RU2695985C1 - Нейросетевая система обнаружения и оперативной идентификации морских целей - Google Patents

Нейросетевая система обнаружения и оперативной идентификации морских целей Download PDF

Info

Publication number
RU2695985C1
RU2695985C1 RU2018137341A RU2018137341A RU2695985C1 RU 2695985 C1 RU2695985 C1 RU 2695985C1 RU 2018137341 A RU2018137341 A RU 2018137341A RU 2018137341 A RU2018137341 A RU 2018137341A RU 2695985 C1 RU2695985 C1 RU 2695985C1
Authority
RU
Russia
Prior art keywords
inputs
outputs
input
output
neural network
Prior art date
Application number
RU2018137341A
Other languages
English (en)
Inventor
Анна Михайловна Василенко
Валерий Александрович Пятакович
Original Assignee
Федеральное Государственное Казенное Военное Образовательное Учреждение Высшего Образования "Тихоокеанское Высшее Военно-Морское Училище Имени С.О. Макарова" Министерства Обороны Российской Федерации (Г. Владивосток)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное Государственное Казенное Военное Образовательное Учреждение Высшего Образования "Тихоокеанское Высшее Военно-Морское Училище Имени С.О. Макарова" Министерства Обороны Российской Федерации (Г. Владивосток) filed Critical Федеральное Государственное Казенное Военное Образовательное Учреждение Высшего Образования "Тихоокеанское Высшее Военно-Морское Училище Имени С.О. Макарова" Министерства Обороны Российской Федерации (Г. Владивосток)
Priority to RU2018137341A priority Critical patent/RU2695985C1/ru
Application granted granted Critical
Publication of RU2695985C1 publication Critical patent/RU2695985C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/04Systems determining presence of a target
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N7/00Computing arrangements based on specific mathematical models
    • G06N7/02Computing arrangements based on specific mathematical models using fuzzy logic
    • G06N7/06Simulation on general purpose computers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Software Systems (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Health & Medical Sciences (AREA)
  • Data Mining & Analysis (AREA)
  • Automation & Control Theory (AREA)
  • Biomedical Technology (AREA)
  • Fuzzy Systems (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Algebra (AREA)
  • Artificial Intelligence (AREA)
  • Computational Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Evolutionary Computation (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Acoustics & Sound (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

Изобретение относится к области гидроакустики. Технический результат заключается в обеспечении оперативной автоматической идентификации морских целей, обнаруженных в режиме шумопеленгования. Технический результат достигается за счет нейросетевой системы обнаружения и оперативной идентификации морских целей, содержащей аналого-цифровой преобразователь, рециркулятор, узкополосные фильтры, перемножители, интеграторы, квадраторы, сумматоры, вычислители квадратного корня, устройства задержки, пороговые устройства, постоянное запоминающее устройство, блок предварительной обработки, блок подготовки данных, модуль нейросетевого распознавания, реализованный в виде блока обучения, охваченного обратной связью с категоризатором типа цели. 5 ил.

Description

Изобретение относится к области гидроакустики и может быть использовано для построения интеллектуальных систем распознавания (классификации) и автоматической идентификации источников гидроакустических сигналов, обнаруженных в режиме шумопеленгования. Распознавание (классификация) и идентификация морских целей по их амплитудно-частотным характеристикам с помощью вычислительных операций нейронных сетей позволяет ускорить процесс распознавания (классификации) и повысить вероятность идентификации типов как для надводных, так и для подводных целей. Оперативность идентификации морских целей достигается предварительным сжатием информации об объекте, что сокращает время, затрачиваемое на работу и процесс обучения распознающей нейронной сети.
Известно устройство обнаружения широкополосного шума с дискретными компонентами, по сути являющееся многоканальным энергетическим приемником (см. Бурдик B.C. Анализ гидроакустических систем. - Л.: Судостроение, 1988, С. 351–352). В качестве его основных элементов используются аналого-цифровой преобразователь, рециркулятор, набор узкополосных фильтров, квадратичные детекторы, выходное напряжение которых пропорционально квадрату входного, интеграторы и пороговое устройство. Помехоустойчивость приемника на основе квадратичного детектора, называемого энергетическим приемником, так как его выходная статистика эквивалентна полной энергии входного процесса, является нижней границей всех оптимальных приемников. Поэтому в неблагоприятных условиях, которые определяются особенностями помехи, акустикой окружающей среды (профиль скорости звука, глубина и наклон дна и т.п.) эффективность приемника на основе квадратичного детектора может резко ухудшиться.
Недостатки аналога учтены в устройстве обнаружения шумовых гидроакустических сигналов на основе квадратурного приемника, взятом за прототип. Устройство-прототип содержит аналого-цифровой преобразователь, на вход которого подается входной сигнал, а выход которого соединен с входом рециркулятора, выходы которого соединены с входами М узкополосных фильтров, выходы которых соединены с первыми входами Μ пар перемножителей, выходы которых соединены с входами Μ пар интеграторов, выходы которых соединены с входами Μ пар квадраторов, выходы которых попарно соединены с входами Μ сумматоров, выходы которых соединены с входами М вычислителей квадратного корня, выходы которых соединены с входами Μ устройств задержки, выходы которых соединены с М входами сумматора, выход которого соединен с входом порогового устройства; 2М выходов постоянного запоминающего устройства соединены со вторыми входами М пар перемножителей; выходы управляющего устройства соединены с управляющими входами аналого-цифрового преобразователя, рециркулятора, постоянного запоминающего устройства и порогового устройства соответственно (RU, патент 2549207,G01S 15/04; опубл. 20.04.2015, бюл. №11).
Устройство-прототип обнаруживает шумовые гидроакустические сигналы в виде дискретных составляющих на фоне аддитивной помехи. Алгоритм работы устройства основан на квадратурном детектировании в каждом частотном канале. Использование большего объема априорной информации об обнаруживаемом полезном сигнале позволяет увеличивать помехоустойчивость обнаружителя широкополосных сигналов и, соответственно, дальность действия гидроакустической системы шумопеленгования.
При практической реализации устройства обнаружения шумовых гидроакустических сигналов на основе квадратурного приемника необходимо определить частотные характеристики узкополосных фильтров, а именно полосы пропускания фильтров (Δfm) и их центральные частоты (fm).
Определение вышеуказанных характеристик основано на необходимости обеспечения постоянной скважности фильтров (отношения ширины полосы фильтра к его центральной частоте) во всем диапазоне частот, а именно
Figure 00000001
После элементарных преобразований можно получить определяющие соотношения
Figure 00000002
При этом количество узкополосных фильтров в гребенке для общей полосы частот ΔF составит
Figure 00000003
Время анализа (интегрирования) в полосе каждого фильтра будет определяться выражением
Figure 00000004
(1)
Очевидно, что в случае накопления откликов от нескольких каналов обнаружителя (суммирования выходных процессов) необходимо согласование по времени анализа, т.е. введение временных задержек на выходах каналов перед операцией суммирования.
Для гребенки из М фильтров параметры задержки можно определить по формуле
Figure 00000005
(2)
Введение операции накопления откликов обусловлено необходимостью повышения эффективности обнаружения звукоряда полигармонического сигнала и учета возможного влияния эффекта Доплера при взаимном перемещении приемника и источника сигнала.
Недостатком устройства-прототипа является то, что оно не позволяет обеспечить распознавание (классификацию) и оперативную автоматическую идентификацию обнаруживаемых в режиме шумопеленгования объектов.
Задача, на решение которой направлено заявляемое изобретение, заключается в дальнейшей разработке структурной схемы устройства-прототипа для его реализации как нейросетевой системы обнаружения и оперативной идентификации морских целей. Система должна обеспечивать обнаружение источников гидроакустических сигналов в режиме шумопеленгования, их распознавание (классификацию) и оперативную автоматическую идентификацию по амплитудно-частотным характеристикам на основе разработанных нейронных сетей с предварительным сжатием информации об объекте и библиотеки математически обработанных образов спектрограмм морских целей.
Техническим результатом предлагаемого изобретения является обеспечение оперативной автоматической идентификации морских целей, обнаруженных в режиме шумопеленгования.
Указанный технический результат достигается тем, что разработана нейросетевая система обнаружения и оперативной идентификации морских целей, содержащая аналого-цифровой преобразователь, на вход которого подается входной сигнал, а выход которого соединен с входом рециркулятора, выходы которого соединены с входами М узкополосных фильтров. Выходы М узкополосных фильтров соединены с первыми входами Μ пар перемножителей, выходы которых соединены с входами Μ пар интеграторов, выходы которых соединены с входами Μ пар квадраторов. Выходы Μ пар квадраторов попарно соединены с входами Μ сумматоров, выходы которых соединены с входами М вычислителей квадратного корня, выходы которых соединены с входами Μ устройств задержки. Выходы Μ устройств задержки соединены с М входами сумматора, выход которого соединен с входом порогового устройства. 2М выходов постоянного запоминающего устройства соединены со вторыми входами М пар перемножителей. Выходы управляющего устройства соединены с управляющими входами аналого-цифрового преобразователя, рециркулятора, постоянного запоминающего устройства и порогового устройства соответственно. Принципиальным отличием от прототипа является то, что дополнительно введены блок предварительной обработки, состоящий из последовательно соединенных фильтра и блока подготовки данных, а также модуль нейросетевого распознавания, реализованный в виде блока обучения, охваченного обратной связью с категоризатором типа цели. При этом выход порогового устройства соединен с входом фильтра блока предварительной обработки. Выход блока подготовки данных блока предварительной обработки соединен с входом категоризатора типа цели модуля нейросетевого распознавания, на выходе которого формируется сигнал по типу цели согласно степени принадлежности исследуемой области спектра объекту идентификации.
Как известно, извлечение полезной информации из обнаруженных гидроакустических сигналов определяет основы алгоритмизации обработки данных в интеллектуальных системах распознавания (классификации) и автоматической идентификации источников гидроакустических сигналов. Процесс формирования и предварительной обработки входных информационных массивов (векторов признаков) предназначен для решения двух задач, первая из которых представляет собой создание библиотеки эталонных образцов, необходимых для обучения распознающей сети, и вторая для распознавания целей (см. Пятакович В.А., Василенко А.М., Хотинский О.В. Распознавание и классификация источников формирования полей различной физической природы в морской среде: монография. - Владивосток: Морской гос. ун-т им. Г.И. Невельского, 2017. - 255 с..; Пятакович В.А., Василенко А.М. Предварительная обработка информации нейроноподобным категоризатором при распознавании образов морских объектов. Подводное морское оружие. - СПб: 2017. - Вып. 1 (32). - С. 31-34; Пятакович В.А., Василенко А.М. Перспективы и ограничения использования геометрических методов распознавания акустических образов морских объектов применительно к задаче управления нейросетевой экспертной системой. Фундаментальные исследования. - М: 2017. - № 7. - С. 65-70; Пятакович В.А., Василенко А.М., Хотинский О.В. Нейросетевые технологии в интеллектуальных системах обнаружения и оперативной идентификации морских целей: монография. - Владивосток: Морской гос. ун-т им. Г.И. Невельского, 2018. - 263 с.).
Обучение распознающей сети производится на основе известного алгоритма обратного распространения ошибки, реализующего градиентный метод оптимизации функционала вида
Figure 00000006
где Т - вектор синаптических весов сети; (Х*,Y*) - обучающие пары;
Figure 00000007
- норма вектора.
Изобретение поясняется чертежами, где на фиг. 1 показана функциональная схема нейросетевой системы обнаружения и оперативной идентификации морских целей, содержащая следующие элементы:
1. Аналого-цифровой преобразователь (АЦП).
2. Рециркулятор.
3.1–3.М. Набор цифровых узкополосных полосовых фильтров (УПФ), перекрывающих ожидаемый частотный диапазон, с различной шириной полосы пропускания и различными центральными частотами, но с постоянной скважностью фильтров во всем диапазоне частот.
4.1.1, 4.2.1–4.1.М, 4.2.М. Квадраторы.
5.1.1, 5.2.1–5.1.М, 5.2.М. Интеграторы.
6. Пороговое устройство.
7.1.1, 7.2.1–7.1.М, 7.2.М. Перемножители.
8. Постоянное запоминающее устройство (ПЗУ).
9.1–9.М. Сумматоры.
9. Сумматор.
10.1–10.М. Вычислители квадратного корня.
11.1-11.М. Устройства задержки.
12. Управляющее устройство.
13. Блок предварительной обработки.
13.1. Фильтр.
13.2. Блок подготовки данных.
14. Модуль нейросетевого распознавания.
14.1. Категоризатор типа цели.
14.2. Блок обучения.
Общая структура распознающей сети представлена на фиг. 2. Нейроны, составляющие сеть, одинаковы и имеют функцию активации известного типа
Figure 00000008
где x2n (i), yn (i) и In (i) - значения r - го входного сигнала, выходного сигнала и внешнего смещения n - го нейрона i - го слоя; Ni - число нейронов в i - м слое; i = 1, 2, 3.
На фиг. 3 и фиг. 4 представлены результаты вычислительного эксперимента по определению коэффициента распознавания (классификации), определяемого как отношение числа распознанных объектов к общему числу испытаний в процентах, для надводных и подводных объектов в условиях зашумления сигнала в диапазоне от -10 до 20 дБ. Как видно из рисунков, распознавание (классификация) морских целей с помощью вычислительных операций сети персептрон позволяет повысить вероятность классификации как надводных, так и подводных целей на 5-7%.
На фиг. 5 приведена таблица интерпретации элементов выходного вектора распознавания (классификации) гидроакустических сигналов по амплитудно-частотной характеристике.
Нейросетевая система обнаружения и оперативной идентификации морских целей работает следующим образом (см. фиг. 1).
На вход АЦП 1 поступает входной процесс x(t) с частотой дискретизации, удовлетворяющей требованиям теоремы Котельникова
Figure 00000009
С выхода АЦП 1 дискретные отсчеты поступают на вход рециркулятора 2, где формируется и с каждым новым отсчетом обновляется текущая дискретная выборка x(n) длиной N отсчетов.
Сформированная текущая дискретная выборка входного процесса x(n) поступает одновременно на входы М узкополосных фильтров 3.1-3.М.
С выходов М узкополосных фильтров 3.1-3.М, соответствующие узкополосные процессы одновременно поступают на первые входы М пар перемножителей 7.1.1, 7.2.1-7.1.М, 7.2.М, с выходов которых результаты перемножения поступают на входы М пар интеграторов 5.1.1,5.2.1-5.1.М,5.2.М. Время интегрирования в полосе каждого фильтра определяется выражением (1).
Из ПЗУ 8 на вторые входы М пар перемножителей 7.1.1, 7.2.1-7.1.М, 7.2.М поступают М пар синусных и косинусных составляющих (монохроматических) цифровых сигналов с частотами, соответствующими центральным частотам УПФ fm.
С выходов М пар интеграторов 5.1.1, 5.2.1-5.1.М, 5.2.М результаты интегрирования поступают на входы М пар квадраторов 4.1.1, 4.2.1-4.1.М, 4.2.М, с выходов которых квадраты откликов попарно поступают на входы М сумматоров 9.1-9.М, с выходов которых результаты суммирования поступают на входы М вычислителей квадратного корня 10.1-10.М, с выходов которых результаты вычислений поступают на входы М устройств задержки 11.1-11.М. Параметры задержки в каждом частотном канале определяются соотношением (2).
С выходов М устройств задержки 11.1-11.М отклики поступают на входы сумматора 9, с выхода которого результат суммирования поступает на вход порогового устройства 6, где принимается решение о наличии или отсутствии сигнала.
Далее сигнал с выхода порогового устройства 6 поступает на вход фильтра 13.1 блока предварительной обработки 13, задачей которого является сокращение времени, затрачиваемого на работу и процесс обучения нейронной сети. Оперативность идентификации морских целей достигается сжатием информации об объекте в блоке подготовки данных 13.2 блока предварительной обработки 13.
Задача фильтрации в блоке предварительной обработки 13 сводится к удалению из выходного сигнала порогового устройства 6 дискретных составляющих, не удовлетворяющих диапазону частот цели, идентифицируемой нейронной сетью. Параметры фильтра 13.1 были выбраны исходя из анализа записей акустических сигналов типовых целей, полученных при натурных испытаниях.
Выходной сигнал фильтра 13.1 поступает на вход блока подготовки данных 13.2, в котором для прореженного набора дискретных составляющих, как входного информационного массива распознающей сети, содержащего признаки подлежащие категоризации, вычисляются статистические параметры, позволяющие построить годограф состояния идентифицируемого объекта и производить предварительное сжатие информации об объекте по методу Колмогорова - Хинчина.
Сигнал с выхода блока подготовки данных 13.2 передается на вход категоризатора типа цели 14.1 модуля нейросетевого распознавания 14. Задача распознавания (классификации) и идентификации обнаруженных источников гидроакустических сигналов решается с помощью трехслойной нейронной сети, которая позволяет выделить семь объектов и один неизвестный класс, что в перспективе позволит значительно расширить круг распознаваемых морских технических объектов.
Анализ низкочастотной, среднечастотной и высокочастотной составляющих амплитудно-частотной характеристики производится раздельно, так как генеральные признаки для различных типов объектов могут находиться в различных частотных диапазонах. Как показано на фиг. 2, на каждый нейрон первого слоя через синапсы с весами {Tij (1)}, i = 1, 2, 3; j = 1, 2, 3 подаются все компоненты входного вектора
Figure 00000010
На каждый нейрон второго слоя через синапсы с весами {Tij (2)}, i = 1, 2, 3; j = 1, 2, 3 подаются выходные сигналы первого слоя. На каждый нейрон третьего слоя через синапсы с весами {Tij (3)}, i = 1, 2, 3; j = 1, 2, 3 подаются выходные сигналы второго слоя. Значения выходных сигналов третьего слоя образуют вектор решений
Figure 00000011
элементы которого представлены в табл. 1. на фиг. 5.
Выходной сигнал категоризатора типа цели 14.1 (см. фиг. 1) поступает в память блока обучения 14.2, где происходит сравнение результатов распознающей сети с математическими образами спектрограмм морских объектов для формирования вывода о степени принадлежности анализируемой области спектра объекту идентификации, а настройка весовых коэффициентов распознающей сети определяется алгоритмом обратного распространения ошибки. Основная идея которого состоит в распространении сигналов ошибки от выходов сети к её входам, в направлении, обратном прямому распространению сигналов в обычном режиме работы. Для возможности применения метода обратного распространения ошибки необходимо, чтобы передаточная функция нейронов была дифференцируема.
Сформированный выходным слоем распознающей нейронной сети сигнал по типу цели поступает на выход блока 14.1, который является выходом системы.
Таким образом, обнаружив цель в режиме шумопеленгования устройством на основе квадратурного приемника и применив вычислительные операции разработанных нейронных сетей с предварительным сжатием информации об объекте, можно распознавать (классифицировать)цель, оперативно и автоматически идентифицировать ее по амплитудно-частотным характеристикам.
Предлагаемая нейросетевая система обнаружения и оперативной идентификации морских целей промышленно применима, так как для ее создания используются распространенные компоненты и изделия радиотехнической промышленности и вычислительной техники.

Claims (1)

  1. Нейросетевая система обнаружения и оперативной идентификации морских целей, содержащая аналого-цифровой преобразователь, на вход которого подается входной сигнал, а выход которого соединен с входом рециркулятора, выходы которого соединены с входами М узкополосных фильтров, выходы которых соединены с первыми входами Μ пар перемножителей, выходы которых соединены с входами Μ пар интеграторов, выходы которых соединены с входами Μ пар квадраторов, выходы которых попарно соединены с входами Μ сумматоров, выходы которых соединены с входами М вычислителей квадратного корня, выходы которых соединены с входами Μ устройств задержки, выходы которых соединены с М входами сумматора, выход которого соединен с входом порогового устройства; 2М выходов постоянного запоминающего устройства соединены со вторыми входами М пар перемножителей; выходы управляющего устройства соединены с управляющими входами аналого-цифрового преобразователя, рециркулятора, постоянного запоминающего устройства и порогового устройства соответственно, отличающаяся тем, что дополнительно введены блок предварительной обработки, состоящий из последовательно соединенных фильтра и блока подготовки данных, а также модуль нейросетевого распознавания, реализованный в виде блока обучения, охваченного обратной связью с категоризатором типа цели; при этом выход порогового устройства соединен с входом фильтра блока предварительной обработки, а выход блока подготовки данных блока предварительной обработки соединен с входом категоризатора типа цели модуля нейросетевого распознавания, на выходе которого формируется сигнал по типу цели согласно степени принадлежности исследуемой области спектра объекту идентификации.
RU2018137341A 2018-10-22 2018-10-22 Нейросетевая система обнаружения и оперативной идентификации морских целей RU2695985C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018137341A RU2695985C1 (ru) 2018-10-22 2018-10-22 Нейросетевая система обнаружения и оперативной идентификации морских целей

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018137341A RU2695985C1 (ru) 2018-10-22 2018-10-22 Нейросетевая система обнаружения и оперативной идентификации морских целей

Publications (1)

Publication Number Publication Date
RU2695985C1 true RU2695985C1 (ru) 2019-07-29

Family

ID=67586899

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018137341A RU2695985C1 (ru) 2018-10-22 2018-10-22 Нейросетевая система обнаружения и оперативной идентификации морских целей

Country Status (1)

Country Link
RU (1) RU2695985C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2726992C1 (ru) * 2020-01-09 2020-07-17 Федеральное Государственное Казенное Военное Образовательное Учреждение Высшего Образования "Тихоокеанское Высшее Военно-Морское Училище Имени С.О. Макарова" Министерства Обороны Российской Федерации (Г. Владивосток) Система обнаружения и классификации морских целей с использованием математической модели определения типа цели
CN112257521A (zh) * 2020-09-30 2021-01-22 中国人民解放军军事科学院国防科技创新研究院 基于数据增强和时频分离的cnn水声信号目标识别方法
RU221749U1 (ru) * 2023-07-03 2023-11-21 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военная академия воздушно-космической обороны имени Маршала Советского Союза Г.К. Жукова" Министерства обороны Российской Федерации Интегрированное устройство комплексного опознавания воздушных объектов

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2359308C2 (ru) * 2007-11-29 2009-06-20 Нелли Алексеевна Седова Нейросетевой регулятор для управления курсом судна
RU2013126313A (ru) * 2013-06-03 2014-12-10 Айтпек Безембаевич Смагулов Устройство обнаружения шумовых гидроакустических сигналов на основе квадратурного приемника
EP2866052A1 (en) * 2013-10-23 2015-04-29 Ladar Limited A system for monitoring a maritime environment
US20150268328A1 (en) * 2011-12-30 2015-09-24 Flir Systems, Inc. Radar system providing multiple waveforms for long range and short range target detection

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2359308C2 (ru) * 2007-11-29 2009-06-20 Нелли Алексеевна Седова Нейросетевой регулятор для управления курсом судна
US20150268328A1 (en) * 2011-12-30 2015-09-24 Flir Systems, Inc. Radar system providing multiple waveforms for long range and short range target detection
US20170315209A1 (en) * 2011-12-30 2017-11-02 Flir Systems, Inc. Radar system providing multiple waveforms for long range and short range target detection
RU2013126313A (ru) * 2013-06-03 2014-12-10 Айтпек Безембаевич Смагулов Устройство обнаружения шумовых гидроакустических сигналов на основе квадратурного приемника
EP2866052A1 (en) * 2013-10-23 2015-04-29 Ladar Limited A system for monitoring a maritime environment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2726992C1 (ru) * 2020-01-09 2020-07-17 Федеральное Государственное Казенное Военное Образовательное Учреждение Высшего Образования "Тихоокеанское Высшее Военно-Морское Училище Имени С.О. Макарова" Министерства Обороны Российской Федерации (Г. Владивосток) Система обнаружения и классификации морских целей с использованием математической модели определения типа цели
CN112257521A (zh) * 2020-09-30 2021-01-22 中国人民解放军军事科学院国防科技创新研究院 基于数据增强和时频分离的cnn水声信号目标识别方法
CN112257521B (zh) * 2020-09-30 2023-04-07 中国人民解放军军事科学院国防科技创新研究院 基于数据增强和时频分离的cnn水声信号目标识别方法
RU221749U1 (ru) * 2023-07-03 2023-11-21 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военная академия воздушно-космической обороны имени Маршала Советского Союза Г.К. Жукова" Министерства обороны Российской Федерации Интегрированное устройство комплексного опознавания воздушных объектов

Similar Documents

Publication Publication Date Title
RU2681252C1 (ru) Система обнаружения гидроакустических сигналов и их нейросетевой классификации
Kaveh et al. Design and implementation of a neighborhood search biogeography-based optimization trainer for classifying sonar dataset using multi-layer perceptron neural network
US5502688A (en) Feedforward neural network system for the detection and characterization of sonar signals with characteristic spectrogram textures
US5150323A (en) Adaptive network for in-band signal separation
RU2681242C1 (ru) Интеллектуальная система обнаружения и классификации морских целей
RU2694846C1 (ru) Способ формирования системы морского мониторинга с программируемым нейросетевым комплексом управления
RU2695985C1 (ru) Нейросетевая система обнаружения и оперативной идентификации морских целей
Wu et al. Sslide: Sound source localization for indoors based on deep learning
Leal et al. Marine vessel recognition by acoustic signature
Jia et al. Deep cepstrum-wavelet autoencoder: A novel intelligent sonar classifier
Van Komen et al. A convolutional neural network for source range and ocean seabed classification using pressure time-series
Pham et al. Real-time implementation of MUSIC for wideband acoustic detection and tracking
Jiang et al. Detection of underwater acoustic target using beamforming and neural network in shallow water
Nie et al. Adaptive direction-of-arrival estimation using deep neural network in marine acoustic environment
CN112328965B (zh) 使用声矢量传感器阵列的多机动信号源doa跟踪的方法
US5278774A (en) Alarm for transient underwater events
CN116702847A (zh) 脉冲神经网络、声源跟踪方法、芯片及电子设备
Alouani et al. A spatio-temporal deep learning approach for underwater acoustic signals classification
Baqar et al. Performance evaluation of linear and multi-linear subspace learning techniques for object classification based on underwater acoustics
CN113109795B (zh) 一种基于深度神经网络的深海直达声区目标深度估计方法
RU2726992C1 (ru) Система обнаружения и классификации морских целей с использованием математической модели определения типа цели
RU2697719C1 (ru) Система морского мониторинга с программируемым нейросетевым комплексом управления
Roberts et al. Multiple angle acoustic classification of zooplankton
CN115618215B (zh) 一种基于形态学智能计算的复杂电磁环境分级方法
Pham et al. Aeroacoustic wideband array processing for detection and tracking of ground vehicles

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20201023