RU2697477C1 - Способ регистрации следовых количеств веществ в газовой среде - Google Patents

Способ регистрации следовых количеств веществ в газовой среде Download PDF

Info

Publication number
RU2697477C1
RU2697477C1 RU2018141819A RU2018141819A RU2697477C1 RU 2697477 C1 RU2697477 C1 RU 2697477C1 RU 2018141819 A RU2018141819 A RU 2018141819A RU 2018141819 A RU2018141819 A RU 2018141819A RU 2697477 C1 RU2697477 C1 RU 2697477C1
Authority
RU
Russia
Prior art keywords
layer
substances
silver
trace amounts
light
Prior art date
Application number
RU2018141819A
Other languages
English (en)
Inventor
Геннадий Сергеевич Бурханов
Владимир Аркадьевич Дементьев
Сергей Анатольевич Лаченков
Сергей Иванович Валянский
Михаил Анатольевич Кононов
Сергей Владимирович Виноградов
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук (ИМЕТ РАН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук (ИМЕТ РАН) filed Critical Федеральное государственное бюджетное учреждение науки Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук (ИМЕТ РАН)
Priority to RU2018141819A priority Critical patent/RU2697477C1/ru
Application granted granted Critical
Publication of RU2697477C1 publication Critical patent/RU2697477C1/ru

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

Изобретение относится к оптике и аналитической технике и может быть применено для определения наличия следовых количеств летучих веществ. Способ регистрации следовых количеств веществ в газовой среде, вызывающих поверхностную оптическую сенсибилизацию галоидного серебра под действием света в трехслойной тонкой пленочной структуре, содержащий зеркальный серебряный слой, защитный слой и слой из галогенида серебра, по изменению формы кривой коэффициента отражения падающего излучения от угла падения, отличающийся тем, что одновременно с засветкой молекул светом с частотой излучения, совпадающей с линией поглощения и вызывающей поверхностную оптическую сенсибилизацию, включается постоянное электрическое поле, параллельное плоскости пленок. Технический результат заключается в повышении чувствительности регистрации следовых количеств веществ в газовой среде.

Description

Изобретение относится к оптике и аналитической технике и может быть применено для определения наличия следовых количеств летучих веществ.
Известен способ определения следовых количеств летучих веществ, вызывающих поверхностную оптическую сенсибилизацию галоидного серебра под действием света в трехслойной тонкой пленочной структуре Ag-Al2O3-AgI по изменению формы кривой коэффициента отражения падающего излучения от угла падения [С.В. Виноградов, М.А. Кононов, В.В. Савранский, С.И. Валянский, М.Ф. Урбайтис. Влияние оптической сенсибилизации на поверхностный плазмонный резонанс. Квантовая электроника, 33, №8 (2003), с. 711-713]. В этом способе берется прямоугольная призма, на гипотенузной грани которой размещена трехслойная тонкопленочная структура Ag-Al2O3-AgI, определяется диэлектрическая постоянная внешней пленки (AgI) методом нарушенного полного внутреннего отражения по схеме Кречмана. Затем грань призмы (сенсор) с тонкопленочной структурой вводится в контакт с тестируемым воздухом, где происходит адсорбция целевого вещества, и облучают ее светом с длиной волны возбуждения адсорбированных молекул, что вызывает их поверхностную оптическую сенсибилизацию. В результате на поверхности нанокристаллов пленки AgI образуются кластеры металлического серебра размером порядка 50×50 нм - формируются центры скрытого изображения, - которые вызывают изменение диэлектрической постоянной внешней пленки, что приводит к изменению резонансного угла поверхностного плозмонного резонанса, т.е. изменяется форма кривой коэффициента отражения падающего излучения от угла падения.
Недостатком метода является его низкая чувствительность для определения следовых количеств веществ, так как размер кластеров металлического серебра незначителен для четкой регистрации изменений резонансного угла поверхностного плозмонного резонанса.
Наиболее близким способом является способ определения малых концентраций молекул летучих веществ в газовой среде [Патент RU 2510014]. В этом способе также для трехслойной тонкопленочной структуры Ag-Al2O3-AgI, сформированной на грани призмы, диэлектрическая постоянная внешней пленки (AgI) определяется методом нарушенного полного внутреннего отражения по схеме Кречмана, для чего определяются параметры поверхностного плазмонного резонанса: резонансный угол для какой-либо длины волны либо резонансная длина волны при каком-либо угле. Затем тонкопленочную структуру вводят в контакт с тестируемым воздухом, где происходит адсорбция целевого вещества, и также облучают ее светом с длиной волны возбуждения адсорбированных молекул. В результате на поверхности пленки AgI формируются центры скрытого изображения, которые подвергаются фотографическому проявлению, так как процессы, происходящие в нанокристаллах йодистого серебра, аналогичны процессам, происходящим в нанокристаллах фотографических эмульсий. В способе осуществляется практически полное восстановление металлического серебра в центрах скрытого изображения с помощью фотографического проявления, что должно обеспечить значительный отклик поверхностного плазмонного резонанса. И это должно увеличить на несколько порядков чувствительность способа. И из теоретических расчетов, приведенных в патенте, следует какая чувствительность может быть достигнута.
Недостатком способа является трудность интерпретации полученных измерений, так как в процессе проявления на поверхности пленки AgI помимо разложения этих молекул и выделение на поверхности пленок металлического серебра на этой поверхности будут адсорбироваться молекулы проявителя. Причем они будут адсорбироваться в любом случае, будет ли скрытое изображения за счет взаимодействия света с молекулами определяемого вещества либо этих молекул не будет на поверхности сенсора. Отмыть же пленку от проявителя, чтобы на ней не оставалось даже следовых количеств проявителя и проконтролировать это крайне сложно. То есть в любом случае произойдет изменение вида кривой отражения падающего излучения от угла падения в трехслойной тонкой пленочной структуре Ag-Al2O3-AgI. Кроме того, такой способ обнаружения происходит не в реальном режиме времени, а по прошествии проявки скрытого изображения.
Задача, на решение которой направлено заявляемое изобретение, заключается в создание способа, при котором размер образовавшихся кластеров металлического серебра достаточен для четкой регистрации изменений резонансного угла поверхностного плозмонного резонанса в тонкопленочной структуры Ag-Al2O3-AgI без ее фотографического появления.
Техническим результатом является повышение чувствительности регистрации следовых количеств веществ в газовой среде, происходящим в реальном режиме времени.
Технический результат достигается тем, что в способе регистрации следовых количеств веществ в газовой среде, вызывающих поверхностную оптическую сенсибилизацию галоидного серебра под действием света в трехслойной тонкой пленочной структуре, содержащий зеркальный серебряный слой, защитный слой и слой из галогенида серебра, о наличии целевых веществ судят по изменению формы кривой коэффициента отражения падающего излучения от угла падения, причем, одновременно с засветкой молекул светом с частотой излучения совпадающей с линией поглощения и вызывающей поверхностную оптическую сенсибилизацию включается постоянное электрическое поле параллельное плоскости пленок. Тестируемые молекулы должны либо прямо, либо через подобранную последовательность реакций с другими адсорбированными на поверхности нанокристаллов молекулами, передавать возбуждения нанокристаллам галогенида серебра.
Для реализации способа необходим сенсор, содержащий тонкопленочную структуру: зеркальный серебряный слой, защитный, например, из оксида алюминия, и слой из галогенида серебра, например, иодида. Толщина слоев должна быть пригодна для исследования процессов поверхностного плазмонного резонанса. Затем в газовой среде не содержащей целевое вещество определяется диэлектрическая постоянная внешней пленки (AgI) методом нарушенного полного внутреннего отражения по схеме Кречмана, для чего определяются параметры поверхностного плазмонного резонанса, т.е. резонансный угол для какой-либо длины волны либо резонансная длина волны при каком- либо угле. Готовый сенсор с измеренным резонансным углом вводится в контакт с тестируемым газом. Одновременно включается свет с длиной волны, которая возбуждает молекулы целевого вещества и включается постоянное электрическое поле параллельное плоскости пленок. Постоянное электрическое поле концентрирует атомы серебра. Напряженность электрического поля должна быть порядка 1000 В/М. При меньшей напряженности процесс концентрации замедляется и может остаться незавершенным, при большей может произойти разрушение пленки галогенида серебра. Концентрация атомов серебра меняет диэлектрическую проницаемость пленки галогенида, что приводит к смещению резонансного угла и изменению вида кривой коэффициента отражения, по которым фиксируются наличие в газе тестируемые молекулы вещества.
На поверхности пленки после засветки кристаллов галогенида серебра в электрическом поле, частицы серебра выделяются в основном в той части кристалла, куда перемещаются фотоэлектроны в электрическом поле. С противоположной стороны кристалла, т.е. по направлению электрического поля должны быть следы дырок (атомов йода). Но, атомы йода быстро испаряется с поверхности, а серебро концентрируется на той части кристаллитов, которая противоположна направлению поля. Причем тестируемые молекулы играют роль катализаторов по созданию электронов. Поэтому нахождение хотя бы одной молекулы тестируемого вещества на нанокристале галогенида серебра способствует генерации серебра.
Подобные эксперименты по разделению галогенидов серебра на ионы серебра и ионы галогенида в электрическом поле описано в работе [Шапиро Б.И. Теоретические начала фотографического процесса, М.; Эдиториал УРСС, 2000. 288 с. 35-36].
Оценки чувствительности можно провести, базируясь на основных положениях молекулярно-кинетической теории.
Положим, имеется сенсор Ag-Al2O3-AgI. Необходимо определить наличие в воздухе молекул красителя Арсеназо III. Оптическую сенсибилизацию этого красителя вызывает его облучение светом с длиной волны 543,5 нм.
Мощность излучения He-Ne лазера с длиной волны 543,5 нм составляет P~5 мВт/см2, тогда количество фотонов будет N=Pλ/ch=5×1016 фотонов/см2с, где λ - длина волны излучения лазера, с - скорость света, h - постоянная планка.
Характерный размер площади нанокристалла AgI равен 104 нм2. На 1 см2 будет 1010 нанокристаллов. То есть на каждый нанокристал приходится 5×106 фотонов/с. Коэффициент диффузии молекул в воздухе D=7,7 10-1 см/с. Средняя скорость молекул Арсеназо III V=(kT/m)1/2=20 м/с, где k - постоянная Больцмана, Т - температура окружающей среды в Кельвинах, m - масса молекулы Арсеназо III. Если на нанокристалле есть хоть одна молекула красителя, то по нашему методу будет происходить генерация электронов и тем самым атомов серебра, то есть одна молекула красителя может сгенерировать до 100 атомов серебра и более (их количество зависит от времени экспозиции). Кроме того увеличивая время экспозиции увеличивается число молекул красителя адсорбирующихся на нанокристала. При экспозиции в 600 секунд дает возможность обнаруживать концентрацию 5×105 частиц/см2.
Таким образом, предложенный способ измерения малых концентраций летучих веществ на основе поверхностного плазмонного резонанса с применением йодида серебра позволяет значительно (на несколько порядков) повысить чувствительность сенсора к находящимся в воздухе фотосенсибилизирующим йодид серебра веществам с помощью метода одновременного экспонирования поверхности излучением нужной частоты (которая зависит от оптических свойств материала) и наложения электрического поля на эту поверхность параллельно ей.

Claims (1)

  1. Способ регистрации следовых количеств веществ в газовой среде, вызывающих поверхностную оптическую сенсибилизацию галоидного серебра под действием света в трехслойной тонкой пленочной структуре, содержащий зеркальный серебряный слой, защитный слой и слой из галогенида серебра, по изменению формы кривой коэффициента отражения падающего излучения от угла падения, отличающийся тем, что одновременно с засветкой молекул светом с частотой излучения, совпадающей с линией поглощения и вызывающей поверхностную оптическую сенсибилизацию, включается постоянное электрическое поле, параллельное плоскости пленок.
RU2018141819A 2018-11-28 2018-11-28 Способ регистрации следовых количеств веществ в газовой среде RU2697477C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018141819A RU2697477C1 (ru) 2018-11-28 2018-11-28 Способ регистрации следовых количеств веществ в газовой среде

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018141819A RU2697477C1 (ru) 2018-11-28 2018-11-28 Способ регистрации следовых количеств веществ в газовой среде

Publications (1)

Publication Number Publication Date
RU2697477C1 true RU2697477C1 (ru) 2019-08-14

Family

ID=67640338

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018141819A RU2697477C1 (ru) 2018-11-28 2018-11-28 Способ регистрации следовых количеств веществ в газовой среде

Country Status (1)

Country Link
RU (1) RU2697477C1 (ru)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100087723A1 (en) * 2002-08-30 2010-04-08 Van Duyne Richard P Surface-enhanced raman nanobiosensor
RU2510014C1 (ru) * 2012-09-14 2014-03-20 Федеральное государственное бюджетное учреждение науки Физический институт им. П.Н. Лебедева Российской академии наук (ФИАН) Способ определения малых концентраций молекул летучих веществ в газовой среде
US20160377542A1 (en) * 2015-06-26 2016-12-29 The Regents Of The University Of California Plasmon laser sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100087723A1 (en) * 2002-08-30 2010-04-08 Van Duyne Richard P Surface-enhanced raman nanobiosensor
RU2510014C1 (ru) * 2012-09-14 2014-03-20 Федеральное государственное бюджетное учреждение науки Физический институт им. П.Н. Лебедева Российской академии наук (ФИАН) Способ определения малых концентраций молекул летучих веществ в газовой среде
US20160377542A1 (en) * 2015-06-26 2016-12-29 The Regents Of The University Of California Plasmon laser sensor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ВИНОГРАДОВ С.В. и др. "Влияние оптической сенсибилизации на поверхностный плазмонный резонанс", Квантовая электроника, 33, N8 (2003). *

Similar Documents

Publication Publication Date Title
US6100991A (en) Near normal incidence optical assaying method and system having wavelength and angle sensitivity
Girlando et al. Raman spectra of thin organic films enhanced by plasmon surface polaritons on holographic metal gratings
US6421128B1 (en) Coupled plasmon-waveguide resonance spectroscopic device and method for measuring film properties in the ultraviolet and infrared special ranges
JP3396241B2 (ja) 過渡回折格子分光法
US6330387B1 (en) Coupled plasmon-waveguide resonance spectroscopic device and method for measuring film properties in the ultraviolet and infrared spectral ranges
US8675200B2 (en) Hydrogen detecting surface plasmon resonator, surface plasmon resonance optical hydrogen detector and method for optically detecting hydrogen using surface plasmon resonance
JPS61503039A (ja) デバイス製作のための干渉法
US20090066957A1 (en) Method and Apparatus for Sensing a Target Substance by Analysing Time Series of Said Target Substance
JP2003344273A (ja) 表面プラズモン共鳴及び蛍光偏光測定用装置
RU2697477C1 (ru) Способ регистрации следовых количеств веществ в газовой среде
Porter et al. Soft x-ray: novel metrology for 3D profilometry and device pitch overlay
Stenberg et al. A new ellipsometric method for measurements on surfaces and surface layers
US6872947B1 (en) MEMS-based spectrophotometric system
US4653908A (en) Grazing incidence reflection spectrometer
Ignac-Nowicka et al. Examination of thin films of phthalocyanines in plasmon system for application in NO 2 sensors
Dobson et al. Photographic Photometry: A Study of Methods of Measuring Radiation by Photographic Means
Singh et al. Dielectric metasurface-assisted cavity ring-down spectroscopy for thin-film circular dichroism analysis
RU2510014C1 (ru) Способ определения малых концентраций молекул летучих веществ в газовой среде
JP2777147B2 (ja) 表面分析装置
JP2002286632A (ja) 測定試料の光学的評価方法およびその装置
US5508145A (en) Infrared imaging materials
Slade et al. A new method of spectrophotometry in the visible and ultraviolet and the absorption of light by silver bromide
JPS6295527A (ja) 写真層の塗布故障検知方法
JP6586867B2 (ja) 電場増強素子およびラマン分光装置
BEVERLY et al. Removal of hydrocarbon contaminant film from spacecraft optical surfaces using a radiofrequency-excited oxygen plasma