: Бауэрc П. Летательные аппараты нетрадиционных схем. - М.: Мир, 1991. - Стр. 8-10).
Недостатком указанных способов является то, что для самолетов схем «утка» и «бесхвостка с передним горизонтальным оперением» характерна тенденция к так называемому «клевку на нос», связанная с возможностью более раннего срыва потока на переднем горизонтальном оперении, чем на крыле; это не позволяет полностью реализовать установленный для самолета диапазон углов атаки.
Наиболее близким аналогом - прототипом является способ продольного управления самолетом Су-27М (обозначаемом также как Су-35) комбинированной схемы, созданным на базе самолета Су-27 нормальной схемы (см.: Современные боевые самолеты: Справочное пособие // Автор-составитель Н.И. Рябинкин. - Минск: «Элайда», 1997. - Стр. 53-56), при котором в систему управления передают сигнал от отклонения рычага управления по тангажу и сигналы по параметрам движения, а в системе управления формируют управляющие сигналы на переднее горизонтальное оперение и на заднее горизонтальное оперение, при этом в качестве основного органа управления продольным движением используют заднее горизонтальное оперение, угол отклонения которого формируют при суммировании входного сигнала от летчика и сигналов по параметрам движения, как на базовом самолете Су-27 (см.: Шенфинкель Ю.И. Система управления самолета Су-27. - Техника воздушного флота. - 1990. №2. - Стр. 49-54), а переднее горизонтальное оперение отклоняют на отрицательный угол с увеличением угла атаки самолета в целом (см.: Чернов Л.Г., Милованов А.Г. Основы методологии аэродинамического проектирования маневренного многорежимного самолета-истребителя. - М.: МАИ, 2004. - Стр. 130-132).
Недостатком указанного способа является то, что при его реализации повышение несущих свойств самолета за счет балансировки возможно при наличии статической неустойчивости, достижимой только на дозвуковых скоростях. Со смещением аэродинамического фокуса назад, наблюдаемым при сверхзвуковых скоростях, самолет становится статически устойчивым, что снижает его несущие свойства по сравнению со случаем нейтральной центровки.
Техническим результатом предлагаемого изобретения является повышение несущих свойств статически устойчивого самолета комбинированной схемы за счет балансировки при возможности избежать срыва потока на переднем горизонтальном оперении, являющемся основным органом управления продольным движением, и сохранить установленный диапазон эксплуатационных углов атаки.
Поставленный технический результат достигается тем, что в способе продольного управления самолетом комбинированной схемы, при котором в систему управления передают сигнал от отклонения рычага управления по тангажу и сигналы по параметрам движения, а в системе управления формируют управляющие сигналы на переднее горизонтальное оперение и на заднее горизонтальное оперение, формирование управляющего сигнала на переднее горизонтальное оперение осуществляют суммированием сигнала от отклонения рычага управления по тангажу с соответствующими сигналами по параметрам движения и ограничивают суммарный управляющий сигнал установленным допустимым значением угла атаки на переднем горизонтальном оперении, а формирование управляющего сигнала на заднее горизонтальное оперение осуществляют суммированием соответствующих сигналов по параметрам движения с остаточным сигналом, определяемым из соотношения:ϕост=Kго/пгопгопго упр), где Kго/пго - отношение абсолютных величин производных момента тангажа по углам отклонения переднего горизонтального оперения и заднего горизонтального оперения ϕпго - сигнал, соответствующий фактическому углу отклонения переднего горизонтального оперения при наличии ограничения по углу атаки на нем, ϕпго упр - управляющий сигнал на переднее горизонтальное оперение, получаемый суммированием сигнала от отклонения рычага управления по тангажу с сигналами по параметрам движения.
Перечень фигур:
Figure 00000001
фиг.1 - блок-схема, реализующая предлагаемый способ продольного управления самолетом комбинированной схемы;
Figure 00000002
фиг.2 - графики зависимостей несущих свойств самолета, а также углов отклонения органов продольного управления и угла атаки на переднем горизонтальном оперении от угла атаки самолета.
На фиг. 1 показана блок-схема, реализующая предлагаемый способ продольного управления самолетом комбинированной схемы, при котором переднее горизонтальное оперение используется в качестве основного органа управления продольным движением.
На блок-схеме обозначено:
1 - блок суммирования сигнала от отклонения рычага управления по тангажу, задаваемого летчиком, с сигналами по параметрам движения, поступающими на переднее горизонтальное оперение;
2 - блок суммирования управляющего сигнала на переднее горизонтальное оперение, получаемого в блоке 1, с сигналом, соответствующим текущему значению угла атаки;
3 - блок ограничения угла атаки на переднем горизонтальном оперении;
4 - блок формирования сигнала, соответствующего фактическому углу отклонения переднего горизонтального оперения;
5 - блок рассогласования между сигналом, соответствующим фактическому углу отклонения переднего горизонтального оперения, и управляющим сигналом на него;
6 - блок формирования остаточного сигнала;
7 - блок суммирования остаточного сигнала с сигналами по параметрам движения, поступающими на заднее горизонтальное оперение.
Предлагаемый способ продольного управления самолетом комбинированной схемы осуществляют следующим образом. В блоке 1 суммируют сигнал ϕпго л от отклонения рычага управления по тангажу, задаваемого летчиком, с результирующим сигналом по параметрам движения(т.е. суммой различных сигналов), поступающим на переднее горизонтальное оперение, от автоматизации управления самолетом Δϕпго авт, и тем самым получают управляющий сигнал на переднее горизонтальное оперение ϕпго упр. Этот сигнал, имеющий размерность угла, в блоке 2 суммируют с сигналом, соответствующим текущему значению угла атаки α и измеряемым в полете, в результате чего получают расчетный угол атаки на переднем горизонтальном оперении αпго расч. Поскольку величина угла атаки на переднем горизонтальном оперении αпго должна быть ограничена в пределах |αпго|≤|αпго доп| из условия недопущения срыва потока, то полученное значение αпго расч пропускают через блок 3, предусматривающий указанное ограничение как при положительных, так и при отрицательных углах атаки. Далее в блоке 4 путем вычитания α из ограниченного значения αпго формируют сигнал ϕпго, соответствующий фактическому углу отклонения переднего горизонтального оперения, который поступает на соответствующий привод. Этот сигнал в блоке 5 сравнивают со значением ϕпго упр и тем самым получают рассогласование Δϕпгопгопго упр. Если такое рассогласование не равно нулю, то это означает, что часть момента тангажа, связанная с отклонением переднего горизонтального оперения, недостаточна для достижения заданного значения α, а кроме того, для указанного случая всегда выполняется условие: sign(Δϕпго)=-sign(α). Поэтому рассогласование Δϕпго поступает в блок 6, где путем его умножения на передаточный коэффициент Kго/пго формируют остаточный сигнал ϕост, величина которого должна быть потребной для компенсации снижения момента тангажа от переднего горизонтального оперения, а кроме того, должно выполняться условие: sign(ϕост)=-sign(α). Именно для реализации указанных требований значение передаточного коэффициента Kго/пго должно быть положительным и представлять собой отношение абсолютных величин производных момента тангажа по углам отклонения переднего горизонтального оперения и заднего горизонтального оперения. Далее в блоке 7 величину ϕост суммируют с результирующим сигналом по параметрам движения (т.е. суммой различных сигналов), поступающим на заднее горизонтальное оперение, от автоматизации управления самолетом Δϕго авт, и тем самым получают фактический угол отклонения заднего горизонтального оперения ϕго, который поступает на соответствующий привод. Распределение сигналов по параметрам движения между передним горизонтальным оперением и задним горизонтальным оперением возможно различными способами для каждого конкретного самолета.
На фиг. 2 в качестве примера приведены расчетные зависимости несущих свойств самолета, а также углов отклонения органов продольного управления и угла атаки на переднем горизонтальном оперении от угла атаки самолета. На верхнем графике обозначены соответствующие зависимости балансировочного значения коэффициента подъемной силы:
1 - при использовании заднего горизонтального оперения в качестве основного органа управления продольным движением;
2 - при использовании переднего горизонтального оперения в качестве основного органа управления продольным движением и наличии на нем ограничений по углу атаки;
3 - при использовании переднего горизонтального оперения в качестве основного органа управления продольным движением и отсутствии на нем ограничений по углу атаки.
Видно, что при использовании предлагаемого способа продольного управления самолетом комбинированной схемы (зависимость 2) происходит повышение несущих свойств такого самолета по сравнению со случаем использования заднего горизонтального оперения в качестве основного органа управления продольным движением (зависимость 1). При выходе на ограничение по αпго несущие свойства несколько снижаются по сравнению со случаем отсутствия указанного ограничения (зависимость 3) за счет уменьшения ϕпго и роста абсолютной величины ϕго с противоположным знаком, что в итоге приводит к уменьшению подъемной силы. Все указанные зависимости рассчитаны для линейной области изменения аэродинамических характеристик всего самолета и его переднего горизонтального оперения. Поэтому в расчетах было принято, что α=0÷15°, αпго доп=20°.
Предлагаемое техническое решение позволяет на заданном значении угла атаки совершать, например: взлет и посадку с меньшей скоростью - для самолета любого назначения; маневр с большей перегрузкой на требуемой скорости или с той же перегрузкой на меньшей скорости - для маневренного самолета. Это подтверждает достижение технического результата, который заключается в повышении несущих свойств статически устойчивого самолета комбинированной схемы за счет балансировки при использовании переднего горизонтального оперения в качестве основного органа управления продольным движением. При этом степень повышения несущих свойств самолета возрастает с увеличением степени его продольной статической устойчивости.

Claims (1)

  1. Способ продольного управления самолетом комбинированной схемы, при котором в систему управления передают сигнал от отклонения рычага управления по тангажу и сигналы по параметрам движения, а в системе управления формируют управляющие сигналы на переднее горизонтальное оперение и на заднее горизонтальное оперение, отличающийся тем, что формирование управляющего сигнала на переднее горизонтальное оперение осуществляют суммированием сигнала от отклонения рычага управления по тангажу с соответствующими сигналами по параметрам движения и ограничивают суммарный управляющий сигнал установленным допустимым значением угла атаки на переднем горизонтальном оперении, а формирование управляющего сигнала на заднее горизонтальное оперение осуществляют суммированием соответствующих сигналов по параметрам движения с остаточным сигналом, определяемым из соотношения: ϕост=Kго/пгопгопго упр), где Kго/пго - отношение абсолютных величин производных момента тангажа по углам отклонения переднего горизонтального оперения и заднего горизонтального оперения, ϕпго - сигнал, соответствующий фактическому углу отклонения переднего горизонтального оперения при наличии ограничения по углу атаки на нем, ϕпго упр _ управляющий сигнал на переднее горизонтальное оперение, получаемый суммированием сигнала от отклонения рычага управления по тангажу с сигналами по параметрам движения.
RU2019102624A 2019-01-30 2019-01-30 Способ продольного управления самолётом комбинированной схемы RU2707702C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019102624A RU2707702C1 (ru) 2019-01-30 2019-01-30 Способ продольного управления самолётом комбинированной схемы

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019102624A RU2707702C1 (ru) 2019-01-30 2019-01-30 Способ продольного управления самолётом комбинированной схемы

Publications (1)

Publication Number Publication Date
RU2707702C1 true RU2707702C1 (ru) 2019-11-28

Family

ID=68836257

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019102624A RU2707702C1 (ru) 2019-01-30 2019-01-30 Способ продольного управления самолётом комбинированной схемы

Country Status (1)

Country Link
RU (1) RU2707702C1 (ru)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2235042C1 (ru) * 2003-11-12 2004-08-27 Оао "Миэа" Способ управления самолетом
RU2401219C2 (ru) * 2006-01-25 2010-10-10 Эрбюс Франс Сведение к минимуму динамических нагрузок на конструкцию самолета
WO2018224565A2 (en) * 2017-06-07 2018-12-13 Turbulence Solutions Gmbh Method and controller for controlling an aircraft by improved direct lift control

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2235042C1 (ru) * 2003-11-12 2004-08-27 Оао "Миэа" Способ управления самолетом
RU2401219C2 (ru) * 2006-01-25 2010-10-10 Эрбюс Франс Сведение к минимуму динамических нагрузок на конструкцию самолета
WO2018224565A2 (en) * 2017-06-07 2018-12-13 Turbulence Solutions Gmbh Method and controller for controlling an aircraft by improved direct lift control

Similar Documents

Publication Publication Date Title
CN107807663B (zh) 基于自适应控制的无人机编队保持控制方法
Harris F-35 flight control law design, development and verification
CN111240212B (zh) 一种基于优化预测的倾转旋翼无人机控制分配方法
CN105260566B (zh) 一种直升机操纵解耦设计方法
CN114942649B (zh) 一种基于反步法的飞机俯仰姿态与航迹角解耦控制方法
RU2707702C1 (ru) Способ продольного управления самолётом комбинированной схемы
CN111240204B (zh) 一种基于模型参考滑模变结构控制的巡飞弹控制方法
Kay Control authority assessment in aircraft conceptual design
WO2016175676A1 (ru) Летательный аппарат схемы "флюгерная утка"
CN113110538A (zh) 一种基于反步法控制的舰载机着舰固定时间容错控制方法
CN116795126A (zh) 一种输入饱和与输出受限的变形飞行器控制方法
RU2392186C2 (ru) Способ управления двухдвигательным самолетом и система для его осуществления
RU2681509C1 (ru) Способ управления рулём высоты самолёта
US8473119B2 (en) Optimal guidance blender for a hovering/flying vehicle
US11964759B2 (en) Convertiplane
RU2609644C1 (ru) Летательный аппарат схемы "флюгерная утка" (краснов-утка)
RU2504815C2 (ru) Способ управления самолетом и устройство для его осуществления
De-qing et al. Research on integrated design of guidance and control for hypersonic vehicle based on trajectory linearization control method
CN111679687A (zh) 一种带有落角约束的导引控制一体化方法
Cox et al. A Generic Inner-Loop Control Law Structure for Six-Degree-of-Freedom Conceptual Aircraft Design
WO2022014694A1 (ja) ロケット制御システム、及びロケットの着陸動作の制御方法
RU2763622C1 (ru) Способ формирования команд управления на рулевой привод в канале крена системы стабилизации осесимметричного летательного аппарата
US20060108472A1 (en) Control system for an aircraft
KR20190078895A (ko) 무게중심의 이동을 고려한 항공기의 비선형 제어방법
Evdokimov et al. Construction of the reachability region with regard to the attitude motion of a descent module at reentry with near-circular velocity