RU2699418C1 - Способ получения износостойкого покрытия режущего инструмента - Google Patents

Способ получения износостойкого покрытия режущего инструмента Download PDF

Info

Publication number
RU2699418C1
RU2699418C1 RU2019117651A RU2019117651A RU2699418C1 RU 2699418 C1 RU2699418 C1 RU 2699418C1 RU 2019117651 A RU2019117651 A RU 2019117651A RU 2019117651 A RU2019117651 A RU 2019117651A RU 2699418 C1 RU2699418 C1 RU 2699418C1
Authority
RU
Russia
Prior art keywords
coating
cutting tool
wear
ion
plasma
Prior art date
Application number
RU2019117651A
Other languages
English (en)
Inventor
Эътибар Юсиф Оглы Балаев
Владимир Юрьевич Бузько
Александр Иванович Горячко
Артём Евгеньевич Литвинов
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ") filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ")
Priority to RU2019117651A priority Critical patent/RU2699418C1/ru
Application granted granted Critical
Publication of RU2699418C1 publication Critical patent/RU2699418C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Physical Vapour Deposition (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

Изобретение относится к области машиностроения, а именно к способам нанесения наноструктурированных и износостойких покрытий методом ионно-плазменного напыления на поверхность режущих инструментов. Способ получения износостойкого наноструктурированного покрытия режущего инструмента включает нанесение на поверхность режущего инструмента покрытия, содержащего титан, алюминий и ниобий. Перед нанесением покрытия поверхность режущего инструмента подвергают ионно-плазменному травлению в вакуумной камере низкотемпературной аргоновой плазмой при давлении 1-3 Па, а после нанесения - фазообразующему термическому окислительному отжигу при температуре 550-650°С в течение 1-2 часов. Нанесение покрытия осуществляют ионно-плазменным напылением при давлении 1-3 Па, токе 100-150 мА с получением покрытия толщиной 100-300 мкм. Наносимое покрытие дополнительно содержит ванадий и оксид алюминия при следующем содержании исходных компонентов покрытия, вес.%: Al 5,5-6,5, V 7-8, Nb 2-4, Al2O3 1-2, Ti - остальное. Обеспечивается повышение износостойкости, стойкости к усталостному растрескиванию покрытия и стойкости к коррозионному разрушению. 1 табл., 3 пр.

Description

Изобретение относится к области машиностроения, а именно к способам нанесения наноструктурированных и износостойких покрытий методом ионно-плазменного напыления на поверхность режущих инструментов.
Аналогом изобретения является способ нанесения износостойкого покрытия из нитрида титана, кремния и алюминия TiSiAIN вакуумно-плазменным методом на поверхность режущего инструмента [Табаков В.П. Формирование износостойких ионно-плазменных покрытий режущего инструмента В.П. Табаков. - М.: Машиностроение, 2008 - 312 с.].
Недостатком данного способа является низкая твердость получаемого покрытия, в результате чего происходит его быстрое изнашивание, а также низкая пластичность, приводящая к быстрому зарождению и распространению трещин, и как следствие, к разрушению покрытия и низкая коррозионная стойкость, связанная с окислением титана при повышении температуры.
Прототипом изобретения является способ получения износостойкого покрытия для режущего инструмента (пат. №2648814, МПК С23С 14/02, С23С 14/24, В23В 27/14, опубл. 28.03.2018 г., бюл. №10), включающий вакуумно-плазменное нанесение износостойкого покрытия из нитрида титана, алюминия, кремния, ниобия и молибдена, взятых в следующем соотношении, мас. %: титан 63,56, алюминий 10,11, кремний 0,94, ниобий 21,47, молибден 3,92, при этом нанесение покрытия осуществляют расположенными горизонтально в одной плоскости тремя катодами, первый из которых выполняют из сплава титана и кремния, второй - из сплава титана и алюминия и располагают противоположно первому, а третий изготавливают составным из ниобия и молибдена и располагают между ними.
Недостатком данного способа является низкая твердость получаемого покрытия, в результате чего происходит его быстрое изнашивание, а также низкая пластичность, приводящая к быстрому зарождению и распространению трещин, и как следствие, к разрушению покрытия и низкая коррозионная стойкость, связанная с окислением титана при повышении температуры.
Задачей изобретения является усовершенствование способа получения износостойкого покрытия, позволяющее повысить эксплуатационные характеристики режущего инструмента.
Техническим результатом является повышение износостойкости, стойкости к усталостному растрескиванию покрытия и стойкости к коррозионному разрушению.
Технический результат достигается тем, способ получения износостойкого покрытия режущего инструмента, включающий нанесение на поверхность режущего инструмента покрытия содержащего титан, алюминий и ниобий, при этом перед нанесением покрытия поверхность режущего инструмента подвергают ионно-плазменному травлению в вакуумной камере низкотемпературной аргоновой плазмой при давлении 1-3 Па, а после нанесения - фазообразующему термическому окислительному отжигу при температуре 550-650°С в течение 1-2 часов, при этом нанесение покрытия осуществляют ионно-плазменным напылением при давлении 1-3 Па, токе 100-150 мА с получением покрытия толщиной 100-300 мкм, а состав наносимого покрытия дополнительно содержит ванадий и оксид алюминия при следующем содержании исходных компонентов покрытия, вес.%: Al 5,5-6,5; V 7-8; Nb 2-4 Al2O3 1-2; Ti - остальное.
Проведение предварительного ионно-плазменного травления низкотемпературной аргоновой плазмой поверхности режущего инструмента при давлении 1-3 Па позволяет повысить адгезинную прочность между покрытием и поверхностью режущего инструмента, за счет микроструктурирования поверхности режущего инструмента, что позволяет легко очистить поверхность изделия от загрязнений и остатков смазки. При этом также одновременно происходит во время ионно-плазменного травления - поверхностная абляция материала, позволяющая изменить структурно-механические свойства изделия, увеличить шероховатость, что улучшает адгезионную прочность между материалом покрытия и поверхностью металла режущего инструмента. Ионно-плазменную обработку применяют к широкому спектру видов режущего инструмента любого состава и сложной геометрической формы. Таким образом, обработка поверхности режущего инструмента перед нанесением покрытия ионно-плазменным травлением позволяет улучшить физико-механические свойства получаемого режущего инструмента.
Нанесение наноструктурированных металлических покрытий желаемого химического состава и толщины 100-300 мкм, путем ионно-плазменного напыления позволяют получить покрытие, характеризующееся высокой адгезионной прочностью, приближаемой по значению к металлургической. Это обусловлено тем, что при нанесении наноструктурированного покрытия путем ионно-плазменнного напыления при давлении 1-3 Па токе 100-150 мА не происходит термического нагрева поверхности режущего инструмента, в результате чего не происходит возникновения остаточных напряжений на поверхности инструмента и вдоль границ раздела изделие-покрытие, а также повышается стойкость режущего инструмента с покрытием к усталостному растрескиванию. Также ионно-плазменное напыление обеспечивает возможность получения покрытия с наноразмерной структурой в диапазоне размеров 5-15 нм, характеризующегося ультравысокой твердостью, высокой усталостной прочностью и повышенной износостойкостью, обусловленных определенной формой кубической и тетрагональной сингонии и размером наночастиц, принадлежащих области максимальной реализации эффекта Холла-Петча.
Получение на поверхности режущего инструмента покрытия состава TiAlVNbAl2O3 позволяет повысить эксплуатационные характеристики режущего инструмента. Состав TiAlVNbAl2O3 представляет собой титано-алюминиевый сплав легированный ванадием - V, ниобием - Nb и оксидом алюминия - Al2O3.
Так титан-алюминиевые сплавы, имеют высокую жаропрочность и жаростойкость, что обеспечивает сохранение геометрии режущей кромки инструмента при эксплуатации и как следствие сохранение высоких режущих характеристик инструмента в процессе резания.
Использование в качестве легирующего элемента для титан-алюминиевого сплава ванадия в количестве 7-8% позволяет переводить кристаллическую решетку сплава TiAl от тетрагональной формы к кубической, что в свою очередь позволяет повысить пластичность получаемого покрытия, таким образом, также повышается стойкость покрытия к усталостному растрескиванию. Также перевод от тетрагональной к кубической решетки позволяет в сплавах TiAl, позволяет повысить микротвердость покрытия, что также повышает износостойкость инструмента.
Наличие в титан-алюминиевом сплаве в качестве легирующего элемента ниобия в количестве 2-4% позволяет повысить термодинамической активности Al по сравнению с Ti, способствуя тем самым образованию устойчивого защитного слоя Al2O3 на поверхности покрытия, при этом оксидная пленка Al2O3 имеет высокую микротвердость и плотную структуру, блокирующую дальнейшее окисление покрытия, в том числе и титана, содержащегося в покрытии, также оксидная пленка Al2O3 повышает коррозионную стойкость и износостойкость покрытия.
Добавление в состав покрытия 1-2% Al2O3, являющегося упрочняющей дисперсионной фазой, находящейся в равновесии со сплавом титана и алюминия (алюмидами титана) при хорошей физико-химической и механической совместимости позволяет повысить прочностные характеристики покрытия и микротвердость, сохранить пластичность и вязкость покрытия, а также повысить его жаропрочность и жаростойкость, за счет блокирования роста зерен структуры при повышении температуры, которая всегда сопровождает процесс обработки металла резанием.
Проведение термического окислительного фазообразующего отжига после ионно-плазменного напыления позволяет создать поверхностный слой из высокотвердых высокотермостойких наночастиц смеси оксидов кубической фазы и тетрагональной фазы, что приводит к получению высокотвердых покрытий с высокой износостойкостью и значительной усталостной прочностью.
Получение износостойкого покрытия режущего инструмента, происходит следующим образом:
- на первом этапе происходит предварительное ионно-плазменное травление поверхности обрабатываемого изделия низкотемпературной аргоновой плазмой для улучшения адгезии наносимого защитного покрытия в вакуумной камере ускоренными ионами при давлении 1-3 Па;
- на втором этапе на подготовленную поверхность обрабатываемого изделия наносят наноструктурированное покрытие толщиной 100-300 мкм методом ионно-плазменного напыления при давлении 1-3 Па, токе 100-150 мА сплава Ti-Al-V-Nb-Al2O3 при следующем соотношении исходных компонентов покрытия вес %: Al 5,5-6,5; V 7-8; Nb 2-4; Al2O3 1-2; Ti -остальное, путем переноса с поверхности мишени состава аналогичного наносимого покрытию на поверхность режущего инструмента;
- после чего проводят термический окислительный фазообразующий отжиг при температуре 550-650°С в течение 1-2 часов для появления поверхностного слоя наночастиц высокотвердого оксида кубической фазы Al2O3 в смеси с тетрагональными наночастицами рутила TiO2 и диоксида ванадия VO2, приводящего также к повышению адгезионной прочности износостойкого покрытия, возрастанию его твердости, износостойкости, коррозионной стойкости и усталостной прочности вследствие процесса перекристаллизации нанесенного покрытия.
Пример 1.
Получение износостойкого покрытия режущего инструмента, происходит следующим образом:
- на первом этапе происходит предварительное ионно-плазменное травление поверхности обрабатываемого изделия низкотемпературной аргоновой плазмой для улучшения адгезии наносимого защитного покрытия в вакуумной камере ускоренными ионами при давлении 3 Па;
- на втором этапе на подготовленную поверхность обрабатываемого изделия наносят наноструктурированное покрытие толщиной 100 мкм методом ионно-плазменного напыления при давлении 3 Па, токе 100 мА сплава Ti-Al-V-Nb-Al2O3 при следующем соотношении исходных компонентов покрытия вес %: Al - 5,5; V - 7; Nb - 2; Al2O3 - 1; Ti - остальное, путем переноса с поверхности мишени состава аналогичного наносимого покрытию на поверхность режущего инструмента;
- после чего проводят термический окислительный фазообразующий отжиг при температуре 550°С в течение 1 часа для появления поверхностного слоя наночастиц высокотвердого оксида кубической фазы Al2O3 в смеси с тетрагональными наночастицами рутила TiO2 и диоксида ванадия VO2, приводящего также к повышению адгезионной прочности износостойкого покрытия, возрастанию его твердости, износостойкости, коррозионной стойкости и усталостной прочности вследствие процесса перекристаллизации нанесенного покрытия.
Пример 2
Получение износостойкого покрытия режущего инструмента, происходит следующим образом:
- на первом этапе происходит предварительное ионно-плазменное травление поверхности обрабатываемого изделия низкотемпературной аргоновой плазмой для улучшения адгезии наносимого защитного покрытия в вакуумной камере ускоренными ионами при давлении 2 Па;
- на втором этапе на подготовленную поверхность обрабатываемого изделия наносят наноструктурированное покрытие толщиной 200 мкм методом ионно-плазменного напыления при давлении 2 Па, токе 125 мА сплава Ti-Al-V-Nb-Al2O3 при следующем соотношении исходных компонентов покрытия вес %: Al - 6; V - 7,5; Nb - 3; Al2O3 - 1,5; Ti - остальное, путем переноса с поверхности мишени состава аналогичного наносимого покрытию на поверхность режущего инструмента;
- после чего проводят термический окислительный фазообразующий отжиг при температуре 600°С в течение 1,5 часов для появления поверхностного слоя наночастиц высокотвердого оксида кубической фазы Al2O3 в смеси с тетрагональными наночастицами рутила TiO2 и диоксида ванадия VO2, приводящего также к повышению адгезионной прочности износостойкого покрытия, возрастанию его твердости, износостойкости, коррозионной стойкости и усталостной прочности вследствие процесса перекристаллизации нанесенного покрытия.
Пример 3
Получение износостойкого покрытия режущего инструмента, происходит следующим образом:
- на первом этапе происходит предварительное ионно-плазменное травление поверхности обрабатываемого изделия низкотемпературной аргоновой плазмой для улучшения адгезии наносимого защитного покрытия в вакуумной камере ускоренными ионами при давлении 1 Па;
- на втором этапе на подготовленную поверхность обрабатываемого изделия наносят наноструктурированное покрытие толщиной 300 мкм методом ионно-плазменного напыления при давлении 1 Па, токе 150 мА сплава Ti-Al-V-Nb-Al2O3 при следующем соотношении исходных компонентов покрытия вес %: Al - 6,5; V - 8; Nb - 4; Al2O3 - 2; Ti - остальное, путем переноса с поверхности мишени состава аналогичного наносимого покрытию на поверхность режущего инструмента;
- после чего проводят термический окислительный фазообразующий отжиг при температуре 650°С в течение 2 часов для появления поверхностного слоя наночастиц высокотвердого оксида кубической фазы Al2O3 в смеси с тетрагональными наночастицами рутила TiO2 и диоксида ванадия VO2, приводящего также к повышению адгезионной прочности износостойкого покрытия, возрастанию его твердости, износостойкости, коррозионной стойкости и усталостной прочности вследствие процесса перекристаллизации нанесенного покрытия.
Результаты испытаний образцов, полученных износостойких покрытий сведены в таблицу 1.
Figure 00000001
Анализ данных представленных в таблице, позволяет сделать вывод о том, что режущий инструмент с износостойким покрытиям, полученным по заявляемому способу, характеризуется более высокими физико-механическими характеристиками, по сравнению с пластинами, изготовленными по известным способам.
Таким образом, совокупность заявляемых признаков позволяет достичь поставленный технический результат.

Claims (1)

  1. Способ получения износостойкого наноструктурированного покрытия режущего инструмента, включающий нанесение на поверхность режущего инструмента покрытия, содержащего титан, алюминий и ниобий, отличающийся тем, что перед нанесением покрытия поверхность режущего инструмента подвергают ионно-плазменному травлению в вакуумной камере низкотемпературной аргоновой плазмой при давлении 1-3 Па, а после нанесения -фазообразующему термическому окислительному отжигу при температуре 550-650°С в течение 1-2 часов, при этом нанесение покрытия осуществляют ионно-плазменным напылением при давлении 1-3 Па, токе 100-150 мА с получением покрытия толщиной 100-300 мкм, при этом наносимое покрытие дополнительно содержит ванадий и оксид алюминия при следующем содержании исходных компонентов покрытия, вес.%: Al 5,5-6,5, V 7-8, Nb 2-4, Al2O3 1-2, Ti - остальное.
RU2019117651A 2019-06-06 2019-06-06 Способ получения износостойкого покрытия режущего инструмента RU2699418C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019117651A RU2699418C1 (ru) 2019-06-06 2019-06-06 Способ получения износостойкого покрытия режущего инструмента

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019117651A RU2699418C1 (ru) 2019-06-06 2019-06-06 Способ получения износостойкого покрытия режущего инструмента

Publications (1)

Publication Number Publication Date
RU2699418C1 true RU2699418C1 (ru) 2019-09-05

Family

ID=67851367

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019117651A RU2699418C1 (ru) 2019-06-06 2019-06-06 Способ получения износостойкого покрытия режущего инструмента

Country Status (1)

Country Link
RU (1) RU2699418C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2742751C1 (ru) * 2020-07-14 2021-02-10 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ") Способ получения износостойкого наноструктурированного покрытия

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080098805A1 (en) * 2004-10-06 2008-05-01 Sungho Jin Nanotube-Based Nanoprobe Structure and Method for Making the Same
RU2495154C2 (ru) * 2012-01-10 2013-10-10 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" Способ нанесения на металлическую деталь комплексного покрытия для защиты детали от водородной коррозии, состоящего из множества микрослоев
RU2648814C1 (ru) * 2017-03-10 2018-03-28 федеральное государственное бюджетное образовательное учреждение высшего образования "Ульяновский государственный технический университет" Способ получения износостойкого покрытия для режущего инструмента
EP1772216B1 (en) * 2004-07-23 2018-05-30 Sumitomo Electric Hardmetal Corp. Surface coating cutting tool with coating film having intensity distribution of compression stress

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1772216B1 (en) * 2004-07-23 2018-05-30 Sumitomo Electric Hardmetal Corp. Surface coating cutting tool with coating film having intensity distribution of compression stress
US20080098805A1 (en) * 2004-10-06 2008-05-01 Sungho Jin Nanotube-Based Nanoprobe Structure and Method for Making the Same
RU2495154C2 (ru) * 2012-01-10 2013-10-10 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" Способ нанесения на металлическую деталь комплексного покрытия для защиты детали от водородной коррозии, состоящего из множества микрослоев
RU2648814C1 (ru) * 2017-03-10 2018-03-28 федеральное государственное бюджетное образовательное учреждение высшего образования "Ульяновский государственный технический университет" Способ получения износостойкого покрытия для режущего инструмента

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2742751C1 (ru) * 2020-07-14 2021-02-10 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ") Способ получения износостойкого наноструктурированного покрытия

Similar Documents

Publication Publication Date Title
CN108220880B (zh) 一种高硬度高耐蚀性高熵合金氮化物涂层及其制备方法
Sarkar et al. Oxidation protection of gamma-titanium aluminide using glass–ceramic coatings
CN107354438B (zh) 一种圆锯片表面的复合纳米涂层
US9447491B2 (en) Coated cutting tool and method of making the same
JP6844705B2 (ja) 被覆切削工具
CN108796453B (zh) 一种高温耐磨的AlCrSiN纳米复合涂层及其制备方法
Sui et al. Effect of Ta content on microstructure, hardness and oxidation resistance of TiAlTaN coatings
CN114196940A (zh) 一种复合涂层刀具及其制备方法和应用
CN109881148A (zh) 一种单相固溶体结构的AlCrTiSiN高熵合金氮化物涂层及其制备方法和应用
RU2699418C1 (ru) Способ получения износостойкого покрытия режущего инструмента
CN109072409B (zh) 切削刀具
Aouadi et al. The effect of bilayer periods and their thickness in magnetron sputtering protective multilayer coatings for tribological applications
JP2010284787A (ja) 硬質皮膜被覆切削工具
WO2021167087A1 (ja) 被覆工具
RU2718642C1 (ru) Способ получения износостойкого покрытия режущего инструмента
CN107354437B (zh) 一种提高圆锯片切削速度的多层复合涂层
CN110484870B (zh) 一种多组元氮化物硬质涂层及其制备方法和应用
JP7479598B2 (ja) MCrAl-Xコーティング層を含むコーティング
Yasin et al. Experimental study of TiN, TiAlN and TiSiN coated high speed steel tool
JP6844704B2 (ja) 被覆切削工具
JP2011167838A (ja) 硬質皮膜被覆切削工具
CN110468373A (zh) 一种复合涂层刀具及其制备方法
Kaczmarek et al. Oxidation resistance of refractory γ-TiAlW coatings
Sampath Kumar et al. Thermal stability of cathodic arc vapour deposited TiAlN/AlCrN and AlCrN/TiAlN coatings on tungsten carbide tool
Cheong et al. Thermal stablility and oxidation resistance of CrAlSiN nano-structured coatings deposited by lateral rotating cathode arc