RU2697673C1 - Способ рафинирования ферросилиция от алюминия - Google Patents

Способ рафинирования ферросилиция от алюминия Download PDF

Info

Publication number
RU2697673C1
RU2697673C1 RU2018146649A RU2018146649A RU2697673C1 RU 2697673 C1 RU2697673 C1 RU 2697673C1 RU 2018146649 A RU2018146649 A RU 2018146649A RU 2018146649 A RU2018146649 A RU 2018146649A RU 2697673 C1 RU2697673 C1 RU 2697673C1
Authority
RU
Russia
Prior art keywords
ferrosilicon
fluxes
aluminum
ratio
limestone
Prior art date
Application number
RU2018146649A
Other languages
English (en)
Inventor
Константин Сергеевич Ёлкин
Иван Миронович Кашлев
Original Assignee
Константин Сергеевич Ёлкин
Иван Миронович Кашлев
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Константин Сергеевич Ёлкин, Иван Миронович Кашлев filed Critical Константин Сергеевич Ёлкин
Priority to RU2018146649A priority Critical patent/RU2697673C1/ru
Application granted granted Critical
Publication of RU2697673C1 publication Critical patent/RU2697673C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

Изобретение относится к черной металлургии и может быть использовано для очистки от примесей ферросилиция, полученного восстановительной плавкой в рудно-термических электрических печах. Ферросилиций в виде отсевов товарного ферросилиция фракцией 0-5 мм, или кусковой ферросилиций, который подвергают дроблению до фракции 0-5 мм, брикетируют совместно с кремнеземом в виде кварцевого песка и известняка с помощью жидкого силиката натрия, проводят сушку полученных брикетов, проплавляют в расплаве флюсов из кварцевого песка и известняка, поддерживая суммарную основность флюсов в печи равную 0,25-0,35, при кратности флюсов 0,18-0,25 и с окислительным потенциалом флюсов, превышающим теоретический в 5,5-7 раз. Изобретение позволяет утилизировать и вовлечь в производство отсевы и пылевидные отходы, образующиеся при дроблении ферросилиция, и повысить эффективность рафинирования от алюминия. 1 з.п. ф-лы, 9 пр.

Description

Изобретение относится к черной металлургии, и может быть использовано для очистки от примесей ферросилиция, полученного восстановительной плавкой в руднотермических электрических печах.
Уровень техники
Ферросилиций получают высокотемпературным восстановлением кварцита, с помощью углеродистых восстановителей. При ведении восстановительной плавки, кроме ведущего элемента кремния, восстанавливаются и другие элементы, оксиды которых входят в состав примесей минерального сырья и золы восстановителей. Большинство примесей ухудшают качество получаемого ферросилиция и требуются дополнительные технологии по их удалению из полученной продукции (Зубов В.Л., Гасик М.И. Электрометаллугрия ферросилиция. Днепропетровск, «Системные технологии», 2002, - 704 с.).
Известен способ окислительного рафинирования ферросплавов (SU 971891, С21С 7/00, опубл. 07.11.1982) при котором обработку жидкого ферросплава проводят в ковше окислительными смесями и смесью О2 с балластным газом. С целью уменьшения количества рафинировочного шлака и уменьшения потерь сплава со шлаком рафинирование на первом этапе ведут, поддерживая соотношение SiO2/CaO в твердой окислительной смеси 1,0-1,5, а на втором этапе 1,85-2,3. Недостатком данного способа является низкий окислительный потенциал шлаковой смеси.
Известен способ рафинирования ферросилиция (SU 567755, С21С 7/04, опубл. 26.09.77), включающий обработку жидкого сплава в ковше рафинировочной смесью, состоящей из пирита и силиката натрия, взятых в соотношении 1:(0,3-4), подаваемой в ковш в количестве 2-20% от веса обрабатываемого сплава.
Известен способ рафинирования ферросилиция (SU 458595, С21С 7/10, опубл. 12.07.77), путем обработке расплава карбонатом железа для удаления алюминия кальция и кальция, вводимого на струю ферросилиция в количестве 5-10% от веса расплава в виде кусков размером 20-60 мм.
Известен способ рафинирования ферросилиция от алюминия (SU 1766968, С21С 7/068, опубл. 07.10.92), включающий механическое перемешивание расплава дуговой электропечи, введение в расплав смесь в виде отсевов кокса и отходов огневой зачистки проката в соотношении 1:2 по массе. Недостатком данного способа рафинирования является в низкая степень окисления алюминия, выражающаяся в высокой вязкости образующегося при рафинировании шлака, что снижает массообмен между шлаком и расплавом ферросилиция.
Известен способ рафинирования ферросилиция от углерода (RU 2305135 С21С 7/068, опубл. 27.08.2007), включающий выплавку ферросилиция в рудно-термической печи, выпуск расплава из печи и его обработку, путем подачи на его струю кремнеземсодержащего материала с удельным расходом в пределах 0,5-12 кг/мин т расплава, а время обработки расплава устанавливают в пределах 5-20 мин. При этом в качестве кремнеземсодержащего материала используют кремнеземсодержащую пыль сухих тканевых газоочисток печей для выплавки ферросилиция и/или кремния. Недостатком данного способа является внесение окисляемых примесей вместе с окислительным кремнеземистым материалом (оксидов алюминия и кальция).
Известен способ рафинирования ферросилиция от алюминия (SU 460304, С21С 7/00, опубл. 15.04.75), заключающийся в обработке расплава окислительным шлаком и газообразными хлорсодержащими реагентами, обработку окислительным шлаком и газообразными хлорсодержащими реагентами ведут одновременно, после чего сплав вакуумируют. Недостатком данного способа рафинирования является применение хлора в окислительных газах, что ухудшает условия работы обслуживающего персонала.
Наиболее близким аналогом настоящего изобретения является способ рафинирования ферросилиция от алюминия (RU 2066691, С21С 7/00, опубл. 20.09.96), включающий расплавление ферросилиция с содержанием алюминия 1,0-3,0% в дуговой электропечи, формирование над расплавом шлака, нагрев и выдержку при температуре, на 80-150°С превышающей температуру плавления ферросилиция, в процессе выдержки в шлаке с основностью 0,5-1,5 создают окислительный потенциал для окисления примеси алюминия, величина которого пропорциональна количеству кислорода, стехиометрически необходимого для дополнительного окисления алюминия до задаваемой концентрации, с коэффициентом 1,0-2,0. Недостатком данного способа является недостаточное количества кремнезема в окислительном флюсе, что снижает окислительный потенциал флюса.
По технической сущности, по наличию общих признаков, данное техническое решение принято в качестве ближайшего аналога.
В основу изобретения положена задача, направленная на повышение качества ферросилиции.
При этом техническим результатом является снижение содержания алюминия в ферросилиции.
Сущность изобретения
Выполнение поставленной задачи достигается тем, что ферросилиций, в виде отсевов товарного ферросилиции, фракцией 0-5 мм, или кусковой ферросилиций, который подвергают дроблению до фракции 0-5 мм, брикетируют совместно с кремнеземом, в виде кварцевого песка, и известняком с помощью жидкого силиката натрия, проводят сушку полученных брикетов, и затем брикеты проплавляют в электрической печи в расплаве флюсов из кварцевого песка и известняка, поддерживая суммарную основность загруженных в печь флюсов равную 0,25-0,35, при кратности флюсов 0,18-0,25 и окислительном потенциале флюсов, превышающим теоретический окислительный потенциал в 5,5-7,0 раз.
После расплавления ферросилиций сливают в ковш и проводят разливку полученного ферросилиция.
Сравнение предлагаемой технологии рафинирования ферросилиция не только с технологией по прототипу, но технологиями по аналогам показывает, что:
- известно рафинирование расплава ферросилиция в дуговой электрической печи;
- известно использование флюсов в процессе рафинирования расплава ферросилиция;
- известно использование в качестве флюсов кремнезема и извести в соотношениях, создающие основность расплава 0,5-1,5;
- известно соотношение кислорода, вносимого флюсами для окисления алюминия до задаваемой концентрации, равное 1,0-2,0.
Сравнительный анализ известных технических решение не выявил идентичных и эквивалентных признаков предлагаемому решению, а, именно:
- приготовление брикетов из мелких фракций ферросилиция и флюсов;
- применение для очистки ферросилиция флюсов в виде смеси кварцевого песка и известняка, образующие расплав с основностью 0,25-0,35; кратностью флюсов 0,18-0,25;
- проплавление в печи брикетов из ферросилиция и флюсов в расплаве флюсов;
- внесение окислительными флюсами кислорода для окисления алюминия в количестве 5,5-7,0 раз превышающие стехиометрическое соотношение.
Совокупность признаков как известных, так и неизвестных в их взаимосвязи позволяет получать технический результат более высокого уровня по сравнению с известными, а именно:
- повысить качество ферросилиция за счет совместного расплавления брикетов и флюсов, что позволяет проводить очистку на стадии расплавления и значительно снижает содержание алюминия в сплаве;
- снижение основности флюсов позволяет более полно использовать окислительный потенциал кремнезема;
- превышение стехиометрического соотношения алюминий-кислород кремнезема способствует гарантированному снижению алюминия в ферросилиции.
Таким образом, предлагаемое техническое решение отвечает критериям изобретения - изобретательский уровень и промышленная применимость.
Осуществлении способа
Рафинирование ферросилиция, с содержание алюминия в сплаве 1,8 мас. %, проводили в дуговой электрической печи периодического действия мощностью 3 мВт, до содержания алюминия в сплаве менее 0,1 мас. %.
При проведении испытаний применяли ферросилиций марок ФС 75 и ФС 65, с содержанием алюминия в сплавах 1,8 мас. %, кварцевый песок, известняк. Компоненты смешали с жидким силикатом натрия и брикетировали. Полученные брикеты сушили и, после сушки, загружали в руднотермическую печь для проплавления. Для более полного удаления алюминия из расплава ферросилиция в печь предварительно загружали кварцевый песок и известняк, расплавляли и загружали брикеты. После расплавления брикетов расплав сливали в ковш и ферросилиций разливали на слитки.
Отбирали пробы ферросилиция и флюсов для определения состава флюсов и количества алюминия в ферросилиции, отношения фактического количества окислителя к необходимому для окисления алюминия.
Пример 1. Ферросилиций марки ФС 75 фракцией менее 0,5 мм, кварцевый песок и известняк, создающие основность флюсов 1,0, смешали с жидким стеклом для приготовления брикетов. Брикеты высушили и проплавили в электрической печи. После разливки рафинированного сплава, выполнили анализ сплава и состава флюсов. Содержание алюминия после рафинирования составило 0,40 мас. %. Кратность конечного шлака составила - 0,05. Отношение фактического количества окислителя к необходимому для окисления алюминия составило - 1,13.
Пример 2. Из ферросилиция ФС 75, фракцией 0-5 мм, кварцевого песка и известняка, взятых в соотношении создающие основность флюса 0,75, приготовили брикеты, которые после сушки проплавили в печи. После проплавления, расплав слили в ковш и ферросилиций разлили. Содержание алюминия в сплаве составило 0,30 мас. %. Кратность конечного шлака составила - 0,10. Отношение фактического количества окислителя к необходимому для окисления алюминия - 2,0.
Пример 3. Брикеты из ферросилиция ФС 65, фракцией 0-5 мм, кварцевого песка, известняка и жидкого стекла, в соотношении создающие основность равную 0,50, высушили, и проплавили в руднотермической печи и разлили. Содержание алюминия в сплаве составило 0,20 мас. %. Кратность конечного шлака составила - 0,125. Отношение фактического количества окислителя к необходимому для окисления алюминия 2,6.
Проведенные первые опытные плавки не позволили получить заданный результат (содержание алюминия менее 0,1 мас. %) ввиду высокой основности, что снижает окислительный потенциал флюсов, и недостаточной кратности флюсов. При проведении последующих опытных плавках в печь дополнительно загружали флюсы из кварцевого песка и известняка, расплавляли и, затем загружали брикеты из ферросилиция и флюсов.
Пример 4. Приготовленные из ферросилиция ФС 75 и флюсов, взятых в соотношении песка и известняка в соотношении 3:1, брикеты загрузили в печь с предварительно расплавленными флюсами из песка и известняка, взятых в соотношении 2:1, в количестве 2,5 мас. % от количества загруженного с брикетами ферросилиция, проплавили перелили в ковш и разлили. Содержание алюминия в сплаве получилось 0,16%. Суммарная основность флюсов составила 0,40, кратность 0,14. Отношение фактического количества окислителя к необходимому для окисления алюминия составило 3,97.
Пример 5. Из ферросилиция марки ФС 75, фракцией менее 5 мм приготовили брикеты, соотношение кварцевого песка известняка составило 3:1, загрузили в печь с предварительно расплавленными флюсами из песка и известняка, взятых в соотношении 4:1, в количестве 5,0 мас. % от количества загруженного с брикетами ферросилиция, проплавили перелили в ковш и разлили. Содержание алюминия в сплаве получилось 0,10%. Суммарная основность загруженных в печь флюсов составила 0,35, кратность 0,18. Отношение фактического количества окислителя к необходимому для окисления алюминия 5,5.
Пример 6. Из ферросилиция марки ФС 75, фракцией менее 5 мм приготовили брикеты, соотношение кварцевого песка известняка составило 3:1 проплавили в печи с предварительно расплавленными флюсами из песка и известняка, взятых в соотношении 4:1, в количестве 7,5 мас. % от количества загруженного с брикетами ферросилиция, проплавили перелили в ковш и разлили. Содержание алюминия в сплаве получилось 0,08%. Суммарная основность флюсов составила 0,28, кратность 0,22. Отношение фактического количества окислителя к необходимому для окисления алюминия 6,0.
Пример 7. Из ферросилиция марки ФС 75, фракцией менее 5 мм приготовили брикеты, соотношение кварцевого песка известняка составило 3:1 проплавили в печи с предварительно расплавленными флюсами из песка и известняка, взятых в соотношении 4:1, в количестве 10 мас. % от количества загруженного с брикетами ферросилиция, проплавили перелили в ковш и разлили. Содержание алюминия в сплаве получилось 0,07%. Суммарная основность флюсов составила 0,26, кратность 0,23. Отношение фактического количества окислителя к необходимому для окисления алюминия 6,8.
Пример 8. Из ферросилиция марки ФС 65, фракцией менее 5 мм приготовили брикеты, соотношение кварцевого песка известняка составило 5:1 проплавили с расплавленными флюсами из песка и известняка, взятых в соотношении 4:1, в количестве в количестве 12 мас. % от количества загруженного с брикетами ферросилиция, проплавили перелили в ковш и разлили. Содержание алюминия в сплаве получилось 0,08%. Суммарная основность флюсов, загруженных в печь, составила 0,25, кратность 0,25. Отношение количества окислителя к необходимому для окисления алюминия составило 7,0.
Пример 9. Из ферросилиция марки ФС 65, фракцией менее 5 мм приготовили брикеты, соотношение кварцевого песка известняка составило 3:1. Приготовленные брикеты смешали с дополнительным количеством флюсов из песка и известняка, взятых в соотношении 3:1, в количестве 15 мас. % от количества загруженного с брикетами ферросилиция, проплавили перелили в ковш и разлили. Содержание алюминия в сплаве получилось 0,12%. Суммарная основность флюсов составила 0,33, кратность 0,45. Отношение количества окислителя к необходимому для окисления алюминия составило 8,4. Повышенная кратность флюсов препятствовала более полному массообмену между алюминием и окислительной составляющей флюсов.
Проведенные испытания показали, что при высокой основности окислительных флюсов, более 0,40, несмотря на низкую вязкость расплавленных флюсов, содержание алюминия в ферросилиции снижается, но недостаточно для выполнения целевых показателей, и причиной является недостаточные окислительная способность и кратность флюсов (примеры 1-4). При основности флюсов равное 0,25-0,35 происходит значительное снижение содержания алюминия в ферросилиции, данные интервалы в показателях являются оптимальным при рафинировании расплава высокопроцентного ферросилиция. Кратность окислительного флюса оптимальная 0,18-0,25. Отношение фактического количества окислителя к необходимому для окисления алюминия оптимальным является 5,5-7,0 (примеры 5-8). При повышении кратности флюсов более 0,25 и отношении фактического количества окислителя к необходимому для окисления алюминия более 7,0 (пример 9) планируемый показатель не достигается из-за недостаточной скорости массобмена между флюсами и ферросилицием.
Использование предложенной технологии рафинирования позволяет утилизировать и вовлечь в производство отсевы и пылевидные отходы, образующиеся при дроблении ферросилиция, повысить эффективность рафинирования кремния.

Claims (2)

1. Способ рафинирования ферросилиция от алюминия, включающий расплавление ферросилиция в дуговой электропечи, формирование над расплавом шлака, отличающийся тем, что ферросилиций фракцией 0-5 мм брикетируют с помощью жидкого силиката натрия совместно с флюсами, состоящими из кварцевого песка и извести, расплавляют брикеты в расплаве флюсов из кварцевого песка и известняка, поддерживая суммарную основность загруженных в печь флюсов 0,25-0,35, при кратности флюсов 0,18-0,25.
2. Способ по п. 1, отличающийся тем, что поддерживают окислительный потенциал флюсов превышающим теоретический потенциал в 5,5-7,0 раз.
RU2018146649A 2018-12-25 2018-12-25 Способ рафинирования ферросилиция от алюминия RU2697673C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018146649A RU2697673C1 (ru) 2018-12-25 2018-12-25 Способ рафинирования ферросилиция от алюминия

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018146649A RU2697673C1 (ru) 2018-12-25 2018-12-25 Способ рафинирования ферросилиция от алюминия

Publications (1)

Publication Number Publication Date
RU2697673C1 true RU2697673C1 (ru) 2019-08-16

Family

ID=67640593

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018146649A RU2697673C1 (ru) 2018-12-25 2018-12-25 Способ рафинирования ферросилиция от алюминия

Country Status (1)

Country Link
RU (1) RU2697673C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2776577C1 (ru) * 2022-03-09 2022-07-22 Константин Сергеевич Ёлкин Способ удаления примесей из расплава ферросилиция

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU460304A1 (ru) * 1973-04-09 1975-02-15 Кузнецкий завод ферросплавов Способ рафинировани ферросилици
GB1585278A (en) * 1977-05-24 1981-02-25 Metal Research Corp Method for refining molten iron and steels
RU2066691C1 (ru) * 1994-05-17 1996-09-20 Акционерное общество "Новолипецкий металлургический комбинат" Способ рафинирования ферросилиция от алюминия
WO1997028285A2 (de) * 1996-01-31 1997-08-07 Mannesmann Ag Erzeugung nichtrostender stähle in parallel betriebenen gefässen
RU2509160C2 (ru) * 2012-05-03 2014-03-10 Открытое акционерное общество "Новолипецкий металлургический комбинат" Способ производства ферросилиция

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU460304A1 (ru) * 1973-04-09 1975-02-15 Кузнецкий завод ферросплавов Способ рафинировани ферросилици
GB1585278A (en) * 1977-05-24 1981-02-25 Metal Research Corp Method for refining molten iron and steels
RU2066691C1 (ru) * 1994-05-17 1996-09-20 Акционерное общество "Новолипецкий металлургический комбинат" Способ рафинирования ферросилиция от алюминия
WO1997028285A2 (de) * 1996-01-31 1997-08-07 Mannesmann Ag Erzeugung nichtrostender stähle in parallel betriebenen gefässen
RU2509160C2 (ru) * 2012-05-03 2014-03-10 Открытое акционерное общество "Новолипецкий металлургический комбинат" Способ производства ферросилиция

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2776577C1 (ru) * 2022-03-09 2022-07-22 Константин Сергеевич Ёлкин Способ удаления примесей из расплава ферросилиция

Similar Documents

Publication Publication Date Title
EP0523167A1 (en) Compositions and methods for synthesizing ladle slags, treating ladle slags, and coating refractory linings
US4528035A (en) Composition and process to create foaming slag cover for molten steel
CN104032148A (zh) 一种基于新型熔剂的火法炼铜造锍造渣方法
KR100269897B1 (ko) 최소의 슬래그형성물을 가지고 철용해물을 탈황시키기 위한 방법 및 그 방법을 수행하기 위한 장치
RU2697673C1 (ru) Способ рафинирования ферросилиция от алюминия
JP4150194B2 (ja) 溶銑の機械攪拌による脱硫方法
CA1321075C (en) Additive for promoting slag formation in steel refining ladle
CN115572783A (zh) 含钡复合球化剂及其制备方法
JPS587691B2 (ja) 製鋼法
KR101084579B1 (ko) 페로-바나듐 슬래그를 이용한 제강용 플럭스
CN101016578B (zh) 高炉熔融法生产的钢液净化渣剂
CN114292984A (zh) 一种LF精炼炉渣组元研究[Mn][Si]元素RC工艺技术
RU2776577C1 (ru) Способ удаления примесей из расплава ферросилиция
CA1062917A (en) Process for making iron or steel utilizing lithium containing material as auxiliary slag formers
TW202035706A (zh) 增碳材及使用其之增碳方法
RU2791998C1 (ru) Способ прямого получения чугуна из фосфорсодержащей железной руды или концентрата с одновременным удалением фосфора в шлак
JP2682637B2 (ja) 自熔炉の操業方法
CN110982989B (zh) 一种铁水预处理用的凝渣剂制备方法及使用方法
RU2352645C1 (ru) Способ выплавки стали в дуговой электросталеплавильной печи
RU2805114C1 (ru) Способ выплавки стали в электродуговой печи
RU2714562C1 (ru) Способ очистки расплава ферросилиция от примесей
RU2258083C1 (ru) Способ выплавки рельсовой стали
SU1125272A1 (ru) Способ производства железофлюса
KR890004042B1 (ko) 석회계 용선탈린제
RU2368689C2 (ru) Способ получения ванадийсодержащих сплавов и лигатур

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20201226