RU2703804C1 - Способ классификации морских объектов пассивными гидроакустическими средствами - Google Patents

Способ классификации морских объектов пассивными гидроакустическими средствами Download PDF

Info

Publication number
RU2703804C1
RU2703804C1 RU2018137320A RU2018137320A RU2703804C1 RU 2703804 C1 RU2703804 C1 RU 2703804C1 RU 2018137320 A RU2018137320 A RU 2018137320A RU 2018137320 A RU2018137320 A RU 2018137320A RU 2703804 C1 RU2703804 C1 RU 2703804C1
Authority
RU
Russia
Prior art keywords
signal
underwater
vertical plane
arrival
objects
Prior art date
Application number
RU2018137320A
Other languages
English (en)
Inventor
Анна Александровна Волкова
Александр Давидович Консон
Original Assignee
Акционерное Общество "Концерн "Океанприбор"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное Общество "Концерн "Океанприбор" filed Critical Акционерное Общество "Концерн "Океанприбор"
Priority to RU2018137320A priority Critical patent/RU2703804C1/ru
Application granted granted Critical
Publication of RU2703804C1 publication Critical patent/RU2703804C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/80Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using ultrasonic, sonic or infrasonic waves

Abstract

Изобретение относится к области гидроакустики, может быть использовано при решении задач обработки сигнала морских объектов пассивными гидроакустическими средствами и предназначено для разделения обнаруженных объектов на два класса: приповерхностные и подводные. Способ основан на приеме акустического сигнала объекта гидроакустической антенной и измерении направления прихода сигнала в вертикальной плоскости. При реализации способа формируют порог, разделяющий классы подводных и приповерхностных объектов по направлению прихода сигнала в вертикальной плоскости в текущих гидрофизических условиях, сравнивают измеренное направление прихода сигнала в вертикальной плоскости с порогом, по результату сравнения принимают решение о классе объекта (приповерхностный или подводный). Техническим результатом изобретения является возможность при обнаружении морских объектов на любом расстоянии автоматически разделять их на классы подводных и приповерхностных независимо от характеристик принимаемого сигнала. 1 ил.

Description

Изобретение относится к области гидроакустики, может быть использовано при решении задач обработки сигнала морских объектов пассивными гидроакустическими средствами и предназначено для разделения обнаруженных объектов на два класса: приповерхностные и подводные.
К классу приповерхностных объектов относятся все источники излучения, расположенные близко к поверхности, например, надводные корабли, платформы для добычи углеводородного сырья и пр. К классу подводных объектов относятся заглубленные источники акустического сигнала, например, подводные лодки, необитаемые подводные аппараты, различные придонные промысловые и технические средства. Все названные антропогенные объекты производят шумоизлучение или осуществляют специальное излучение акустического сигнала с различными параметрами для наблюдения пространства или осуществления звукоподводной связи. Кроме того, в море могут существовать естественные источники акустического сигнала, такие как морские животные и природные явления, которые находятся на разных глубинах океана.
Известны способы [1, 2], позволяющие разделять объекты, обнаруженные гидроакустическими системами, на классы приповерхностных и подводных. Эти способы основаны на оценке и анализе глубины погружения объекта. Однако они работают в активном режиме по вторичному полю объекта, и не применимы в пассивных гидроакустических средствах, способных обеспечить скрытность наблюдения.
Известно устройство [3] в котором реализуется способ, позволяющий разделять объекты, обнаруженные шумопеленгаторными гидроакустическими системами, на классы приповерхностных и подводных. Этот способ также основан на оценке и анализе глубины погружения объекта. Эффективная классификация этим способом осуществима при условии точного знания гидрофизических условий распространения звука в океане на значительном удалении от наблюдателя, что не всегда возможно при современном состоянии оперативной океанологии. Кроме того, необходим расчет полевой картины в 3-D для больших пространств обнаружения объектов, что неприменимо при низком ресурсе ЦВК. При этом, указанный способ применим только для разделения объектов, обнаруженных по их шумоизлучению, и не применим для разделения объектов, обнаруженных по специально излучаемому ими акустическому сигналу.
Известен способ [4, 5], позволяющий определять «кажущуюся», без учета рефракции лучей, глубину объекта на основании оценок угла приема сигнала в вертикальной плоскости и расстояния до объекта. Недостатком способа является отсутствие учета траектории звуковых лучей. В результате, при больших расстояниях до объекта, когда реальная траектория луча отличается от прямолинейной траектории, заложенной в способ, оценка глубины во много раз превышает истинную глубину объекта [4].
Наиболее близким аналогом по выполняемым процедурам к предлагаемому изобретению является способ получения информации о шумящих в море объектах [6].
В способе-прототипе принимают акустический сигнал объекта гидроакустической антенной, как в горизонтальной, так и вертикальной плоскостях, формируя двумерный веер характеристик направленности. Это позволяет при дальнейшей обработке сигнала, наряду с другими параметрами, измерить направление прихода сигнала в вертикальной плоскости, что косвенным образом характеризует глубину погружения объекта.
В указанном способе, несмотря на заложенную способность определять угол прихода сигнала в вертикальной плоскости, отсутствует процедура разделения обнаруженных шумящих объектов на классы подводных и приповерхностных, что ограничивает область применения способа.
Задачей заявляемого способа является обеспечение возможности автоматического разделения объектов, обнаруженных на любом расстоянии по любым излучаемым ими сигналам, на классы подводных и приповерхностных независимо от характеристик этих сигналов, без увеличения состава измеряемых параметров сигнала и при использовании небольших вычислительных затрат.
Для решения поставленной задачи, в способ классификации морских объектов пассивными гидроакустическими средствами, в котором принимают акустический сигнал объекта гидроакустической антенной, расположенной на носителе с варьируемой глубиной погружения, и измеряют направление прихода сигнала в вертикальной плоскости, введены новые признаки, а именно:
предварительно измеряют профиль вертикального распределения скорости звука в текущих гидрофизических условиях С(h),
выбирают глубину установки носителя таким образом, чтобы скорость звука на горизонте носителя C(h=пр) была меньше скорости звука на горизонте вертикального раздела областей глубин нахождения двух классов объектов: приповерхностных и подводных C(h=пор),
перед измерением направления прихода сигнала в вертикальной плоскости устанавливают носитель на выбранную глубину,
формируют порог, разделяющий классы подводных и приповерхностных объектов по направлению прихода сигнала в вертикальной плоскости как интервал углов:
Figure 00000001
сравнивают измеренное направление прихода сигнала в вертикальной плоскости с порогом,
принимают решение о классе объекта - подводный, если измеренное направление сигнала в вертикальной плоскости попало в пороговый интервал углов, принимают решение о классе объекта - приповерхностный, в противном случае.
Техническим результатом изобретения является возможность при обнаружении морских объектов на любом расстоянии автоматически разделять их на классы подводных и приповерхностных независимо от характеристик принимаемого сигнала.
Покажем возможность достижения указанного технического результата предложенным способом.
Известно [7, 8], что в морской среде звуковой сигнал подвержен рефракции в вертикальной плоскости, т.е. распространяется не прямолинейно. Это связано с тем, что скорость звука зависит от параметров воды, которые, в свою очередь неоднородны по глубине. Наиболее существенно скорость звука зависит от таких параметров, как гидростатическое давление и температура. При увеличении гидростатического давления, что происходит при увеличении глубины, скорость звука монотонно увеличивается. При этом, нагревание поверхностного слоя воды, связанное с сезонными или суточными колебаниями температуры, может приводить к увеличению скорости звука в этом слое относительно скорости звука, обусловленной малым значением гидростатического давления. Для описания зависимости скорости звука от глубины в вертикальной плоскости вводят понятие - вертикальное распределение скорости звука, которое является основной характеристикой гидрофизических условий распространения звука в морской среде.
Вертикальное распределение скорости звука полностью определяет характер траекторий звуковых лучей. Согласно закону Снеллиуса [9], звуковые лучи отклоняются от прямолинейного распространения в сторону меньшей скорости звука, и претерпевает полное внутреннее отражение на горизонтах, где скорость звука выше скорости звука на горизонте нахождения источника. Угол приема в вертикальной плоскости, для которого звуковой луч претерпевает полное внутреннее отражение, можно рассчитать по формуле:
Figure 00000002
где C(h=пр) - скорость звука на горизонте приемника, C(h=пор) - скорость звука на горизонте вертикального раздела областей глубин нахождения двух классов объектов: приповерхностных и подводных. Указанное выражение справедливо при выполнении условия C(h=пр)<C(h=пор), которое может быть обеспечено путем выбора глубины установки носителя.
Многие лучи неоднократно претерпевают полное внутреннее отражение от областей в приповерхностном слое, в котором скорость звука больше, чем на горизонте подводного источника. Для таких лучей, распространяющихся от подводного источника, характерны углы прихода сигнала, близкие к горизонтальным. При этом для приповерхностного источника отсутствуют лучи с полным внутренним отражением на глубинах нахождения подводного источника. Это, в свою очередь, приводит к тому, что для лучей, распространяющихся от приповерхностного источника, при приеме характерны углы прихода сигнала, далекие от горизонтальных.
Таким образом, сигнал, распространяющийся от любого подводного объекта, независимо от расстояния до него всегда будет приходить к приемнику, расположенному на глубине с меньшей скоростью звука, с направлений, лежащих в некотором секторе (интервале) углов в вертикальной плоскости, близком к горизонтальному направлению. И наоборот, сигнал, распространяющийся от любого приповерхностного объекта, независимо от расстояния до него, будет приходить с направлений, лежащих вне этого сектора. Основываясь на законе Снеллиуса, расчет интервала углов, характерный для прихода сигналов в вертикальной плоскости от подводных объектов можно производить по формуле:
Figure 00000003
Таким образом, анализ угла прихода сигнала в вертикальной плоскости, проведенный совместно с анализом текущих гидрофизических условий, без привлечения других характеристик сигнала, позволит из всех обнаруженных на любом расстоянии морских объектов выделить класс подводных. Объекты, не попавшие в этот класс, можно считать приповерхностными. Именно это и позволяют осуществить операции заявляемого способа, основой которого является сравнение угла прихода сигнала в вертикальной плоскости с порогом, формируемым для текущих гидрофизических условий. При этом, использование закона Снеллиуса позволяет применить для формирования порога только профиль вертикального распределения скорости звука без построения траекторий звуковых лучей, что резко снижает вычислительные затраты относительно способов-аналогов.
Сущность изобретения поясняется фиг. 1, на которой приведена блок-схема устройства, реализующего предлагаемый способ.
Устройство (фиг. 1) содержит две ветки блоков и блок, объединяющий обе ветки. В первой ветке последовательно соединены блоки: антенна 1 и блок 2 измерения угла прихода сигнала в вертикальной плоскости (ВП). Во второй ветке последовательно соединены блоки: устройство 3 измерения вертикального распределения скорости звука (ВРСЗ) и блок 4 формирования порога. Выход второго блока 2 первой ветки и выход второго блока 4 второй ветки соединены с двумя входами блока 5 принятия решения о классе объекта.
Антенна 1, содержащая блок формирования веера характеристик направленности в вертикальной плоскости, и блок 2 измерения угла прихода сигнала в вертикальной плоскости являются известными устройствами, используемыми в прототипе. Устройство 3 измерения ВРС3 может быть заимствовано из [10]. В блоке 4 осуществляется расчет совокупности углов прихода звуковых лучей по известным методикам [7, 8]. Задачи, решаемые в блоках 2, 4, 5, могут быть реализованы программным образом в цифровом вычислительном комплексе современной гидроакустической системы [11].
С помощью предлагаемого устройства заявленный способ реализуется следующим образом.
Сигнал объекта принимается антенной 1, находящейся на глубине, выбранной по результатам измерения ВРС3 устройством 3, и поступает в блок 2, где осуществляется измерение угла его прихода в вертикальной плоскости. Измеренный угол прихода сигнала поступает в блок 5, куда одновременно поступает порог для классификации, сформированный в блоке 4. В блоке 5 осуществляется сравнение измеренного угла прихода сигнала с порогом, на основании которого принимается решение о классе объекта (приповерхностный или подводный). Согласно теории распространения звуковых лучей в качестве порога используется интервал, ограниченный двумя критическими значениями углов, при попадании в который звуковой луч претерпевает полное внутреннее отражение без выхода на поверхность. Если измеренный угол прихода сигнала в вертикальной плоскости попадает в пороговый интервал, то принимается решение о наблюдении подводного объекта. В противном случае, принимается решение о наблюдении приповерхностного объекта.
Порог, поступающий в блок 5, формируется в блоке 4.
Для этого предварительно в устройстве 3 осуществляется измерение профиля вертикального распределения скорости звука (ВРС3) по глубине. Измеренное ВРС3 поступает в блок 4, где осуществляется расчет порогового интервала углов в вертикальной плоскости на основании закона Снеллиуса. При этом, горизонт вертикального раздела областей нахождения двух классов может быть выбран различным, исходя из постановки конкретной задачи. Рассчитанный интервал углов поступает в блок 5 для принятия решения о классе объекта. Класс объекта считается подводным, если измеренный угол прихода сигнала в вертикальной плоскости попадает в пороговый интервал углов, или приповерхностным, если измеренный угол прихода сигнала не попадает в этот интервал.
Все изложенное позволяет считать задачу изобретения решенной. Предложенный способ классификации морских объектов пассивными гидроакустическими средствами позволяет разделить обнаруженные морские объекты на классы приповерхностных и подводных при решении задач обработки сигнала акустического излучения объекта в гидроакустических системах.
ИСТОЧНИКИ ИНФОРМАЦИИ
1. Тимошенков В.Г., Войтов А.А. Патент РФ №2350983 от 27.03.2009. Способ определения глубины погружения объекта. МПК G01S 15/00
2. Либенсон Е.Б., Стреленко Т.Б. Патент РФ №2346295 от 10.02.2009. Активный гидролокатор. МПК G01S 15/06
3. Зеленкова И.Д., Волкова А.А, Никулин М.Н. Патент РФ №2590933 от 16.06.2016. Устройство получения информации о шумящем в море объекте. МПК G01S 3/80
4. Сташкевич А.П. Акустика моря. Л.: Судостроение, 1966
5. Физические основы подводной акустики, под ред. В.И. Мясищева. М.: Сов. радио. 1955
6. Антипов В.А., Величкин С.М., Обчинец О.Г., Пастор А.Ю., Подгайский Ю.П., Янпольская А.А. Патент РФ №2353946 от 27.04.2009. Способ получения информации о шумящих в море объектах. МПК G01S 3/80
7. Урик Р. Дж. Основы гидроакустики / Пер. с англ. - Л.: Судостроение.
1978
8. Евтютов А.П., Митько В.Б. Примеры инженерных расчетов в гидроакустике. -Л.: Судостроение. 1981
9. Терминологический словарь-справочник по гидроакустике / Вальян Р.Х., Батаногов Э.В., Богородский А.В. и др Л.: Судостроение. 1989
10. Полканов К.И., Романов В.Ю., Смелов Д.А. Патент РФ №2208223 от 10.07.2003. Измеритель скорости звука в жидких средах. МПК G01H 5/00
11. Корякин Ю.А., Смирнов С.А., Яковлев Г.В. Корабельная гидроакустическая техника. СПб.: Наука. 2004

Claims (1)

  1. Способ классификации морских объектов пассивными гидроакустическими средствами, в котором принимают акустический сигнал объекта гидроакустической антенной, расположенной на подвижном носителе, и измеряют направление прихода сигнала в вертикальной плоскости, отличающийся тем, что предварительно измеряют профиль вертикального распределения скорости звука в текущих гидрофизических условиях C(h), выбирают глубину установки носителя таким образом, чтобы скорость звука на горизонте носителя C(h=пр) была меньше скорости звука на горизонте вертикального раздела областей глубин нахождения двух классов объектов: приповерхностных и подводных C(h=пор), перед измерением направления прихода сигнала в вертикальной плоскости устанавливают носитель на выбранную глубину, формируют порог, разделяющий классы подводных и приповерхностных объектов по направлению прихода сигнала в вертикальной плоскости как интервал углов:
    Figure 00000004
    , сравнивают измеренное направление прихода сигнала в вертикальной плоскости с порогом, принимают решение о классе объекта - подводный, если измеренное направление сигнала в вертикальной плоскости попало в пороговый интервал углов, принимают решение о классе объекта - приповерхностный, в противном случае.
RU2018137320A 2018-10-22 2018-10-22 Способ классификации морских объектов пассивными гидроакустическими средствами RU2703804C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018137320A RU2703804C1 (ru) 2018-10-22 2018-10-22 Способ классификации морских объектов пассивными гидроакустическими средствами

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018137320A RU2703804C1 (ru) 2018-10-22 2018-10-22 Способ классификации морских объектов пассивными гидроакустическими средствами

Publications (1)

Publication Number Publication Date
RU2703804C1 true RU2703804C1 (ru) 2019-10-22

Family

ID=68318207

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018137320A RU2703804C1 (ru) 2018-10-22 2018-10-22 Способ классификации морских объектов пассивными гидроакустическими средствами

Country Status (1)

Country Link
RU (1) RU2703804C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2746581C1 (ru) * 2020-05-26 2021-04-19 Акционерное общество "Концерн "Центральный научно-исследовательский институт "Электроприбор" Способ определения класса шумящего морского объекта
RU2760912C1 (ru) * 2021-04-27 2021-12-01 Акционерное общество "Концерн "Центральный научно-исследовательский институт "Электроприбор" Способ определения класса шумящего морского объекта

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4189999A (en) * 1956-03-05 1980-02-26 The United States Of America As Represented By The Secretary Of The Navy Vector acoustic mine mechanism
RU2208223C2 (ru) * 2001-06-13 2003-07-10 Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт "Морфизприбор" Измеритель скорости звука в жидких средах
RU2298203C2 (ru) * 2005-05-03 2007-04-27 Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт "Морфизприбор" Способ обнаружения шумящих в море объектов
RU2353946C1 (ru) * 2007-07-10 2009-04-27 ОАО "Концерн "Океанприбор" Способ получения информации о шумящих в море объектах
RU2570100C1 (ru) * 2014-09-18 2015-12-10 Акционерное Общество "Концерн "Океанприбор" Гидроакустический способ определения пространственных характеристик объекта
RU2590933C1 (ru) * 2015-04-27 2016-07-10 Акционерное Общество "Концерн "Океанприбор" Устройство получения информации о шумящем в море объекте
RU2590932C1 (ru) * 2015-04-27 2016-07-10 Акционерное Общество "Концерн "Океанприбор" Гидроакустический способ измерения глубины погружения неподвижного объекта

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4189999A (en) * 1956-03-05 1980-02-26 The United States Of America As Represented By The Secretary Of The Navy Vector acoustic mine mechanism
RU2208223C2 (ru) * 2001-06-13 2003-07-10 Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт "Морфизприбор" Измеритель скорости звука в жидких средах
RU2298203C2 (ru) * 2005-05-03 2007-04-27 Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт "Морфизприбор" Способ обнаружения шумящих в море объектов
RU2353946C1 (ru) * 2007-07-10 2009-04-27 ОАО "Концерн "Океанприбор" Способ получения информации о шумящих в море объектах
RU2570100C1 (ru) * 2014-09-18 2015-12-10 Акционерное Общество "Концерн "Океанприбор" Гидроакустический способ определения пространственных характеристик объекта
RU2590933C1 (ru) * 2015-04-27 2016-07-10 Акционерное Общество "Концерн "Океанприбор" Устройство получения информации о шумящем в море объекте
RU2590932C1 (ru) * 2015-04-27 2016-07-10 Акционерное Общество "Концерн "Океанприбор" Гидроакустический способ измерения глубины погружения неподвижного объекта

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2746581C1 (ru) * 2020-05-26 2021-04-19 Акционерное общество "Концерн "Центральный научно-исследовательский институт "Электроприбор" Способ определения класса шумящего морского объекта
RU2760912C1 (ru) * 2021-04-27 2021-12-01 Акционерное общество "Концерн "Центральный научно-исследовательский институт "Электроприбор" Способ определения класса шумящего морского объекта

Similar Documents

Publication Publication Date Title
RU2473924C1 (ru) Способ обнаружения и классификации сигнала от цели
CN103048642B (zh) 基于频域最小二乘法的水声脉冲信号匹配场定位方法
RU2590933C1 (ru) Устройство получения информации о шумящем в море объекте
JP2007507691A (ja) ソナー・システムおよびプロセス
KR101740157B1 (ko) 소노부이의 최적운용 위치 및 수심 결정 방법
CN109444864B (zh) 一种深海微弱多目标深度长时累积估计方法
CN110058245B (zh) 基于云模型的低频主动拖线阵声呐浅海探测效能评估方法
Fialkowski et al. Methods for identifying and controlling sonar clutter
RU2343502C2 (ru) Способ и система определения положения наблюдаемого объекта по глубине в водной среде
Nosal et al. Sperm whale three-dimensional track, swim orientation, beam pattern, and click levels observed on bottom-mounted hydrophones
AU2010326314B2 (en) System and method for discriminating targets at the water surface from targets below the water surface
RU2703804C1 (ru) Способ классификации морских объектов пассивными гидроакустическими средствами
RU2559159C1 (ru) Способ измерения толщины льда
RU2724962C1 (ru) Способ определения координат морской шумящей цели
RU2541435C1 (ru) Способ определения осадки айсберга
RU2460088C1 (ru) Способ обнаружения локального объекта на фоне распределенной помехи
Lohrasbipeydeh et al. Single hydrophone passive acoustic sperm whale range and depth estimation
RU2660292C1 (ru) Способ определения глубины погружения объекта
RU2625041C1 (ru) Способ определения глубины погружения объекта
JP6922262B2 (ja) ソーナー画像処理装置、ソーナー画像処理方法およびソーナー画像処理プログラム
RU2655019C1 (ru) Способ измерения скорости судна доплеровским лагом
RU2798390C1 (ru) Способ пассивного определения координат шумящего объекта
RU2788341C1 (ru) Способ локализации в пространстве шумящего в море объекта
Qin et al. The 3D imaging for underwater objects using SAS processing based on sparse planar array
Houser et al. Signal processing applied to the dolphin-based sonar system