RU2704141C1 - Способ измерения нагрузок на рельсы при воздействии колес железнодорожного подвижного состава - Google Patents

Способ измерения нагрузок на рельсы при воздействии колес железнодорожного подвижного состава Download PDF

Info

Publication number
RU2704141C1
RU2704141C1 RU2019100110A RU2019100110A RU2704141C1 RU 2704141 C1 RU2704141 C1 RU 2704141C1 RU 2019100110 A RU2019100110 A RU 2019100110A RU 2019100110 A RU2019100110 A RU 2019100110A RU 2704141 C1 RU2704141 C1 RU 2704141C1
Authority
RU
Russia
Prior art keywords
rail
calibration
measuring
deflection
vertical
Prior art date
Application number
RU2019100110A
Other languages
English (en)
Inventor
Сергей Алексеевич Бехер
Татьяна Викторовна Сыч
Андрей Олегович Коломеец
Алексей Леонидович Бобров
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный университет путей сообщения" (СГУПС)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный университет путей сообщения" (СГУПС) filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный университет путей сообщения" (СГУПС)
Priority to RU2019100110A priority Critical patent/RU2704141C1/ru
Application granted granted Critical
Publication of RU2704141C1 publication Critical patent/RU2704141C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61KAUXILIARY EQUIPMENT SPECIALLY ADAPTED FOR RAILWAYS, NOT OTHERWISE PROVIDED FOR
    • B61K9/00Railway vehicle profile gauges; Detecting or indicating overheating of components; Apparatus on locomotives or cars to indicate bad track sections; General design of track recording vehicles
    • B61K9/08Measuring installations for surveying permanent way
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/16Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

Изобретение относится к области метрологии и предназначено для определения нагрузок (вертикальных и боковых сил), воздействующих на поверхность катания и боковую грань головки рельса при его контактном взаимодействии с колесом подвижного состав. Сущность: осуществляют установку в четырех зонах шейки рельса тензорезисторов и подключение их к входам измерительных каналов тензометрической аппаратуры, позволяющей регистрировать отклик в измерительных каналах на приращение входных факторов, градуировку измерительных каналов по определенному плану эксперимента с вычислением градуировочных коэффициентов. При градуировке дополнительно измеряют прогиб рельса, характеризующий изменение жесткости подрельсового основания, градуировку выполняют по четырехфакторному плану эксперимента комбинацией четырех факторов: вертикальной силы, изгибающего момента, боковой силы и прогиба рельса, а результат измерения компонентов нагрузки определяют, как произведение градуировочной квадратной матрицы 4×4 на приращения сигналов в тензометрических каналах, возникающих при контактном взаимодействии рельса с колесом. Технический результат: исключение влияния на результаты измерений вертикальных и боковых сил неопределенности жесткости подрельсового основания, тем самым повышая точность измерений. 6 табл., 3 ил.

Description

Изобретение относится к области метрологии и предназначено для определения нагрузок (вертикальных и боковых сил), воздействующих на поверхность катания и боковую грань головки рельса при его контактном взаимодействии с колесом подвижного состава.
Известен способ (см. Вериго М.Ф., Коган А.Я. Взаимодействие пути и подвижного состава. / Под ред. М.Ф. Вериго. - М.: Транспорт, 1986. с. 490), заключающийся в том, что располагают пару тензорезисторов симметрично с двух сторон в месте с минимальной толщиной шейки рельса, включают тензорезисторы в схему моста Уинстона таким образом, чтобы ток в диагонали моста был пропорционален абсолютному значению суммы их деформаций, по которым определяют вертикальную силу от колеса на рельс, дополнительно устанавливают две пары тензорезисторов, которые располагают сверху и снизу в местах с одинаковой толщиной шейки, тензорезисторы включают в мостовую схему Уинстона таким образом, чтобы ток в диагонали моста был пропорционален разности изгибающих моментов, затем измеряют вертикальные и боковые силы, воздействующие на рельс, используя их численные зависимости от суммы деформаций и разностей изгибающих моментов, причем необходимые численные зависимости получают, нагружая рельс вертикальными и боковыми силами разного значения и для каждого значения сил фиксируя значения суммы деформаций и разности изгибающих моментов (принят за аналог).
Недостатком данного технического решения является зависимость точности измерения вертикальной и боковой сил от качества наклейки тензорезисторов. Поэтому при изменении внешних условий или обнаружении погрешностей установки тензорезисторов на рельс требуется их демонтаж и повторная установка, что приводит к дополнительным затратам материальных и временных ресурсов, а также отсутствует возможность тарировки тензометрической схемы для устранения погрешности расположения тензорезисторов на рельсе, компенсации изгиба рельса в вертикальной плоскости, вызванного изменением жесткости подрельсового основания.
Известен способ (см. патент РФ № 2623665 МПК G01L 5/16, опубл. 28.06.2017) измерения трех компонентов нагрузки в сечении рельса при контактном, взаимодействии с колесом железнодорожного подвижного состава, включающий электрическое соединение наклеенных в зонах шейки рельса тензорезисторов в измерительные мосты, подключение мостов к входу измерительных каналов тензометрической аппаратуры, позволяющей регистрировать отклик в измерительных каналах на приращение входных факторов, градуировку измерительных каналов по определенному плану эксперимента с вычислением градуировочных коэффициентов и систематических погрешностей, визуальное представление результатов измерения, причем тензорезисторы, наклеенные в четырех зонах шейки рельса, соединяют в три измерительных моста, каждый мост подключают к отдельному измерительному каналу тензометрической аппаратуры, градуировку выполняют по трехфакторному плану эксперимента комбинациями входных факторов - вертикальной силы, боковой силы и опрокидывающего момента, градуировочные коэффициенты определяют умножением матрицы плана эксперимента на матрицу правую обобщенную обратную к матрице отклика, систематические погрешности измерений определяют как разницу между приложенными и восстановленными по отклику значениями факторов плана, результаты измерения представляют в виде сочетания восстановленного по отклику значения входного фактора и максимального значения систематической погрешности, полученной при градуировке (принят за прототип).
Недостатком способа, принятого за прототип, является невысокая точность измерений из-за нелинейности подрельсового основания, когда жесткость зависит от значения вертикальной силы, т.е. возникает необходимость при выполнении измерений обеспечить неизменность жесткости подрельсового основания, равной жесткости реализованной при градуировке. В градуировочных коэффициентах не учитывается поперечный изгибающий момент, вызывающий прогиб рельса в вертикальной плоскости.
Техническая задача изобретения - повышение точности измерений за счет корректировки результатов с учетом изменения жесткости подрельсового основания и градуировки измерительных каналов вертикальной силой с различной жесткостью подрельсового основания.
Поставленная задача решается за счет того, что в четырех зонах шейки рельса устанавливают тензорезисторы и подключают их ко входам измерительных каналов тензометрической аппаратуры, проводят градуировку измерительных каналов по определенному плану эксперимента с вычислением градуировочных коэффициентов, причем при градуировке дополнительно измеряют прогиб рельса, по которому вводят поправки на изменение жесткости подрельсового основания, градуировку выполняют по четырехфакторному плану эксперимента комбинацией четырех факторов: вертикальной силы, эксцентриситета приложения вертикальной силы, боковой силы и прогиба рельса, а результат измерения компонентов нагрузки определяют, как произведение градуировочной квадратной матрицы 4×4 на приращения сигналов в тензометрических каналах, возникающих при контактном взаимодействии рельса с колесом.
На фиг. 1 изображены рельс и его поперечное сечение с наклеенными тензорезисторами и воздействующие факторы, на фиг. 2 - схема приложения нагрузки на рельс без прогиба в вертикальной плоскости, фиг. 3 - схема приложения нагрузки с прогибом в вертикальной плоскости.
Предложенный способ был реализован следующим образом. На рельс 5 типа Р65 в сечении А-А в четырех зонах шейки рельса на высоте от подошвы 45 мм и 129 мм с двух сторон шейки рельса устанавливали тензорезисторы 1, 2, 3, 4 типа ПКС-12-200, зарегистрированного в Государственном реестре средств измерений № 57245-14. Тензорезисторы подключали к входам измерительных каналов быстродействующей тензометрической системе «Динамика-3» (зарегистрирована в Государственном реестре средств измерений за № 66973-17). Градуировку проводили по четырехфакторному плану эксперимента комбинацией четырех факторов: вертикальной силы, эксцентриситета приложения вертикальной силы, боковой силы и прогиба рельса. Для измерения прогиба рельса в вертикальной плоскости на шейку рельса наклеивали ориентированную вертикально линейку 6 с диапазоном измерений от 0 до 150 мм и ценой деления, равной 0,5 мм. На расстоянии 2000 мм от рельса располагали лазерный уровень 7, луч 8 которого направляли на отметку линейки 0 мм. Прогиб рельса р в вертикальной плоскости определяли по смещению лазерного луча относительно отметки 0 мм линейки. На рельс последовательно воздействовали четырьмя факторами:
I-ый фактор - вертикальная сила Fν=100 кН без эксцентриситета с прогибом р;
II-ой фактор - изгибающий момент, вызванный эксцентриситетом вертикальной силы Fν=100 кН, эксцентриситет е=10 мм;
III-ий фактор - вертикальная сила Fν=100 кН и боковая сила Fb,=25 кН;
IV-ый фактор - вертикальная сила Fν=100 кН без эксцентриситета и без прогиба рельсошпальной решетки в вертикальной плоскости. Для исключения прогиба рельсошпальной решетки под рельс на расстоянии 0,5 м от точки приложения силы подкладывались упоры, препятствующие смещению рельса в вертикальной плоскости.
При воздействии каждого фактора определяли приращения сигналов в тензометрических каналах, которые представлены в виде матрицы приращений размерностью 4×4:
Figure 00000001
где
i - номер тензометрического канала, номер строки, j - номер фактора, номер столбца.
Значения приращений a i,j сигналов в тензометрических каналах, полученные экспериментально при воздействии I-IV факторов в процессе градуировки, приведены в таблице 1.
Измеренное экспериментальное значение прогиба рельса при воздействии фактором I, II, III составило р=4 мм. При воздействии фактора IV значение прогиба не превышало 0,5 мм.
Figure 00000002
Используя данные о приращениях в тензометрических каналах при градуировке (таблица 1), определяли градуировочные коэффициенты. Для вертикальной силы градуировочные коэффициенты определили делением приращений сигналов в тензометрических каналах при воздействии фактора I на значение вертикальной силы Fν по формуле:
Figure 00000003
где a i,1 - i-ый элемент 1-го столбца матрицы приращений (см. табл. 1).
Для вертикальной силы с эксцентриситетом градуировочные коэффициенты определили, вычитая из приращений сигналов при воздействии фактора III приращения сигналов при воздействии фактора II и деля полученную разность на изгибающий момент, равный произведению вертикальной силы на эксцентриситет Fν⋅е по формуле:
Figure 00000004
где
a i,2 - i-ый элемент 2-го столбца матрицы приращений (см. табл. 1).
Градуировочные коэффициенты для боковой силы определили, вычитая из приращений сигналов при воздействии фактора III приращения сигналов при воздействии фактора I и деля разность на боковую силу Fb по формуле:
Figure 00000005
где
a i,3 - i-ый элемент 3-го столбца матрицы приращений (см. табл. 1).
Градуировочные коэффициенты для прогиба рельса определили, вычитая из приращений сигналов при воздействии фактора IV приращения сигналов при воздействии фактора I и деля разность на экспериментальное значение прогиба рельса р по формуле:
Figure 00000006
где
а i,4 - i-ый элемент 4-го столбца матрицы приращений (таблица 1).
Результаты определения градуировочных коэффициентов в виде матрицы приведены в табл. 2:
Figure 00000007
Figure 00000008
Используя полученные градуировочные коэффициенты bi,j (см. табл. 2), определили градуировочную матрицу по правилам вычисления обратной матрицы:
Figure 00000009
Рельс нагружали комбинацией нескольких факторов, имитирующих воздействие колеса железнодорожного подвижного состава. Действительные значения воздействующих факторов приведены в табл. 3.
Figure 00000010
Определяли значения приращений сигналов в каналах тензометрической системы (см. табл. 4)
Figure 00000011
Умножали полученные для каждого испытания приращения сигналов на обратную матрицу ci,j и определяли результат измерений каждого из воздействующих факторов. Результаты измерений приведены в табл. 5.
Figure 00000012
На основании действительных значений факторов (см. табл. 3) и результатов их измерений (см. табл. 5) определили относительные погрешности измерения вертикальной и боковой сил по формуле:
Figure 00000013
где
Figure 00000014
- действительное значение силы, кН; Fr - результат измерения силы, кН.
Результаты оценки относительных погрешностей вертикальной и боковой сил приведены в табл. 6.
Figure 00000015
Как видно из табл. 6, заявляемый способ обеспечивает относительную погрешность измерения вертикальной силы не более 3%, а боковой силы - 2% в широком диапазоне жесткости подрельсового основания от 107 до 1012 Н/м3, что соответствует изменению прогиба рельса в вертикальной плоскости до 8 мм.
Заявляемый способ, по сравнению с прототипом, позволяет исключить влияние на результаты измерений вертикальных и боковых сил неопределенности жесткости подрельсового основания. При этом снижаются затраты на проведение измерений, за счет отсутствия необходимости изменения конструкции пути и проведения мероприятий по поддержанию заданной жесткости подрельсового основания.

Claims (1)

  1. Способ измерения нагрузок на рельсы при воздействии колес железнодорожного подвижного состава, включающий установку в четырех зонах шейки рельса тензорезисторов и подключение их к входам измерительных каналов тензометрической аппаратуры, позволяющей регистрировать отклик в измерительных каналах на приращение входных факторов, градуировку измерительных каналов по определенному плану эксперимента с вычислением градуировочных коэффициентов, отличающийся тем, что при градуировке дополнительно измеряют прогиб рельса, характеризующий изменение жесткости подрельсового основания, градуировку выполняют по четырехфакторному плану эксперимента комбинацией четырех факторов: вертикальной силы, изгибающего момента, боковой силы и прогиба рельса, а результат измерения компонентов нагрузки определяют, как произведение градуировочной квадратной матрицы 4×4 на приращения сигналов в тензометрических каналах, возникающих при контактном взаимодействии рельса с колесом.
RU2019100110A 2019-01-09 2019-01-09 Способ измерения нагрузок на рельсы при воздействии колес железнодорожного подвижного состава RU2704141C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019100110A RU2704141C1 (ru) 2019-01-09 2019-01-09 Способ измерения нагрузок на рельсы при воздействии колес железнодорожного подвижного состава

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019100110A RU2704141C1 (ru) 2019-01-09 2019-01-09 Способ измерения нагрузок на рельсы при воздействии колес железнодорожного подвижного состава

Publications (1)

Publication Number Publication Date
RU2704141C1 true RU2704141C1 (ru) 2019-10-24

Family

ID=68318570

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019100110A RU2704141C1 (ru) 2019-01-09 2019-01-09 Способ измерения нагрузок на рельсы при воздействии колес железнодорожного подвижного состава

Country Status (1)

Country Link
RU (1) RU2704141C1 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1794739A1 (en) * 1990-01-22 1993-02-15 Le I Inzhenerov Zheleznodorozh Device for determining pressure of wheel on rail
RU2623665C1 (ru) * 2016-05-20 2017-06-28 Открытое Акционерное Общество "Российские Железные Дороги" Способ измерения трёх компонентов нагрузки в сечении рельса при контактном взаимодействии с колесом железнодорожного подвижного состава
RU2659365C1 (ru) * 2017-04-11 2018-06-29 Акционерное общество "Научно-исследовательский институт железнодорожного транспорта" Способ оценки напряженно-деформированного состояния пути
EP3382361A1 (en) * 2017-03-31 2018-10-03 Analisis y Simulacion, S.L. Measurement method of forces on rails and system that executes said method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1794739A1 (en) * 1990-01-22 1993-02-15 Le I Inzhenerov Zheleznodorozh Device for determining pressure of wheel on rail
RU2623665C1 (ru) * 2016-05-20 2017-06-28 Открытое Акционерное Общество "Российские Железные Дороги" Способ измерения трёх компонентов нагрузки в сечении рельса при контактном взаимодействии с колесом железнодорожного подвижного состава
EP3382361A1 (en) * 2017-03-31 2018-10-03 Analisis y Simulacion, S.L. Measurement method of forces on rails and system that executes said method
RU2659365C1 (ru) * 2017-04-11 2018-06-29 Акционерное общество "Научно-исследовательский институт железнодорожного транспорта" Способ оценки напряженно-деформированного состояния пути

Similar Documents

Publication Publication Date Title
EP0295067B1 (en) Digital load shift compensation
US3734216A (en) Weighing device
US2597751A (en) Bending beam load weighing device
WO2021036751A1 (zh) 支座反力影响线曲率的连续梁损伤识别方法
US20100292953A1 (en) Method for ascertaining the pressure and the profile depth in a vehicle tire
PT2064532E (pt) Sistema para determinação da pressão num pneu de veículo e/ou da velocidade do veículo
JP7400566B2 (ja) 計測方法、計測装置、計測システム及び計測プログラム
KR101041332B1 (ko) 변형률 측정에 의한 구조물의 변위측정방법 및 이를 이용한변위측정장치
CN111964927B (zh) 轮轨力轨旁监测方法及系统
CN110502855B (zh) 支座反力影响线曲率的等截面连续梁损伤识别方法
US11713993B2 (en) Bridge displacement measurement method
Carey et al. Direct field measurement of the dynamic amplification in a bridge
CA2347755C (en) Track scales
RU2704141C1 (ru) Способ измерения нагрузок на рельсы при воздействии колес железнодорожного подвижного состава
JP7447586B2 (ja) 計測方法、計測装置、計測システム及び計測プログラム
CN110608840B (zh) 踏面制动式测力构架的制动力系测试结构及其制作方法
CA3002593A1 (en) Weight measuring device and measuring method
RU155518U1 (ru) Рельсовые весы для взвешивания подвижных железнодорожных объектов в движении
Boronenko et al. Develop a new approach measuring the wheel/rail interaction loads
RU2720188C1 (ru) Способ измерения боковых сил, действующих от колеса на рельс, и устройство для его осуществления
RU2623665C1 (ru) Способ измерения трёх компонентов нагрузки в сечении рельса при контактном взаимодействии с колесом железнодорожного подвижного состава
Bednarz III et al. Identifying the magnitude and location of a load on a slender beam using a strain gage based force transducer
Sych et al. Methods of determination of forces in the “wheel-rail” system
SU1794740A1 (en) Device for measuring pressure of wheel on rail
Boronenko et al. New Approach Measuring the Wheel/Rail Interaction Loads