RU2704931C2 - Гибридный электрогидравлический рулевой привод - Google Patents

Гибридный электрогидравлический рулевой привод Download PDF

Info

Publication number
RU2704931C2
RU2704931C2 RU2016129716A RU2016129716A RU2704931C2 RU 2704931 C2 RU2704931 C2 RU 2704931C2 RU 2016129716 A RU2016129716 A RU 2016129716A RU 2016129716 A RU2016129716 A RU 2016129716A RU 2704931 C2 RU2704931 C2 RU 2704931C2
Authority
RU
Russia
Prior art keywords
hydraulic
pressure
valve
line
drive
Prior art date
Application number
RU2016129716A
Other languages
English (en)
Other versions
RU2016129716A3 (ru
RU2016129716A (ru
Inventor
Аркадий Юрьевич Парменов
Алексей Аркадиевич Парменов
Лидия Анатольевна Петухова
Артем Сергеевич Алексеенков
Алексей Владимирович Найденов
Original Assignee
общество с ограниченной ответственностью "Предприятие Гидротехника"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by общество с ограниченной ответственностью "Предприятие Гидротехника" filed Critical общество с ограниченной ответственностью "Предприятие Гидротехника"
Priority to RU2016129716A priority Critical patent/RU2704931C2/ru
Publication of RU2016129716A publication Critical patent/RU2016129716A/ru
Publication of RU2016129716A3 publication Critical patent/RU2016129716A3/ru
Application granted granted Critical
Publication of RU2704931C2 publication Critical patent/RU2704931C2/ru

Links

Images

Abstract

Гибридный электрогидравлический рулевой привод, относящийся к области транспортного машиностроения, а именно к системам рулевого управления колесных машин, рулевых поверхностей летательных аппаратов, речных и морских судов и т.д. Гибридный привод может работать в двух режимах энергопитания: штатном с гидропитанием от централизованной гидросистемы и в резервном режиме энергопитания с энергопитанием от электросистемы. Гидропитание пропорционального электрогидравлического сервоклапана с непосредственным управлением положением золотника, выходы которого подключены к линиям гидроцилиндра, осуществляется через блок переключения линий гидропитания. Переход на резервный автономный режим производится по электрической команде. Технический результат предлагаемого технического решения заключается в упрощении конструкции привода, снижении его конечной стоимости, массы и уменьшении габаритных размеров при одновременном повышении его надежности. 4 з.п. ф-лы, 2 ил.

Description

Изобретение относится к области транспортного машиностроения, а именно к системам рулевого управления колесных машин, однако также может быть использовано в качестве исполнительного электрогидравлического механизма в системах управления летательных аппаратов, речных и морских судов и т.д.
Известны двухрежимные электрогидравлические приводы среди которых можно выделить двухрежимный электрогидравлический привод с нереверсивным насосом (патент на изобретение RU №2484314, МПК F15B 9/09, 2011 г.) и двухрежимный электрогидравлический привод с дополнительными режимами кольцевания и демпфирования выходного звена (патент на изобретение RU №2483977, МПК В64С 13/36, F15B 9/00, 2011 г.). Известны также аварийные клапаны переключения гидропитания, где переключающие элементы выполнены в виде цилиндрических золотников. Они применяются в резервированных гидроприводах с замещением гидросистем, в которых гидропитание осуществляется от двух независимых гидросистем, одна из которых является основной, а другая дублирующей. Подключение к приводу дублирующей системы гидропитания осуществляется специальным гидравлическим краном (клапаном переключения), срабатывающим автоматически по падению давления в основной гидросистеме от которой работает привод (см. Гониодский В.И. и др. Привод рулевых поверхностей самолетов. - М.: Машиностроение, 1974, стр. 181, рис. 4.26 (а).
Наиболее близким из указанных приводов является электрогидравлический привод с нереверсивным насосом RU 2484314
Главной особенностью двухрежимного электрогидравлического привода является его способность работать как в режиме обычного электрогидравлического привода с дроссельным управлением скоростью поршня гидроцилиндра и питанием от централизованной гидросистемы, так и в режиме автономного электрогидростатического привода с питанием от силовой электросистемы.
Привод в целом можно разделить на четыре функциональные части: магистральную часть, автономную, клапаны переключения режимов работы и общую выходную часть, в которую входит гидроцилиндр с датчиком обратной связи (ДОС), а также антикавитационные и предохранительные клапаны. Магистральная часть привода включает клапаны подключения привода к централизованной гидросистеме, входной фильтр и двухкаскадный электрогидравлический усилитель, состоящий из золотникового гидрораспределителя (ЗГР) и управляющего электрогидравлического усилителя (ЭГУ). Автономная часть привода состоит из электронного блока управления электродвигателем, нерегулируемого нереверсивного насоса, вал которого вращается бесконтактным электродвигателем постоянного тока (БДПТ), гидрокомпенсатора с датчиком контроля его состояния, а также системы клапанов (челночного и предохранительных), обеспечивающих работу автономной части привода. Переключение режимов работы привода осуществляет система клапанов, в которую входят двухпозиционный клапан режима работы с датчиком контроля его состояния, клапан блокировки и отключения ЭГУ и клапан полетной блокировки. Между нерегулируемым нереверсивным насосом и клапаном переключения режимов работы установлен пропорциональный клапан реверса с большой площадью рабочих окон, управляемый линейным электродвигателем. В приводе использован демпфирующий дроссель между полостями гидроцилиндра и двухпозиционный клапан демпфирования с дополнительным толкателем, отключающий этот демпфирующий дроссель при подаче высокого давления либо в торцевую камеру клапана, либо в торцевую камеру его дополнительного толкателя, при этом торцевая камера дополнительного толкателя клапана демпфирования соединена с гидроаккумулятором, с выходным каналом насоса через обратный клапан и с гидрокомпенсатором через электрогидравлический запирающий клапан. В приводе применен электрогидравлический управляющий клапан, соединяющий торцовые камеры клапана переключения и клапана демпфирования с магистралью нагнетания централизованной гидросистемы или с гидрокомпенсатором.
Недостатком известных двухрежимных электрогидравлических приводов является большое количество сложных электрогидравлических и гидравлических устройств, повышающих стоимость двухрежимного электрогидравлического рулевого привода, увеличивающих его массу и габариты, а также снижающих общую его надежность. Так, использование двух электрогидравлических сервоклапанов (клапана реверса и золотникового электрогидравлического усилителя мощности) приводит к необходимости применения в двухрежимном электрогидравлическом приводе клапана переключения активных режимов, к которому подводится обе гидросистемы и выход из строя которого может привести к выходу из строя всего двухрежимного электрогидравлического привода.
Также при отказе централизованной гидросистемы отключается исправный электрогидравлический усилитель и подключается пропорциональный клапан реверса с большой площадью рабочих окон, управляемый линейным электродвигателем, состояние которых на момент включения неизвестно т.к. при работе привода от централизованной гидросистемы они находились в выключенном состоянии и могли перейти в неисправное состояние под действием внешних факторов (вибрации, температуры и т.д
Технический результат предлагаемого технического решения заключается в упрощении конструкции рулевого привода, снижении его массы и габаритов и уменьшении конечной стоимости привода при одновременном повышении его надежности.
Поставленная задача решается тем, что в заявляемом гибридном электрогидравлическом рулевом приводе, состоящем из гидроцилиндра, пропорционального электрогидравлического сервоклапана с непосредственным управлением положением золотника с напроной и сливной гидролиниями, нереверсивного нерегулируемого гидронасоса с управляемым электродвигателем, блока управления электродвигателем, блока управления приводом, гидроаккумулятора, предохранительного клапана, датчика положения штока гидроцилиндра, напорной и сливной гидролиний централизованной гидросмстемы, согласно изобретению в конструкцию привода введен блок переключения линий гидропитания, соединенный с напорной и сливной гидролиниями централизованной гидросистемы, напорной и всасывающей гидролиниями нереверсивного нерегулируемого гидронасоса, напорной и сливной гидролиниями пропорционального электрогидравлического сервоклапана с непосредственным управлением положением золотника, выходы которого соединены с полостями гидроцилиндра.
Согласно изобретению в состав блока переключения линий гидропитания входят два обратных клапана, причем вход первого обратного клапана соединен с напорной гидролинией централизованной гидросистемы, вход второго обратного клапана соединен с напорной гидролинией нереверсивного нерегулируемого гидронасоса, а выходы обоих обратных клапанов соединены с напорной гидролинией пропорционального электрогидравлического сервоклапана с непосредственным управлением положением золотника, а сливная гидролиния сервоклапана соединена с всасывающей гидролинией нереверсивного нерегулируемого гидронасоса и сливной гидролинией централизованной гидросистемы, снабженной предохранительным клапаном.
Согласно изобретению в блок переключения гидропитания введен клапан включения с электрическим управлением, который в зависимости от наличия электрической команды подключает вход первого обратного клапана либо к напорной гидролинии централизованной гидросистемы, либо к ее сливной гидролинии.
Согласно изобретению блок управления приводом является многорежимным: один режим управления используется при энергопитании гибридного привода от централизованной гидросистемы, а другие - при энергопитании гибридного привода от электросистемы.
Согласно изобретению предлагаемый привод отличается от прототипа:
использованием в приводе блока переключения линий гидропитания, соединенного с напорной и сливной гидролиниями централизованной гидросистемы, напорной и всасывающей гидролиниями нереверсивного нерегулируемого гидронасоса, напорной и сливной гидролиниями пропорционального электрогидравлического сервоклапана с непосредственным управлением положением золотника, выходы которого соединены с полостями гидроцилиндра;
использованием в приводе блока переключения линий гидропитания в состав которого входят два обратных клапана, причем вход первого обратного клапана соединен с напорной гидролинией централизованной гидросистемы, вход второго обратного клапана соединен с напорной гидролинией нереверсивного нерегулируемого гидронасоса, а выходы обоих обратных клапанов соединены с напорной гидролинией пропорционального электрогидравлического сервоклапана с непосредственным управлением положением золотника, а сливная гидролиния сервоклапана соединена с всасывающей гидролинией нереверсивного нерегулируемого гидронасоса и сливной гидролинией централизованной гидросистемы, снабженной предохранительным клапаном;
использованием в приводе блока переключения линий гидропитания в состав которого введен клапан включения с электрическим управлением, который в зависимости от наличия электрической команды подключает вход первого обратного клапана указанного блока переключения линий гидропитания либо к напорной гидролинии централизованной гидросистемы, либо к ее сливной гидролинии;
использованием в приводе многорежимного блока управления приводом: один режим управления используется при гидропитании гибридного привода от внешней гидросистемы, а другие - при гидропитании гибридного привода от встроенного нереверсивного нерегулируемого насоса.
Указанные отличия позволяют упростить конструкцию двухрежимного электрогидравлического привода с уменьшением его конечной стоимости, снизить массу и уменьшить его габариты при одновременном повышении его надежности.
Указанные отличия являются принципиальными и создают новизну предлагаемого решения.
Сущность изобретения поясняется чертежами, где:
на фиг. 1 показана схема прототипа двухрежимного электрогидравлического привода;
на фиг. 2 показана принципиальная схема заявляемого гибридного электрогидравлического рулевого привода.
Гибридный электрогидравлический рулевой привод содержит гидроцилиндр 1, пропорциональный электрогидравлический сервоклапан с непосредственным управлением положением золотника 2 с напроной 3 и сливной 4 гидролиниями, нереверсивный нерегулируемый гидронасос 5 с напорной 6 и всасывающей 7 гидролиниями, управляемый электродвигатель 8, блок управления электродвигателем 9, блок управления приводом 10, гидроаккумулятор 11, предохранительный клапан 12, датчик положения штока гидроцилиндра 13, напорную 14 и сливную 15 гидролинии централизованной гидросмстемы, блок переключения линий гидропитания 16, соединенный с напорной 14 и сливной 15 гидролиниями централизованной гидросистемы, напорной 6 и всасывающей 7 гидролиниями нереверсивного нерегулируемого гидронасоса 5, напорной 3 и сливной 4 гидролиниями пропорционального электрогидравлического сервоклапана с непосредственным управлением положением золотника 2, выходы которого соединены с полостями гидроцилиндра 1. В состав блока переключения линий гидропитания 16 входят два обратных клапан 17 и 18, причем вход первого обратного клапана 17 соединен с напорной гидролинией 14 централизованной гидросистемы, вход второго обратного клапана 18 соединен с напорной гидролинией 6 нереверсивного нерегулируемого гидронасоса 5, а выходы обоих обратных клапанов соединены с напорной гидролинией 3 пропорционального электрогидравлического сервоклапана с непосредственным управлением положением золотника 2, а сливная гидролиния 4 сервоклапана 2 соединена с всасывающей гидролинией 7 нереверсивного нерегулируемого насоса 5 и сливной гидролинией 15 централизованной гидросистемы, снабженной предохранительным клапаном 19. Блок переключения линий гидропитания 16 снабжается клапаном включения 20 с электрическим управлением, который по электрической команде о переходе на резервный автономный режим подключает вход первого обратного клапана 17 блока переключения линий гидропитания к сливной гидролинии 15 централизованной гидросистемы.
Гибридный электрогидравлический рулевой привод работает следующим образом:
Привод может работать в двух режимах энергопитания: основном с энергопитанием от централизованной гидросистемы и в резервном (автономном) с энергопитанием от электросистемы.
При наличии давления в централизованной гидросистеме привод работает в основном (штатном) режиме. Рабочая жидкость под давлением из напорной гидролинии централизованной гидросистемы 14 через один из входов блока переключения линий гидропитания 16 поступает в напорную гидролиниию 3 пропорционального электрогидравлического сервоклапана с непосредственным управлением положением золотника 2. По командам блока управления приводом 10 пропорциональный электрогидравлический сервоклапан 2 распределяет потоки жидкости в полости гидроцилиндра 1. Шток гидроцилиндра 1 перемещается, датчик положения штока гидроцилиндра 13 выдает сигнал для замыкания позиционной обратной связи в блоке управления приводом 10. Скорость и направление перемещения штока гидроцилиндра 1 определяются положением золотника пропорционального электрогидравлического сервоклапана 2 т.е. управление приводом происходит в дроссельном режиме.
При отказе централизованной гидросистемы давление в ее напорной гидролинии 14 падает и привод по электрической команде, поступающей в блок управления приводом 10, переходит на резервный автономный режим работы. Из блока управления приводом 10 команда перехода в автономный режим подается на клапан включения 20 и блок управления электродвигателем 9.
Блок управления электродвигателем 9 по команде запускает электродвигатель 8 и нереверсивный нерегулируемый гидронасос 5 по напорной линии 6 подает рабочую жидкость в блок переключения линий гидропитания 16, через который она поступает в напорную гидролинию 3 пропорционального электрогидравлического сервоклапана с непосредственным управлением положением золотника 2, выходы которого соединены с полостями гидроцилиндра.
Блок управления приводом по команде переходит на режим работы, который обеспечивает резервный автономного режима работы привода. В этом режиме блок управления приводом выдает управляющие сигналы на пропорциональный электрогидравлический сервоклапан, задавая положение его золотника, и на блок управления электродвигателем, задавая частоту вращения электродвигателя и, соответственно, подачу нерегулируемого гидронасоса. На малых сигналах управление осуществляется в основном за счет изменения положения золотника при постоянных небольших оборотах насоса (дроссельное регулирование), на больших сигналах управление осуществляется в основном за счет изменения оборотов насоса, при больших открытиях золотника (объемное регулирование), с плавным переходом от одного режима к другому, чем создаются оптимальные условия работы для управляемого электродвигателя и минимизируется потребление электроэнергии от электросистемы за счет снижения гидравлических потерь. Настройки блока управления приводом позволяют также осуществлять и иные режимы управления приводом в резервном автономном режиме его работы.
Если при отказе централизованной гидросистемы давление в ее напорной линии 14 может падать медленно или нестабильно, блок переключения линий гидропитания 16 снабжается клапаном включения 20 с электрическим управлением, который по электрической команде о переходе на резервный автономный режим подключает вход обратного клапана 17 блока переключения гидропитания к сливной гидролинии 15 централизованной гидросистемы, чем обеспечивается надежное закрытие обратного клапана 17.

Claims (5)

1. Гибридный электрогидравлический рулевой привод, состоящий из гидроцилиндра, пропорционального электрогидравлического сервоклапана с непосредственным управлением положением золотника с напорной и сливной гидролиниями, нереверсивного нерегулируемого гидронасоса с напорной и всасывающей гидролиниями, управляемого электродвигателя, блока управления электродвигателем, блока управления приводом, гидроаккумулятора, предохранительного клапана, датчика положения штока гидроцилиндра, напорной и сливной гидролиний централизованной гидросистемы, отличающийся тем, что в конструкцию привода введен блок переключения линий гидропитания, соединенный с напорной и сливной гидролиниями централизованной гидросистемы, напорной и всасывающей гидролиниями нереверсивного нерегулируемого насоса, напорной и сливной гадролиниями пропорционального электрогидравлического сервоклапана с непосредственным управлением положением золотника, выходы которого соединены с полостями гидроцилиндра.
2. Привод по п. 1, отличающийся тем, что в состав блока переключения линий гидропитания входят два обратных клапана, причем вход первого обратного клапана соединен с напорной гидролинией централизованной гидросистемы, вход второго обратного клапана соединен с напорной гидролинией нереверсивного нерегулируемого гидронасоса, а выходы обоих обратных клапанов соединены с напорной гидролинией пропорционального электрогидравлического сервоклапана с непосредственным управлением положением золотника, а сливная гидролиния сервоклапана соединена с всасывающей гидролинией нереверсивного нерегулируемого гидронасоса и сливной гидролинией
централизованной гидросистемы, снабженной предохранительным клапаном.
3. Привод по п. 2, отличающийся тем, что в блок переключения гидропитания введен клапан включения с электрическим управлением, который в зависимости от наличия электрической команды на его входе подключает вход первого обратного клапана либо к напорной гидролинии централизованной гидросистемы, либо к ее сливной гидролинии.
4. Привод по п. 1, отличающийся тем, что блок управления приводом является многорежимным: один режим управления используется при энергопитании гибридного привода от централизованной гидросистемы, а другие - при энергопитании гибридного привода от электросистемы.
RU2016129716A 2016-07-20 2016-07-20 Гибридный электрогидравлический рулевой привод RU2704931C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016129716A RU2704931C2 (ru) 2016-07-20 2016-07-20 Гибридный электрогидравлический рулевой привод

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016129716A RU2704931C2 (ru) 2016-07-20 2016-07-20 Гибридный электрогидравлический рулевой привод

Publications (3)

Publication Number Publication Date
RU2016129716A RU2016129716A (ru) 2018-01-29
RU2016129716A3 RU2016129716A3 (ru) 2019-02-01
RU2704931C2 true RU2704931C2 (ru) 2019-10-31

Family

ID=61173929

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016129716A RU2704931C2 (ru) 2016-07-20 2016-07-20 Гибридный электрогидравлический рулевой привод

Country Status (1)

Country Link
RU (1) RU2704931C2 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5025199A (en) * 1988-08-23 1991-06-18 Teijin Seiki Company Limited Servo control apparatus
US5181380A (en) * 1990-09-19 1993-01-26 Aerospatial Societe Nationale Industrielle Hydrostatic operating mode hydraulic actuator preferably for backup operation, and flight control system comprising it
RU2484314C2 (ru) * 2011-04-05 2013-06-10 Открытое акционерное общество "Павловский машиностроительный завод ВОСХОД" - ОАО "ПМЗ ВОСХОД" Двухрежимный электрогидравлический привод с нереверсивным насосом
RU2483977C2 (ru) * 2011-04-05 2013-06-10 Открытое акционерное общество "Павловский машиностроительный завод ВОСХОД" (ОАО "ПМЗ ВОСХОД") Двухрежимный электрогидравлический привод с дополнительными режимами кольцевания и демпфирования выходного звена
RU2483978C2 (ru) * 2011-04-05 2013-06-10 Открытое акционерное общество "Павловский машиностроительный завод ВОСХОД" (ОАО "ПМЗ ВОСХОД") Автономный электрогидравлический привод с комбинированным регулированием скорости выходного звена и клапаном демпфирования

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5025199A (en) * 1988-08-23 1991-06-18 Teijin Seiki Company Limited Servo control apparatus
US5181380A (en) * 1990-09-19 1993-01-26 Aerospatial Societe Nationale Industrielle Hydrostatic operating mode hydraulic actuator preferably for backup operation, and flight control system comprising it
RU2484314C2 (ru) * 2011-04-05 2013-06-10 Открытое акционерное общество "Павловский машиностроительный завод ВОСХОД" - ОАО "ПМЗ ВОСХОД" Двухрежимный электрогидравлический привод с нереверсивным насосом
RU2483977C2 (ru) * 2011-04-05 2013-06-10 Открытое акционерное общество "Павловский машиностроительный завод ВОСХОД" (ОАО "ПМЗ ВОСХОД") Двухрежимный электрогидравлический привод с дополнительными режимами кольцевания и демпфирования выходного звена
RU2483978C2 (ru) * 2011-04-05 2013-06-10 Открытое акционерное общество "Павловский машиностроительный завод ВОСХОД" (ОАО "ПМЗ ВОСХОД") Автономный электрогидравлический привод с комбинированным регулированием скорости выходного звена и клапаном демпфирования

Also Published As

Publication number Publication date
RU2016129716A3 (ru) 2019-02-01
RU2016129716A (ru) 2018-01-29

Similar Documents

Publication Publication Date Title
US7600715B2 (en) Local backup hydraulic actuator for aircraft control systems
US8020379B2 (en) Double redundancy electro hydrostatic actuator system
WO2014017475A1 (ja) 液圧駆動回路
US5181380A (en) Hydrostatic operating mode hydraulic actuator preferably for backup operation, and flight control system comprising it
EP3529130B1 (en) Electro-hydraulic control system with fail-safe pilot valves
KR20110031905A (ko) 하이브리드 건설기계의 제어장치
CN108412847B (zh) 一种带负载补偿高位置精度的电静液执行器及控制方法
US8596575B2 (en) Aircraft actuator
CN111810468A (zh) 汽轮机油动机泵控液压系统、装置及控制方法
KR102393340B1 (ko) 조타 제어 시스템
RU181538U1 (ru) Гибридный электрогидравлический рулевой привод
RU2704931C2 (ru) Гибридный электрогидравлический рулевой привод
KR20170018368A (ko) 서보모터에 의한 작동유 유량제어 기능을 구비한 유압조타시스템
WO2014061776A1 (ja) 舵取機及びこれを備えた船舶
RU2484314C2 (ru) Двухрежимный электрогидравлический привод с нереверсивным насосом
JP4152609B2 (ja) 舵面駆動装置及び舵面駆動システム
RU2483977C2 (ru) Двухрежимный электрогидравлический привод с дополнительными режимами кольцевания и демпфирования выходного звена
JP5320143B2 (ja) 舵取機、その制御方法及び舵取機を備えた船舶
JP2007239894A (ja) エネルギー変換装置
JPH09328098A (ja) 舵面駆動用アクチュエータの制御回路
JP2004100727A (ja) サーボアクチュエータの制御回路
CN212360348U (zh) 汽轮机油动机泵控液压系统和装置
JP4252583B2 (ja) 翼駆動装置
CN219969989U (zh) 一种水陆两栖飞机的水舵控制系统
KR20230130995A (ko) 이중화 전기 정유압 엑츄에이터

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20190402