RU2704000C1 - Применение спиртов в качестве добавки к катализатору Граббса для получения смешанного катализатора процесса полимеризации композиций на основе дициклопентадиена - Google Patents

Применение спиртов в качестве добавки к катализатору Граббса для получения смешанного катализатора процесса полимеризации композиций на основе дициклопентадиена Download PDF

Info

Publication number
RU2704000C1
RU2704000C1 RU2018137932A RU2018137932A RU2704000C1 RU 2704000 C1 RU2704000 C1 RU 2704000C1 RU 2018137932 A RU2018137932 A RU 2018137932A RU 2018137932 A RU2018137932 A RU 2018137932A RU 2704000 C1 RU2704000 C1 RU 2704000C1
Authority
RU
Russia
Prior art keywords
catalyst
polymerization
grubbs
alcohol
alcohols
Prior art date
Application number
RU2018137932A
Other languages
English (en)
Inventor
Гасан Гусейн Оглы Гусейнов
Original Assignee
Гасан Гусейн Оглы Гусейнов
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Гасан Гусейн Оглы Гусейнов filed Critical Гасан Гусейн Оглы Гусейнов
Priority to RU2018137932A priority Critical patent/RU2704000C1/ru
Application granted granted Critical
Publication of RU2704000C1 publication Critical patent/RU2704000C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C33/00Unsaturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C33/18Monohydroxylic alcohols containing only six-membered aromatic rings as cyclic part
    • C07C33/20Monohydroxylic alcohols containing only six-membered aromatic rings as cyclic part monocyclic
    • C07C33/22Benzylalcohol; phenethyl alcohol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F32/00Homopolymers and copolymers of cyclic compounds having no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system
    • C08F32/08Homopolymers and copolymers of cyclic compounds having no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system having two condensed rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/72Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from metals not provided for in group C08F4/44
    • C08F4/80Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from metals not provided for in group C08F4/44 selected from iron group metals or platinum group metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • C08G61/04Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms
    • C08G61/06Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds
    • C08G61/08Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds of carbocyclic compounds containing one or more carbon-to-carbon double bonds in the ring

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

Настоящее изобретение относится к применению спиртов, выбранных из группы: фенилэтиловый спирт, бензиловый спирт, в качестве компонентов смешанного катализатора процесса полимеризации полимерной композиции дициклопентадиена на основе рутениевого комплекса для получения полидициклопентадиена, в количестве 1000 г спирта на 200 мг рутениевого катализатора Граббса. Предлагаемое изобретение позволяет ускорить протекание процесса полимеризации композиции. 3 табл., 5 пр.

Description

Область техники, к которой относится изобретение
Изобретение относится к металлорганической химии и химической промышленности, и может применяться в области катализа, химической промышленности, органического синтеза и металлорганической химии.
В частности, изобретение предназначено для получения нового смешанного катализатора путем модификации in situ комплексов переходных металлов восьмой группы, которые используются в качестве катализаторов полимеризации циклических олефинов, в частности дициклопентадиена (ДЦПД). Катализатор Граббса представляет собой комплексное соединение рутения общей формулы (1), имеющее в качестве лигандов 1,3-димезитилимидазолидинилиден, два атома хлора, замещенный бензилиден и спиртовый лиганд.
Figure 00000001
Способ получения смешанного катализатора заключается в том, что классический катализатор Граббса перед добавлением к мономерной композиции растворяют в спиртах из группы: 2-фенилэтиловый спирт, бензиловый спирт. Смешанный катализатор получают и применяют in situ, без выделения и очистки, при этом решаются задачи ускорения процесса Граббса, увеличения устойчивости приготовляемых растворов катализатора по сравнению с использованием классического катализатора Граббса, расширения арсенала катализаторов метатезисной полимеризации олефинов.
Уровень развития области техники
Известны промоторы процесса Граббса WO2009142535, RU №№ 2597602, 2409420. Промоторы, или активаторы – это вещества, добавление которых в небольших количествах к катализаторам увеличивает их активность, селективность или стабильность. Если вещество-активатор добавляют к катализатору в больших количествах, то такой катализатор называют смешанным.
Не существует четко закрепленной в количественном отношении границы между промоторами и смешанными катализаторами, поэтому предлагаемые добавки из группы: 2-фенилэтиловый спирт, бензиловый спирт, можно относить в равной мере, как к промоторам, так и компонентам смешанного катализатора. Поскольку спирты в данной заявке используются как растворители и находятся в избытке по отношению к рутениевому комплексу, изобретение целесообразно отнести к смешанным катализаторам, в которых проявляется промоторное действие определенных спиртов.
Существует ряд промоторов полимеризации, например: металлические соли карбоновых кислот, 1,3-дикарбонильные соединения. Примерами 1,3-дикарбонильных соединений являются ацетилацетон, бензоилацетон и дибензоилметан, и ацетоацетаты, а также производные кетокислот, такие как диэтилацетоацетамид, диметилацетоацетамид, дипропилацетоацетамид, дибутилацетоацетамид, метилацетоацетат, этилацетоацетат, пропилацетоацетат и бутилацетоацетат. Примерами подходящих для использования металлических солей карбоновых кислот являются 2-этилгексаноаты, октаноаты, нонаноаты, гептаноаты, неодеканоаты и нафтенаты аммония, щелочных металлов и щелочноземельных металлов. Соли могут быть добавлены к раствору ускорителя или смоле как таковые или они могут быть получены «по месту». Например, 2-этилгексаноаты щелочных металлов могут быть получены «in situ» в растворе ускорителя, после добавления гидроксида щелочного металла и 2-этилгексановой кислоты к раствору. (RU № 2597602).
Известен рутениевый катализатор метатезисной полимеризации дициклопентадиена (2), представляющий собой комплексное соединение рутения, имеющее в качестве лигандов 1,3-димезитилимидазолидинилиден, два атома хлора и замещенный бензилиден, отличающийся тем, что заместителем в бензилиденовом лиганде является аминозамещенная метильная группа, где в качестве амина выступает ди(гидроксиалкил)амино-группы, а также пиперидин (RU № 2409420, прототип).
Figure 00000002
Еще одним прототипом является катализатор Ховейды-Граббса (3), получаемый из классического катализатора Граббса (4) реакцией с производным стирола, содержащим эфирную группу (Garber, S. B.; Kingsbury, J. S.; Gray, B. L.; Hoveyda, A. H. (2000). Efficient and Recyclable Monomeric and Dendritic Ru-Based Metathesis Catalysts. J. Am. Chem. Soc. 122 (34): 8168–8179) и (Vougioukalakis, G. C.; Grubbs, R. H. (2010). Ruthenium-Based Heterocyclic Carbene-Coordinated Olefin Metathesis Catalysts. Chem. Rev. 110 (3): 1746–1787).
Figure 00000003
Катализатор Ховейды-Граббса (3) отличается от смешанного катализатора (1) следующими признаками: а) его необходимо синтезировать из классического катализатора Граббса, а не приготовлять из того же исходного in situ, как катализатор (1); б) лигандом у катализатора Ховейды-Граббса выступает фенольный, а не спиртовый кислород.
Структура смешанного катализатора (1) предложена на основании метода синтеза катализатора Ховейды-Граббса. Так, смешанный катализатор (1а) может получаться при растворении катализатора Граббса (4) в бензиловом спирте по реакции:
Figure 00000004
Смешанный катализатор (1а) может получаться при растворении катализатора Граббса (4) в 2-фенилэтиловом спирте по реакции:
Figure 00000005
Основные понятия
Спирты – класс органических соединений, содержащих одну или несколько группировок С–ОН, при этом гидроксильная группа ОН связана с алифатическим атомом углерода.
Процесс Граббса – метатезис олефинов с помощью катализаторов Граббса.
Катализаторы Граббса – представляют собой ряд комплексов переходных металлов, используемых для каталитического метатезиса олефинов.
Олефины – углеводородные молекулы, содержащие в углеродном скелете двойную связь.
Метатезис олефинов – химическая реакция, в процессе которой при двойных связях алкенов, участвующих в реакции, происходит перераспределение заместителей.
Метатезисная полимеризация дициклопентадиена – дициклопентадиен с помощью катализаторов Граббса полимеризуется до полидициклопентадиена.
Промотор – вещество, добавляемое к катализатору в небольших количествах с целью улучшения его свойств, таких как активность, селективность или стабильность.
Техническая проблема, разрешаемая в соответствии с настоящим изобретением – создание смешанного катализатора, пригодного для ускорения в процессе Граббса полимеризации композиции, используемой при изготовлении технологичных, термо- и химически стойких изделий, расширение арсенала катализаторов Граббса для использования при полимеризации.
Технический результат, позволяющий решить поставленную проблему, заключается в ускорении протекания процесса Граббса, полимеризации композиции, используемой при изготовлении технологичных, долговечных и надежных конструктивных элементов при эксплуатации, хранении и транспортировании, преимущественно за счет обеспечения высокой термо- и химической стойкости: рабочая температура до 120°С, стойкость до 99,9% к различным кислотам, к 50% серной кислоте, низкое влагопоглощение 0,05%, допустимая ударная нагрузка при свободном падении груза до 600 кГ, электрическая прочность 10,5 кВт мм, удельное поверхностное сопротивление 3х1012 ом, а также упрощение хранения, технологии, экологичности его применения и снижение себестоимости.
Сущность изобретения
Сущность изобретения состоит в применении спиртов в качестве компонентов смешанного катализатора процесса полимеризации полимерной композиции дициклопентадиена на основе рутениевого комплекса для получения полидициклопентадиена.
Предпочтительно, используется спирт из группы: фенилэтиловый спирт, бензиловый спирт.
Краткое описание использования изобретения
Известно ингибирующее действие фосфинов из ряда трифенилфосфина и трициклогексилфосфина на процесс полимеризации ДЦПД. Так, трифенилфосфин добавляют в мономерную композицию ДЦПД в тех случаях, когда надо замедлить реакцию полимеризации, идущую слишком быстро. Классический катализатор Граббса (4) содержит фосфиновый лиганд. При растворении классического катализатора Граббса в спирте из группы: фенилэтиловый спирт, бензиловый спирт, происходит реакция замещения фосфинового лиганда спиртом из координационной сферы атома рутения. В результате образуется полностью бесфосфиновый, более активный и стабильный в растворе смешанный катализатор (1) метатезиса олефинов.
Катализаторы Граббса растворяются в спиртах в определенном соотношении и используются для метатезисной полимеризации дициклопентадиена. В результате растворения образуется in situ смешанный катализатор и реакция полимеризации начинается при комнатной температуре 18-20°С, в то время как для полимеризации с классическим катализатором Граббса требуется нагревание. Кроме того, смешанный катализатор на основе спиртов дольше сохраняет свои свойства по сравнению с растворами катализатора Граббса в других растворителях.
Технология получения полимера существенно упрощается в связи с тем, что в результате растворения катализатора Граббса в органическом растворителе, преимущественно спирте из группы: фенилэтиловый спирт, бензиловый спирт, перед смешиванием с мономерной композицией на основе ДЦПД, полимеризация начинается при комнатной температуре 18-20°С, с последующим полным отверждением.
Катализаторы Граббса растворяются в спиртах в определенном соотношении, и используются для метатезисной полимеризации дициклопентадиена. Реакция происходит при комнатной температуре 18-20°С. Такие спирты, как фенилэтиловый, бензиловы, при растворении в них катализатора Граббса выступают как компоненты смешанного катализатора и ускоряют процесс полимеризации. Кроме того, растворенный в указанных спиртах катализатор Граббса дольше сохраняет свои свойства по сравнению с использованием других растворителей.
Рутениевые катализаторы показывают низкую чувствительность к воздуху, влаге и незначительным примесям в растворителях. Эти катализаторы могут храниться по несколько недель на воздухе без разложения. Часто реакции с рутениевыми катализаторами типа Граббса идут медленнее, чем с молибденовыми, но их доступность и легкость изготовления делают их наиболее удобными для применения в большинстве случаев, кроме самых сложных.
Примеры реализации изобретения
Пример 1
Берут 50 г ДЦПД, растворенного в бензиловом спирте (8% спирта от массы ДЦПД), добавляют 10 мг смешанного катализатора, полученного растворением катализатора Граббса в бензиловом спирте (200мг/1000г). Перемешивают 30-50 секунд. Полимеризация начинается при комнатной температуре 18-20°С. Время задымления наступает через 25 мин. После остывания получают твердый качественный полимер ПДЦПД.
Пример 2
Берут 50 г ДЦПД, растворенного в 2-фенилэтиловом спирте (9,5% спирта от массы ДЦПД), добавляют 10 мг смешанного катализатора, полученного растворением катализатора Граббса в 2-фенилэтиловом спирте (200мг/1000г). Перемешивают 30-50 секунд. Полимеризация начинается при комнатной температуре 18-20°С. Время задымления наступает через 28 мин. После остывания получают такой же твердый качественный термо- и химически стойкий полимер, как и с бензиловым спиртом.
Пример 3
Берут 200 мг катализатора Граббса и растворяют в 30 г бензилового спирта. Тщательно перемешивают до полного растворения твердой фазы, в результате образуется смешанный катализатор. Плотно закрывают емкость. Каждый день, начиная с самого первого, берут по 3 г данного раствора (в расчете на 200мг/1000г), добавляют в 100 г композиции Рутепол и фиксируют время задымления и полимеризации, а также качество.
Figure 00000006
Получают твердый качественный термо- и химически стойкий полимер.
Пример 4
Готовят 3 раствора – по 20 мг катализатора Граббса, растворенного в 3 г бензилового спирта, и оставляют в плотно закрытых емкостях. Первый раствор оставляют при комнатной температуре (20°С); второй также оставляют в комнатной температуре, но предварительно заполняют емкость азотом. Третий раствор помещают в холодильник (10 оС). Через 6 суток каждый раствор добавляем в 100 г смеси Рутепол и фиксируют время задымления и полимеризации, а также качество.
Figure 00000007
Пример 5
Берут 50 г ДЦПД, растворенного в бензиловом спирте (8% спирта от массы ДЦПД), добавляют 10 мг катализатора, растворенного в одном из веществ из приведенной ниже таблицы. Соотношение катализатора и ДЦПД составляет 200мг/1000г. Перемешивают 30 секунд. Полимеризация начинается при комнатной температуре. Фиксируют прохождение полимеризации до одной и ой же стадии – стадии задымления. Консистенция полученного полимера во всех случаях – твердый, однородный.
Figure 00000008
Применение бензилового и 2-фенилэтилового спиртов в качестве компонентов смешанного катализатора (промоторов) ускоряет полимеризацию двухкомпонентной полимерной композиции в 2-4 раза по сравнению с использованием других веществ для растворения рутениевого комплекса, и обеспечивает изделию из материала Рутепол® надлежащие эксплуатационные показатели (прочность, низкая тепло- и электропроводность, стойкость в агрессивной среде, долговечность, низкая горючесть). В результате использования настоящего изобретения для производства двухслойного листового материала наиболее стойкий (второй) рабочий слой конструкционного элемента может быть изготовлен из термо- и химически стойкого (кислотостойкого) материала с высокими физико-механическими свойствами, стойкого к воздействию агрессивной среды.
Кроме того, изделия можно изготавливать в широкой цветовой гамме.
Использование настоящего изобретения позволяет обеспечить ускорение протекания процесса Граббса, полимеризации композиции, используемой для изготовления технологичных, долговечных и надежных, термо- и химически стойких конструктивных элементов при их эксплуатации, хранении и транспортировании, а также упрощение технологии, экологичность изготовления и снижение себестоимости.

Claims (1)

  1. Применение спиртов в качестве компонентов смешанного катализатора процесса полимеризации полимерной композиции дициклопентадиена на основе рутениевого комплекса для получения полидициклопентадиена, при этом используется спирт из группы: фенилэтиловый спирт, бензиловый спирт в количестве 1000 г спирта на 200 мг рутениевого катализатора Граббса.
RU2018137932A 2018-10-26 2018-10-26 Применение спиртов в качестве добавки к катализатору Граббса для получения смешанного катализатора процесса полимеризации композиций на основе дициклопентадиена RU2704000C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018137932A RU2704000C1 (ru) 2018-10-26 2018-10-26 Применение спиртов в качестве добавки к катализатору Граббса для получения смешанного катализатора процесса полимеризации композиций на основе дициклопентадиена

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018137932A RU2704000C1 (ru) 2018-10-26 2018-10-26 Применение спиртов в качестве добавки к катализатору Граббса для получения смешанного катализатора процесса полимеризации композиций на основе дициклопентадиена

Publications (1)

Publication Number Publication Date
RU2704000C1 true RU2704000C1 (ru) 2019-10-23

Family

ID=68318283

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018137932A RU2704000C1 (ru) 2018-10-26 2018-10-26 Применение спиртов в качестве добавки к катализатору Граббса для получения смешанного катализатора процесса полимеризации композиций на основе дициклопентадиена

Country Status (1)

Country Link
RU (1) RU2704000C1 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6008306A (en) * 1994-11-17 1999-12-28 Ciba Specialty Chemicals Corporation Thermal metathesis polymerization process and a polymerisable composition
EP1548035A1 (en) * 2002-09-11 2005-06-29 Japan Polypropylene Corporation CATALYST FOR POLYMERIZING a-OLEFIN AND PRODUCTION METHOD OF a-OLEFIN POLYMER USING THE SAME
RU2409420C1 (ru) * 2009-08-21 2011-01-20 ОТКРЫТОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО "СИБУР Холдинг" Рутениевый катализатор метатезисной полимеризации дициклопентадиена и способ его получения
RU2450028C2 (ru) * 2010-06-07 2012-05-10 Открытое акционерное общество "Нижнекамскнефтехим" Способ приготовления двухкомпонентной системы на основе дициклопентадиена

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6008306A (en) * 1994-11-17 1999-12-28 Ciba Specialty Chemicals Corporation Thermal metathesis polymerization process and a polymerisable composition
EP1548035A1 (en) * 2002-09-11 2005-06-29 Japan Polypropylene Corporation CATALYST FOR POLYMERIZING a-OLEFIN AND PRODUCTION METHOD OF a-OLEFIN POLYMER USING THE SAME
RU2409420C1 (ru) * 2009-08-21 2011-01-20 ОТКРЫТОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО "СИБУР Холдинг" Рутениевый катализатор метатезисной полимеризации дициклопентадиена и способ его получения
RU2450028C2 (ru) * 2010-06-07 2012-05-10 Открытое акционерное общество "Нижнекамскнефтехим" Способ приготовления двухкомпонентной системы на основе дициклопентадиена

Similar Documents

Publication Publication Date Title
Beaumier et al. Modern applications of low-valent early transition metals in synthesis and catalysis
Morvan et al. Cyclic (alkyl)(amino) carbenes (CAACs) in ruthenium olefin metathesis
Cadierno et al. Synthesis and reactivity of α, β-unsaturated alkylidene and cumulenylidene Group 8 half-sandwich complexes
Herbert et al. Z‐Selective Cross Metathesis with Ruthenium Catalysts: Synthetic Applications and Mechanistic Implications
Geilen et al. Selective homogeneous hydrogenation of biogenic carboxylic acids with [Ru (TriPhos) H]+: a mechanistic study
Hauwert et al. Zerovalent [Pd (NHC)(Alkene) 1, 2] complexes bearing expanded-ring N-heterocyclic carbene ligands in transfer hydrogenation of alkynes
Moustani et al. Novel aqueous-phase hydrogenation reaction of the key biorefinery platform chemical levulinic acid into γ-valerolactone employing highly active, selective and stable water-soluble ruthenium catalysts modified with nitrogen-containing ligands
Tsukamoto et al. Palladium (0)–lithium iodide cocatalyzed asymmetric hydroalkylation of conjugated enynes with pronucleophiles leading to 1, 3-disubstituted allenes
Cheng et al. Synthesis of indolizines from pyridinium 1, 4-zwitterionic thiolates and α-functionalized bromoalkanes via a stepwise [(5+ 1)− 1] pathway
Lujan et al. E/Z selectivity in ruthenium-mediated cross metathesis
Kuroda et al. Annealing assisted mechanochemical syntheses of transition-metal coordination compounds and co-crystal formation
RU2704000C1 (ru) Применение спиртов в качестве добавки к катализатору Граббса для получения смешанного катализатора процесса полимеризации композиций на основе дициклопентадиена
CN109485621A (zh) 一种生产伽马戊内酯的方法
Burling et al. Ruthenium hydride complexes of 1, 2-dicyclohexylimidazol-2-ylidene
Urriolabeitia Ylide ligands
KR20160016788A (ko) 신규 전이 금속 착물, 그의 제조법 및 용도
Vieille-Petit et al. Improving Grubbs’ II type ruthenium catalysts by appropriately modifying the N-heterocyclic carbene ligand
Dragutan et al. Metathesis catalysed by the platinum group metals
US9556296B2 (en) Process for metathesis of olefins obtained from Fischer-Tropsch fractions using a ruthenium complex comprising a dissymmetrical N-heterocyclic diaminocarbene
WO2019123055A1 (en) Valorization of syngas via formaldehyde – hydroformylation of formaldehyde using heterogenized organometallic complexes of group viii metals
CN1100765C (zh) 四甲基吡嗪的制备方法
Keitz Diastereocontrol in Olefin Metathesis: the Development of Z‐Selective Ruthenium Catalysts
Żak et al. New aryloxybenzylidene ruthenium chelates–synthesis, reactivity and catalytic performance in ROMP
Gawin et al. An unexpected formation of a Ru (III) benzylidene complex during activation of a LatMet-type ring-opening polymerisation catalyst
JP2004107340A (ja) アリル化合物の製造方法

Legal Events

Date Code Title Description
PC41 Official registration of the transfer of exclusive right

Effective date: 20200601