RU2696558C1 - Способ радиоэлектронного подавления приемных устройств потребителей глобальных навигационных спутниковых систем - Google Patents

Способ радиоэлектронного подавления приемных устройств потребителей глобальных навигационных спутниковых систем Download PDF

Info

Publication number
RU2696558C1
RU2696558C1 RU2018119810A RU2018119810A RU2696558C1 RU 2696558 C1 RU2696558 C1 RU 2696558C1 RU 2018119810 A RU2018119810 A RU 2018119810A RU 2018119810 A RU2018119810 A RU 2018119810A RU 2696558 C1 RU2696558 C1 RU 2696558C1
Authority
RU
Russia
Prior art keywords
radio
gnss
interference
receivers
consumers
Prior art date
Application number
RU2018119810A
Other languages
English (en)
Inventor
Дмитрий Николаевич Донских
Александр Анатольевич Болкунов
Василий Федорович Ивойлов
Павел Дмитриевич Мурзинов
Михаил Федорович Пашук
Александр Павлович Саркисьян
Евгений Александрович Сытник
Александр Васильевич Юрьев
Original Assignee
АО "Научно-технический центр радиоэлектронной борьбы"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by АО "Научно-технический центр радиоэлектронной борьбы" filed Critical АО "Научно-технический центр радиоэлектронной борьбы"
Priority to RU2018119810A priority Critical patent/RU2696558C1/ru
Application granted granted Critical
Publication of RU2696558C1 publication Critical patent/RU2696558C1/ru

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/46Indirect determination of position data
    • G01S13/48Indirect determination of position data using multiple beams at emission or reception
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/22Multipath-related issues
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/021Auxiliary means for detecting or identifying radar signals or the like, e.g. radar jamming signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/38Jamming means, e.g. producing false echoes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04KSECRET COMMUNICATION; JAMMING OF COMMUNICATION
    • H04K3/00Jamming of communication; Counter-measures

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

Изобретение относится к области радиотехники и может быть использовано при разработке средств радиоэлектронного подавления приемных устройств навигационной аппаратуры потребителей глобальных навигационных спутниковых систем (ГНСС), в частности, размещаемых на кораблях, самолетах, крылатых ракетах, беспилотных летательных аппаратах, в системах высокоточного оружия и т.д. Достигаемый технический результат – повышение эффективности радиоэлектронного подавления приемных устройств потребителей ГНСС. Сущность изобретения заключается в том, что дополнительно создают и излучают помехи в направлении носителей, местных предметов и подстилающей поверхности в районе нахождения приемных устройств потребителей ГНСС и обеспечивают за счет отражений и многолучевого распространения радиоволн многочисленные направления прихода помех на антенны приемных устройств потребителей ГНСС. 1 з.п. ф-лы,

Description

Изобретение относится к области радиотехники и может быть использовано при разработке средств радиоэлектронного подавления (РЭП) приемных устройств навигационной аппаратуры потребителей глобальных навигационных спутниковых систем (ГНСС), в частности, размещаемых на кораблях, самолетах, крылатых ракетах, беспилотных летательных аппаратах в системах высокоточного оружия и т.д.
Известен способ радиоэлектронного подавления приемных устройств потребителей глобальных навигационных спутниковых систем, основанный на формировании поля помех пространственно-распределенными передатчиками помех [см., например, патент RU №2624247, С1, МПК G01S 7/18, опубл. 03.07.2017 г.].
Недостатком способа является низкая эффективность радиоэлектронного подавления приемных устройств потребителей ГНСС, в которых применяются адаптивные цифровые антенные решетки (ЦАР). Применение ЦАР позволяет за счет адаптивного формирования «нулей» в диаграмме направленности антенн приемных устройств потребителей ГНСС обеспечить подавление помех от одиночных источников на 40 дБ и более [см., например, Слюсар В. Цифровые антенные решетки. Решения задач GPS. Электроника: Наука, Технология, Бизнес.2009, №1, с. 74-78]. Дело в том, что передатчики помех пространственно-распределенных систем имеют ограниченную дальность действия и радиоэлектронное подавление приемных устройств потребителей ГНСС в каждый период времени обеспечивается, как правило, одним из передатчиков системы.
Наиболее близким по технической сущности к заявляемому изобретению является способ РЭП приемных устройств мобильных потребителей ГНСС, основанный на создании преднамеренных радиопомех большой мощности приемным устройствам навигационной аппаратуры потребителей, размещенным на мобильных средствах, работающим по сигналам ГНСС, основанный на концентрации суммарной энергии разнесенных в пространстве нескольких передатчиков радиопомех небольшой мощности в заданной области пространства на заданном интервале времени. При этом создание преднамеренных радиопомех большой мощности обеспечивается путем координатно-временного обеспечения взаимодействия средств разведки и станций помех [см., например, патент RU №2563972, С1, МПК H04K 3/00, опубл. 27.09.2015 г.].
Недостатком способа является низкая эффективность радиоэлектронного подавления приемных устройств потребителей ГНСС, в которых применяются многоэлементные адаптивные ЦАР. В таких антенных решетках максимальное число направлений, в которых обеспечивается формирование «нулей» в диаграмме направленности ЦАР, равно N-1, где N - число антенных элементов ЦАР. [см., например, Слюсар В. Цифровые антенные решетки. Решения задач GPS. Электроника: Наука, Технология, Бизнес.2009, №1, с. 74-78]. Известно также, что в 7 - элементных и 19 - элементных ЦАР удалось получить подавление помех, соответственно, трех и шести широкополосных станций на 50 дБ [см., например, Соловьев Ю.А. Системы спутниковой навигации. - М.: Эко - Трендз, 2000, с. 145-149]. Кроме того, реализация известного способа требует сложного координатно-временного обеспечения для взаимодействия средств разведки и станций помех, что обусловливает наличие лишних звеньев управления на оперативном уровне при действии нескольких средств разведки и станций помех в одной зоне.
Техническим результатом изобретения является повышение эффективности радиоэлектронного подавления приемных устройств потребителей ГНСС путем облучения носителей, местных предметов и подстилающей поверхности помехой и создания за счет отражений и многолучевого распространения радиоволн многочисленных направлений прихода помехи на приемные устройства потребителей ГНСС. Это делает невозможным формирование «нулей» в диаграмме направленности ЦАР во всех необходимых для компенсации помех направлениях даже в антенных решетках с большим числом элементов и, соответственно, повышает эффективность радиоэлектронного подавления приемных устройств потребителей ГНСС.
Указанный технический результат достигается тем, что в известном способе РЭП приемных устройств потребителей ГНСС, основанном на создании преднамеренных радиопомех в заданной области пространства на заданном интервале времени, согласно изобретению дополнительно создают и излучают помехи в направлении носителей, местных предметов и подстилающей поверхности в районе нахождения приемных устройств потребителей ГНСС и обеспечивают за счет отражений и многолучевого распространения радиоволн многочисленные направления прихода помех на антенны приемных устройств потребителей ГНСС.
Указанный технический результат достигается тем, что поляризация дополнительно создаваемой помехи реализуется ортогональной (противоположного направления вращения) по сравнению с поляризацией сигнала, используемой в системе ГНСС.
Сущность изобретения заключается в том, что дополнительно создают и излучают помехи в направлении носителей, местных предметов и подстилающей поверхности в районе нахождения приемных устройств потребителей ГНСС и обеспечивают за счет отражений и многолучевого распространения радиоволн многочисленные направления прихода помех на антенны приемных устройств потребителей ГНСС. Это делает невозможным формирование «нулей» в диаграмме направленности ЦАР во всех необходимых для компенсации помех направлениях, особенно в антенных решетках с малым числом элементов. Учитывая, что при отражении радиоволн с круговой поляризацией (в системе ГНСС используются сигналы с круговой поляризацией) направление вращения вектора поляризации изменяется на противоположное [см., например, Татаринов В.Н., Татаринов С.В, Лигтхарт Л.П. Введение в современную теорию поляризации радиолокационных сигналов (Том 1. Поляризация плоских электромагнитных волн и ее преобразования). - Томск: Изд. Томского университета, 2012, с. 273-276], поляризация дополнительно создаваемой помехи реализуется ортогональной (противоположного направления вращения) по сравнению с поляризацией сигнала, используемой в системе ГНСС. Этим обеспечивается согласованный по поляризации прием помех, отраженных от элементов носителя местных предметов и подстилающей поверхности, приемными устройствами потребителей ГНСС. Кроме того, при радиоэлектронном подавлении приемных устройств навигационной аппаратуры потребителей ГНСС по боковым лепесткам их диаграмм направленности антенн уровень помех на входе приемных устройств на кросс поляризации может быть выше, чем на рабочей поляризации [см., например, Перунов Ю.М, Фомичев К.И., Юдин Л.М., Радиоэлектронное подавление информационных каналов систем управления оружием. - М.: «Радиотехника», 2003, с. 393-394]. Это является дополнительным положительным фактором создания помехи на поляризации ортогональной (кросс поляризации) по сравнению с поляризацией сигнала, используемой в системе ГНСС.
Таким образом достигается указанный в изобретении технический результат.
Способ может быть реализован, например, следующим образом.
Предварительно размещают в готовности к функционированию по назначению в каждом заданном позиционном районе (на поверхности земли, поверхности моря либо на летательном аппарате) по два передатчика помех, отличающихся поляризацией излучаемой помехи. Первый передатчик является аналогичным прототипу с поляризацией излучаемой помехи совпадающей с поляризацией сигнала, используемого в системе ГНСС, второй с ортогональной поляризацией (противоположного направления вращения). Техническая реализация антенных систем передатчиков может быть выполнена аналогично известным решениям [см., например, патент RU №2638902, С1, МПК Н01Р 1/161, опубл. 18.12.2017 г.]. Основная работа передатчиков организуется аналогично прототипу. При обнаружении носителей приемных устройств потребителей ГНСС антенна первого передатчика помех ориентируется в направлении носителя. Антенна второго передатчика помех ориентируется в направлении местных предметов и подстилающей поверхности в районе нахождения носителя. При этом за счет многолучевого распространение радиоволн и отражений от носителей, местных предметов и подстилающей поверхности на антенную систему приемных устройств потребителей ГНСС обеспечивается приход помех с различных пространственных направлений. Это делает невозможным формирование «нулей» в диаграмме направленности ЦАР приемных устройств потребителей ГНСС во всех необходимых для компенсации помех направлениях даже в антенных решетках с большим числом элементов. Возможность технической реализации второго передатчика помех оценим по требованию к его энергетическому потенциалу. Мощность помех, отраженных от элементов носителей, местных предметов и подстилающей поверхности, на входе приемных устройств потребителей ГНСС должна превышать уровень сигналов, принимаемых со спутников (Po=157-162 дБ Вт [см., например, Соловьев Ю.А. Системы спутниковой навигации. - М.: Эко - Трендз, 2000, с. 30-31]) и уровень теплового шума на входе приемных устройств (Рш) равного [см., например, Справочник по радиолокаци. Под ред. М. Сколника. Том 1. Основы радиолокации. Под ред. Я.С. Ицхоки. М. «Сов. Радио, 1976, с. 55]:
Рш=k Т В,
где:
k - постоянная Больцмана, k=1,38*10-23, Дж/К;
Т - температура, K;
В - ширина полосы частот приемных устройств потребителей ГНСС, Гц.
Мощность помехи на входе приемных устройств определим в условиях распространения волн в свободном пространстве [см., например, Долуханов М.П. Распространение радиоволн. Учебник для вузов. М., «Связь», 1972, с. 19-24]:
Figure 00000001
где:
PпGп - выходная мощность и коэффициент направленного действия антенны передатчика помех, соответственно;
R - дальность от передатчика помех до элементов носителей, местных предметов и подстилающей поверхности в районе нахождения приемных устройств потребителей ГНСС;
σ - эффективная поверхность рассеяния элементов носителей, местных предметов и подстилающей поверхности;
Ro - дальность от элементов носителей, местных предметов и подстилающей поверхности до приемных устройств потребителей ГНСС;
G - коэффициент направленного действия антенн приемных устройств потребителей ГНСС;
λ - длина волны несущего колебания радиосигнала ГНСС.
Расчеты показывают, что при Т=290K (17°С), В=2 МГц мощность теплового шума на входе приемных устройств равна Рш=-141 дБ Вт. Тогда для типовых значений R=25.…30 км, σ=1…10 м2, Ro=100…500 м, G=1, λ=18; 24 см. условие Рп вх≥Рш выполняется при PпGп ≥ 103-105 Вт. Техническая реализация таких передатчиков помех может быть выполнена одним из известных решений.
При перемещении носителей приемных устройств потребителей ГНСС по информации аппаратуры обнаружения и определения местоположения объектов РЭП уточняются ориентации антенн передатчиков помех. Таким образом обеспечивается непрерывность воздействия помех.
Этим достигается указанный в изобретении технический результат.

Claims (2)

1. Способ радиоэлектронного подавления приемных устройств потребителей глобальных навигационных спутниковых систем (ГНСС), основанный на создании преднамеренных радиопомех в заданной области пространства на заданном интервале времени путем обнаружения и определения местоположения объекта радиоподавления и размещения в каждом заданном позиционном районе передатчика радиопомех, создающего в месте положения объекта радиоподавления требуемый уровень мощности радиопомех, отличающийся тем, что дополнительно создают и излучают радиопомехи вторым передатчиком, который размещают в каждом заданном позиционном районе, при обнаружении носителей приемных устройств потребителей ГНСС антенну первого передатчика радиопомех ориентируют в направлении носителя, антенну второго передатчика радиопомех ориентируют в направлении местных предметов и подстилающей поверхности в районе нахождения носителя, при этом за счет многолучевого распространения радиоволн и отражений от носителей, местных предметов и подстилающей поверхности на антенную систему приемных устройств потребителей ГНСС обеспечивается приход радиопомех с различных пространственных направлений, уровень мощности создаваемых радиопомех определяют из условия превышения мощности радиопомех, отраженных от элементов носителей, местных предметов и подстилающей поверхности, уровня сигналов, принимаемых со спутников на входе приемных устройств потребителей ГНСС, кроме того, для обеспечения непрерывности воздействия радиопомех при перемещении носителей приемных устройств потребителей ГНСС по информации аппаратуры обнаружения и определения местоположения объектов радиоподавления уточняют ориентации антенн передатчиков радиопомех.
2. Способ по п. 1, отличающийся тем, что поляризацию дополнительно создаваемой радиопомехи вторым передатчиком реализуют ортогональной поляризацией (противоположного направления вращения) по сравнению с поляризацией сигнала, используемой в системе ГНСС.
RU2018119810A 2018-05-29 2018-05-29 Способ радиоэлектронного подавления приемных устройств потребителей глобальных навигационных спутниковых систем RU2696558C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018119810A RU2696558C1 (ru) 2018-05-29 2018-05-29 Способ радиоэлектронного подавления приемных устройств потребителей глобальных навигационных спутниковых систем

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018119810A RU2696558C1 (ru) 2018-05-29 2018-05-29 Способ радиоэлектронного подавления приемных устройств потребителей глобальных навигационных спутниковых систем

Publications (1)

Publication Number Publication Date
RU2696558C1 true RU2696558C1 (ru) 2019-08-05

Family

ID=67586518

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018119810A RU2696558C1 (ru) 2018-05-29 2018-05-29 Способ радиоэлектронного подавления приемных устройств потребителей глобальных навигационных спутниковых систем

Country Status (1)

Country Link
RU (1) RU2696558C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2726939C1 (ru) * 2019-10-15 2020-07-17 Акционерное общество "Научно-технический центр радиоэлектронной борьбы" Комплекс создания радиопомех аппаратуре потребителей глобальных навигационных спутниковых систем

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2178953C2 (ru) * 1995-12-15 2002-01-27 Секстант Авионик Способ исключения влияния многолучевого распространения в приемнике для приема сигналов местоположения от спутника и приемник для приема сигналов местоположения от спутника
US6697008B1 (en) * 2003-02-28 2004-02-24 Rockwell Collins, Inc. Distributed electronic warfare system
US7650261B2 (en) * 2003-02-21 2010-01-19 Ntt Docomo, Inc. Multi-path generating apparatus, a multi-path fading simulator, and a multi-path generating method
JP2012178704A (ja) * 2011-02-25 2012-09-13 Fujitsu Ltd 通信妨害装置および通信妨害方法
RU2507646C1 (ru) * 2012-06-18 2014-02-20 Федеральное государственное унитарное предприятие "Ростовский-на-Дону научно-исследовательский институт радиосвязи" (ФГУП "РНИИРС") Способ формирования провалов в диаграммах направленности фазированных антенных решеток в направлениях источников помех
RU2539563C1 (ru) * 2013-11-06 2015-01-20 Открытое акционерное общество научно-внедренческое предприятие "ПРОТЕК" Система радиоподавления навигационной аппаратуры потребителей гнсс противника, совместимая с отечественной аппаратурой потребителей гнсс
RU2540686C1 (ru) * 2013-07-18 2015-02-10 Открытое акционерное общество "Таганрогский научно-исследовательский институт связи" (ОАО "ТНИИС") Выходная система передатчика помех
RU2541886C2 (ru) * 2012-06-09 2015-02-20 Открытое акционерное общество "Таганрогский научно-исследовательский институт связи" (ОАО "ТНИИС") Комплекс радиоэлектронного подавления системы радиосвязи
US20150270923A1 (en) * 2009-06-08 2015-09-24 Lawrence Livermore National Security, Llc Transmit-reference methods in software defined radio platforms for communication in harsh propagation environments and systems thereof
RU2563972C1 (ru) * 2014-03-27 2015-09-27 Открытое акционерное общество научно-внедренческое предприятие "ПРОТЕК" Пространственно-распределенный комплекс средств создания радиопомех
RU2581602C1 (ru) * 2014-12-29 2016-04-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Московский авиационный институт (национальный исследовательский университет) (МАИ) Способ радиоэлектронного подавления аппаратуры потребителей спутниковых радионавигационных систем в пределах защищаемой территории
KR20160100734A (ko) * 2015-02-16 2016-08-24 국방과학연구소 전파방해신호 송수신장치, 전파방해 시스템 및 전파방해신호 송수신방법
RU2615012C2 (ru) * 2014-01-16 2017-04-03 ООО "Топкон Позишионинг Системс" Способы моделирования многолучевых отражений сигналов глобальных навигационных спутниковых систем с помощью испытательных стендов и устройства для реализации способов испытаний

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2178953C2 (ru) * 1995-12-15 2002-01-27 Секстант Авионик Способ исключения влияния многолучевого распространения в приемнике для приема сигналов местоположения от спутника и приемник для приема сигналов местоположения от спутника
US7650261B2 (en) * 2003-02-21 2010-01-19 Ntt Docomo, Inc. Multi-path generating apparatus, a multi-path fading simulator, and a multi-path generating method
US6697008B1 (en) * 2003-02-28 2004-02-24 Rockwell Collins, Inc. Distributed electronic warfare system
US20150270923A1 (en) * 2009-06-08 2015-09-24 Lawrence Livermore National Security, Llc Transmit-reference methods in software defined radio platforms for communication in harsh propagation environments and systems thereof
JP2012178704A (ja) * 2011-02-25 2012-09-13 Fujitsu Ltd 通信妨害装置および通信妨害方法
RU2541886C2 (ru) * 2012-06-09 2015-02-20 Открытое акционерное общество "Таганрогский научно-исследовательский институт связи" (ОАО "ТНИИС") Комплекс радиоэлектронного подавления системы радиосвязи
RU2507646C1 (ru) * 2012-06-18 2014-02-20 Федеральное государственное унитарное предприятие "Ростовский-на-Дону научно-исследовательский институт радиосвязи" (ФГУП "РНИИРС") Способ формирования провалов в диаграммах направленности фазированных антенных решеток в направлениях источников помех
RU2540686C1 (ru) * 2013-07-18 2015-02-10 Открытое акционерное общество "Таганрогский научно-исследовательский институт связи" (ОАО "ТНИИС") Выходная система передатчика помех
RU2539563C1 (ru) * 2013-11-06 2015-01-20 Открытое акционерное общество научно-внедренческое предприятие "ПРОТЕК" Система радиоподавления навигационной аппаратуры потребителей гнсс противника, совместимая с отечественной аппаратурой потребителей гнсс
RU2615012C2 (ru) * 2014-01-16 2017-04-03 ООО "Топкон Позишионинг Системс" Способы моделирования многолучевых отражений сигналов глобальных навигационных спутниковых систем с помощью испытательных стендов и устройства для реализации способов испытаний
RU2563972C1 (ru) * 2014-03-27 2015-09-27 Открытое акционерное общество научно-внедренческое предприятие "ПРОТЕК" Пространственно-распределенный комплекс средств создания радиопомех
RU2581602C1 (ru) * 2014-12-29 2016-04-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Московский авиационный институт (национальный исследовательский университет) (МАИ) Способ радиоэлектронного подавления аппаратуры потребителей спутниковых радионавигационных систем в пределах защищаемой территории
KR20160100734A (ko) * 2015-02-16 2016-08-24 국방과학연구소 전파방해신호 송수신장치, 전파방해 시스템 및 전파방해신호 송수신방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2726939C1 (ru) * 2019-10-15 2020-07-17 Акционерное общество "Научно-технический центр радиоэлектронной борьбы" Комплекс создания радиопомех аппаратуре потребителей глобальных навигационных спутниковых систем

Similar Documents

Publication Publication Date Title
Dempster et al. Interference localization for satellite navigation systems
US9651652B2 (en) Interference cancellation system for location and direction finding
EP2801838B1 (en) Evaluating the position of an aerial vehicle
Abramovich et al. Principles of mode-selective MIMO OTHR
Stove et al. Passive maritime surveillance using satellite communication signals
US8593334B2 (en) Split aperture monopulse antenna system
CN103869347A (zh) 一种北斗卫星导航定位系统
Aldowesh et al. A passive bistatic radar experiment for very low radar cross-section target detection
RU2696558C1 (ru) Способ радиоэлектронного подавления приемных устройств потребителей глобальных навигационных спутниковых систем
US10890659B2 (en) Light-weight radar system
CN109425875B (zh) 卫星信号分离处理装置和方法
Ahmed et al. A novel hybrid AoA and TDoA solution for transmitter positioning
Davydov et al. Selection basis of an antenna for a radio receiver of a small-sized module of a pulse-phase radio navigation system of a moving object
RU2726939C1 (ru) Комплекс создания радиопомех аппаратуре потребителей глобальных навигационных спутниковых систем
Davydov et al. The algorithm for processing signals of a pulse-phase radio navigation system in a quasi-differential mode using signals from global navigation satellite systems
Liaquat et al. A framework for preventing unauthorized drone intrusions through radar detection and GPS spoofing
Jang et al. Array antenna design for passive coherent location systems with non-uniform array configurations
Molchanov et al. Fly eye radar or micro-radar sensor technology
Tsikin et al. Angle-of-arrival GPS integrity monitoring insensitive to satellite constellation geometry
Pui Large scale antenna array for GPS bistatic radar
Bakhvalov et al. Phase direction finding radio engineering system
Ochi et al. Feasibility Study on a PCL Radar for Space Debris Detection
US11943047B2 (en) Apparatus and method of CRPA neutralization for illegal unmanned aerial vehicle
RU2685509C1 (ru) Комплекс радиоэлектронной борьбы с беспилотными летательными аппаратами
Kelner et al. Mobile radio beacons in coastal reserved navigation system for ships

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20200530