RU2681242C1 - Интеллектуальная система обнаружения и классификации морских целей - Google Patents

Интеллектуальная система обнаружения и классификации морских целей Download PDF

Info

Publication number
RU2681242C1
RU2681242C1 RU2018118675A RU2018118675A RU2681242C1 RU 2681242 C1 RU2681242 C1 RU 2681242C1 RU 2018118675 A RU2018118675 A RU 2018118675A RU 2018118675 A RU2018118675 A RU 2018118675A RU 2681242 C1 RU2681242 C1 RU 2681242C1
Authority
RU
Russia
Prior art keywords
output
frequency
classification
marine
path
Prior art date
Application number
RU2018118675A
Other languages
English (en)
Inventor
Валерий Александрович Пятакович
Original Assignee
Федеральное Государственное Казенное Военное Образовательное Учреждение Высшего Образования "Тихоокеанское Высшее Военно-Морское Училище Имени С.О. Макарова" Министерства Обороны Российской Федерации (Г. Владивосток)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное Государственное Казенное Военное Образовательное Учреждение Высшего Образования "Тихоокеанское Высшее Военно-Морское Училище Имени С.О. Макарова" Министерства Обороны Российской Федерации (Г. Владивосток) filed Critical Федеральное Государственное Казенное Военное Образовательное Учреждение Высшего Образования "Тихоокеанское Высшее Военно-Морское Училище Имени С.О. Макарова" Министерства Обороны Российской Федерации (Г. Владивосток)
Priority to RU2018118675A priority Critical patent/RU2681242C1/ru
Application granted granted Critical
Publication of RU2681242C1 publication Critical patent/RU2681242C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/04Systems determining presence of a target

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Acoustics & Sound (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

Изобретение относится к гидроакустике и может быть использовано для построения интеллектуальных автоматизированных систем классификации морских целей, обнаруженных по признакам амплитудно-фазовой модуляции низкочастотных сигналов накачки морской среды излучениями и полями объектов. Интеллектуальная система обнаружения и классификации морских целей содержит сформированную в морской среде рабочую зону нелинейного взаимодействия и параметрического преобразования волн накачки и информационных волн. Длина рабочей зоны равна протяженности контролируемого участка морской среды, для чего излучающий и приемный преобразователи размещены на противоположных границах участка. Вход излучающего преобразователя соединен подводным кабелем с выходом тракта излучения сигналов накачки, который содержит последовательно соединенные генератор сигналов накачки стабилизированной частоты, усилитель мощности и блок согласования его выхода с подводным кабелем. Выход приемного преобразователя соединен подводным кабелем с входом тракта приема, обработки и регистрации информационных сигналов, который содержит последовательно соединенные широкополосный усилитель, преобразователь частотно-временного масштаба, спектроанализатор и функционально связанный с ним регистратор. Принципиальным отличием от прототипа является то, что дополнительно введен тракт нейросетевого распознавания и классификации, содержащий блок распознавания класса цели по амплитудно-частотным характеристикам, охваченный обратной связью с блоком обучения. При этом выход спектроанализатора тракта приема, обработки и регистрации информационных волн соединен с входом блока распознавания класса цели по амплитудно-частотным характеристикам тракта нейросетевого распознавания и классификации, на выходе которого формируется сигнал по типу цели согласно степени принадлежности исследуемой области спектра объекту классификации. Техническим результатом изобретения является автоматизация процесса распознавания классов морских целей (надводный или подводный объект), обнаруженных по признакам амплитудно-фазовой модуляции низкочастотных сигналов накачки морской среды излучениями и полями объектов. Указанный технический результат достигается путем применения вычислительных операций нейронных сетей и оперативно обновляемой библиотеки математически обработанных образов спектрограмм морских целей. 5 ил.

Description

Изобретение относится к гидроакустике и может быть использовано для построения интеллектуальных автоматизированных систем классификации морских целей, обнаруженных по признакам амплитудно-фазовой модуляции низкочастотных сигналов накачки морской среды излучениями и полями объектов.
Принцип работы параметрических антенн основан на использовании естественных нелинейных свойств морской среды (см. Новиков Б.К., Тимошенко В.И. Параметрические антенны в системах гидролокации. - Л.: Судостроение. - 1990. - С. 17-40, 203-225; Мироненко М.В., Малашенко А.Е., Карачун Л.Э., Василенко А.М. Низкочастотный просветный метод дальней гидролокации гидрофизических полей морской среды: монография. - Владивосток: СКБ САМИ ДВО РАН, 2006. - 173 с.). При использовании буксируемых за морскими суднами многоэлементных параметрических антенн, дополнительно к естественным свойствам среды, используются нелинейные свойства кильватерного следа.
Исследованиями и испытаниями параметрических антенн, использующих высокочастотную накачку морской среды (десятки-сотни кГц) показано, что их недостатками, как измерительных систем, являются малая дальность параметрического приема волн (сотни метров и только в отдельных случаях 1-2 километра) и ограниченная возможность измерения пространственно-временных характеристик сигналов, что особенно проявляется при приеме волн различной физической природы низкого, инфразвукового и дробного диапазонов частот.
Параметрические антенны, работа которых основана на низкочастотной подсветке (накачке) среды слабозатухающими сигналами с частотой десятки-сотни герц, представляют собой сформированные в морской среде протяженные объемные зоны нелинейного взаимодействия и параметрического преобразования сигналов. Что приводит к увеличению дальности параметрического приема волн в десятки-сотни раз, относительно высокочастотных параметрических антенн (см. Мироненко М.В., Малашенко А.Е., Василенко А.М. и др. Нелинейная просветная гидроакустика и средства морского приборостроения в создании Дальневосточной радиогидроакустической системы освещения атмосферы, океана и земной коры, мониторинга их полей различной физической природы: монография. - Владивосток: Изд-во Дальневост. ун-та, 2014. - 404 с.; Малашенко А.Е., Мироненко М.В., Чудаков М.В., Пятакович В.А. Дальний параметрический прием электромагнитных волн, формируемых техническими источниками в морской среде. Датчики и системы - М.: 2016. - № 8-9 (206). - С. 14-18.).
Низкочастотные пространственно-развитые параметрические антенны формируются и функционируют на основе закономерностей многолучевого распространения просветных акустических волн (сигналов накачки морской среды стабилизированной частоты в диапазоне десятки-сотни герц) в протяженном гидроакустическом канале с переменными характеристиками среды и его границ. Дальний параметрический прием информационных волн основан на закономерностях нелинейного взаимодействия и параметрического преобразования излученных просветных волн с волнами, генерируемыми техническими объектами (морскими целями), при их совместном распространении в морской среде. Диапазон частот принимаемых волн составляет десятки-единицы килогерц, сотни-десятки-единицы-доли герц, включая сверхнизкочастотные (СНЧ) колебания движущихся объектов.
Наиболее близкой по технической сущности к заявляемому изобретению является гидроакустическая система (пат. №2472116 РФ, МПК G01H 3/00, G 10K 11/00. Гидроакустическая система параметрического приема волн различной физической природы в морской среде; опубл. 10.01.2013, бюл. №1), включающая в себя сформированную в морской среде рабочую зону нелинейного взаимодействия и параметрического преобразования волн накачки и информационных волн, причем длина рабочей зоны равна протяженности контролируемого участка морской среды, для чего излучающий и приемный преобразователи волн размещены на его противоположных границах, при этом вход излучающего преобразователя соединен подводным кабелем с выходом тракта излучения сигналов накачки, который содержит последовательно соединенные генератор сигналов накачки стабилизированной частоты, усилитель мощности и блок согласования его выхода с подводным кабелем, а выход приемного преобразователя соединен подводным кабелем с входом тракта приема, обработки, выделения и регистрации информационных сигналов, который содержит последовательно соединенные широкополосный усилитель параметрически преобразованных волн накачки, преобразователь частотно-временного масштаба, узкополосный анализатор спектра и функционально связанный с ним регистратор информационных волн.
Известно, что результатом параметрического преобразования взаимодействующих волн является их взаимная амплитудно-фазовая модуляция. Малое отличие частот (в пределах одного порядка) просветных волн и волн, генерируемых объектом, обеспечивает наиболее интенсивное их взаимодействие. Амплитуда взаимодействующих волн и индекс фазовой модуляции могут быть представлены в следующем виде
Figure 00000001
Figure 00000001
Figure 00000001
Figure 00000001
Figure 00000002
;
Figure 00000003
,
где γ - коэффициент нелинейности морской среды;
Figure 00000004
,
Figure 00000005
- частота волны накачки и полезного сигнала, соответственно;
Figure 00000006
,
Figure 00000007
- затухание волны накачки и полезного сигнала, соответственно;
Figure 00000008
- объем среды нелинейного взаимодействия и параметрического преобразования волн;
Figure 00000009
- расстояние от точки излучения до точки расположения объекта;
Figure 00000010
- плотность,
Figure 00000011
- скорость звука в морской среде.
Сформированные в результате преобразования просветных волн параметрические составляющие суммарной и разностной частоты при обработке широкополосных сигналов выделяются, как признаки амплитудно-фазовой модуляции, что обосновано математическими зависимостями и подтверждено результатами морских экспериментов (см. Мироненко М.В., Малашенко А.Е., Карачун Л.Э., Василенко А.М. Низкочастотный просветный метод дальней гидролокации гидрофизических полей морской среды: монография. - Владивосток: СКБ САМИ ДВО РАН, 2006. - 173 с.).
Спектр взаимодействующих волн состоит из бесконечного числа боковых составляющих, частоту и амплитуду которых можно найти из известного выражения
Figure 00000012
Figure 00000013
Figure 00000014
,
где
Figure 00000015
, - результирующее и мгновенное значения давления модулированной волны, соответственно;
Figure 00000016
- удвоенная частота модулированной волны;
Figure 00000017
- волна, генерируемая объектом;
Figure 00000018
- время;
Figure 00000019
- функции Бесселя n-го порядка;
Figure 00000020
- амплитуда модулированной волны;
Figure 00000021
- коэффициент модуляции.
Как видно из выражения, значения частот боковых составляющих отличаются от удвоенной центральной частоты 2ω (равной сумме частот взаимодействующих волн) на величину ± n⋅Ω, где n - любое целое число. Амплитуды боковых составляющих для соответствующих частот (2ω± nΩ) определяются величиной множителя
Figure 00000022
.
При малых значениях коэффициента модуляции
Figure 00000023
спектр взаимодействующих волн приближенно состоит из удвоенной центральной частоты 2ω и ее боковых частот 2ω+Ω и 2ω-Ω.
Недостатком системы-прототипа является отсутствие в структурной схеме специальных блоков и их связей с существующими блоками, которые должны обеспечивать распознавание классов обнаруженных морских целей (надводный или подводный объект), что ограничивает функциональные возможности системы-прототипа.
Задача, на решение которой направлено заявляемое изобретение, заключается в дальнейшей разработке структурной схемы системы-прототипа для ее реализации как интеллектуальной системы обнаружения и классификации морских целей, которая должна распознавать класс цели по амплитудно-частотным характеристикам сигналов в автоматизированном режиме работы.
Техническим результатом предлагаемого изобретения является автоматизация процесса распознавания классов морских целей (надводный или подводный объект), обнаруженных по признакам амплитудно-фазовой модуляции низкочастотных сигналов накачки морской среды излучениями и полями объектов.
Указанный технический результат достигается путем применения вычислительных операций нейронных сетей и оперативно обновляемой библиотеки математически обработанных образов спектрограмм морских целей.
Для решения поставленной задачи интеллектуальная система обнаружения и классификации морских целей, содержащая сформированную в морской среде рабочую зону нелинейного взаимодействия и параметрического преобразования волн накачки и информационных волн, причем длина рабочей зоны равна протяженности контролируемого участка морской среды, для чего излучающий и приемный преобразователи размещены на его противоположных границах, при этом вход излучающего преобразователя соединен подводным кабелем с выходом тракта излучения сигналов накачки, который содержит последовательно соединенные генератор сигналов накачки стабилизированной частоты, усилитель мощности и блок согласования его выхода с подводным кабелем, а выход приемного преобразователя соединен подводным кабелем с входом тракта приема, обработки и регистрации информационных сигналов, который содержит последовательно соединенные широкополосный усилитель, преобразователь частотно-временного масштаба, спектроанализатор и функционально связанный с ним регистратор. Принципиальным отличием от прототипа является то, что дополнительно введен тракт нейросетевого распознавания и классификации, содержащий блок распознавания класса цели по амплитудно-частотным характеристикам, охваченный обратной связью с блоком обучения; при этом выход спектроанализатора тракта приема, обработки и регистрации информационных волн соединен с входом блока распознавания класса цели по амплитудно-частотным характеристикам тракта нейросетевого распознавания и классификации, на выходе которого формируется сигнал по типу цели согласно степени принадлежности исследуемой области спектра объекту классификации.
Как известно, извлечение полезной информации из гидроакустических сигналов определяет основы алгоритмизации обработки данных в интеллектуальной системе обнаружения и классификации морских целей. Для формирования вектора признаков, являющегося входным информационным массивом распознающей сети, используется метод масок. Процесс формирования информационных массивов необходим для решения двух задач, первая из которых представляет собой процесс формирования эталонных образцов, необходимых для реализации процесса обучения распознающей сети, и вторая для распознавания целей (см. Пятакович В.А., Богданов В.И., Назаренко П.К. Принцип автоматического распознавания образа цели: материалы Международной конференции «Математическое моделирование физических, экономических, технических, социальных систем и процессов». − Ульяновск: УГУ, 2003. − С. 31, 32; Пятакович В.А., Василенко А.М., Хотинский О.В. Распознавание и классификация источников формирования полей различной физической природы в морской среде: монография. - Владивосток: Мор. гос. ун-т, 2017. - 255 с.; Пятакович В.А., Василенко А.М., Хотинский О.В. Нейросетевые технологии в интеллектуальных системах обнаружения и оперативной идентификации морских целей: монография. - Владивосток: Мор. гос. ун-т, 2018. - 263 с.).
Идея метода состоит в том, что для каждой маски ищется максимальное амплитудное значение, которое и является ортом вектора классификационных признаков. Для автоматизации процесса поиска экстремума в зоне одной маски использовалась сеть поиска максимума MAXNET. Итерации сети завершаются после того, как выходные нейроны сети перестают меняться. Тип элементов входных сигналов - целые или действительные числа, тип элементов выходных сигналов - действительные числа. Размерности входных и выходных сигналов совпадают. Тип активационной функции - линейная с насыщением (используется линейный участок). Число синапсов в сети равно N (N - 1). Формирование синаптических весов происходит согласно формуле
Figure 00000024
где Wij - i-й синаптический вес j-го нейрона; N - число элементов входного сигнала (количество нейронов в сети).
Функционирование сети задается выражением
Figure 00000025
где xj - элемент (орт) входного сигнала сети; yi - выход j-го нейрона.
Нормализация входного вектора признаков, полученного после анализа масок сетью MAXNET, производится согласно выражению
Figure 00000026
Границы диапазона значений
Figure 00000027
известны и определяются моделью входного гидроакустического сигнала.
Обучение распознающей сети производится на основе алгоритма обратного распространения ошибки, реализующего градиентный метод оптимизации функционала вида:
Figure 00000028
где Т - вектор синаптических весов сети; (Х*,Y*) - обучающие пары;
Figure 00000029
- норма вектора (см. Пятакович В.А., Василенко А.М., Хотинский О.В. Распознавание и классификация источников формирования полей различной физической природы в морской среде: монография.-Владивосток: Морской гос. ун-т им. Г.И. Невельского, 2017. - 255 с.; Пятакович В.А., Василенко А.М. Предварительная обработка информации нейроноподобным категоризатором при распознавании образов морских объектов. Подводное морское оружие. - СПб: 2017. - Вып. 1 (32). - С. 31-34; Пятакович В.А., Василенко А.М. Перспективы и ограничения использования геометрических методов распознавания акустических образов морских объектов применительно к задаче управления нейросетевой экспертной системой. Фундаментальные исследования. - М: 2017. - № 7. - С. 65-70;).
Изобретение поясняется чертежами, где на фиг. 1 показана функциональная схема интеллектуальной системы обнаружения и классификации морских целей, содержащей следующие элементы:
1. Излучающий преобразователь (подводный звуковой маяк марки ПЗМ-400 излучающий сигналы на частоте около 400 Гц).
2. Приемный преобразователь.
3. Морская среда.
4. Рабочая зона нелинейного взаимодействия и параметрического преобразования волн накачки и информационных волн.
5. Объекты (морские цели, генерирующие акустические, электромагнитные и гидродинамические излучения).
6. Тракт излучения сигналов накачки.
6.1. Генератор сигналов накачки стабилизированной частоты.
6.2. Усилитель мощности.
6.3. Блок согласования.
7. Тракт приема, обработки и регистрации информационных сигналов.
7.1. Широкополосный усилитель.
7.2. Преобразователь частотно-временного масштаба.
7.3. Спектроанализатор.
7.4. Рекордер.
8. Тракт нейросетевого распознавания и классификации.
8.1. Блок распознавания класса цели по амплитудно-частотным характеристикам.
8.2. Блок обучения.
Общая структура распознающей сети представлена на фиг. 2. Нейроны, составляющие сеть, одинаковы и имеют функцию активации известного типа
Figure 00000030
где x2n (i), yn (i) и In (i) - значения r - го входного сигнала, выходного сигнала и внешнего смещения n - го нейрона i - го слоя; Ni - число нейронов в i - м слое; i = 1, 2, 3.
На фиг. 3 и фиг. 4 представлены результаты вычислительного эксперимента по определению коэффициента распознавания (классификации), определяемого как отношение числа распознанных объектов к общему числу испытаний в процентах, для надводных и подводных объектов в условиях зашумления сигнала в диапазоне от -10 до 20 дБ. Как видно из рисунков, распознавание и классификация морских целей с помощью вычислительных операций сети персептрон позволяет повысить вероятность классификации как надводных, так и подводных целей на 5-7%.
На фиг. 5 приведена таблица интерпретации элементов выходного вектора распознавания гидроакустических сигналов по амплитудно-частотной характеристике.
Интеллектуальная система обнаружения и классификации морских целей работает следующим образом.
Излучающий преобразователь 1 и приемный преобразователь 2 размещают в морской среде 3 с учетом закономерностей многолучевого распространения волн в протяженном гидроакустическом канале, что обеспечивает формирование и эффективное использование пространственно-развитой рабочей зоны 4 нелинейного взаимодействия и параметрического преобразования просветных волн и волн различной физической природы, генерируемых объектами 5 (см. Свидетельство о государственной регистрации программы для ЭВМ «Расчет лучевой картины» №2016616822 от 21.06.2016; Свидетельство о государственной регистрации программы для ЭВМ «Программа имитационного моделирования процесса распространения гидроакустических сигналов» №2017664296 от 20.12.2017; Свидетельство о государственной регистрации программы для ЭВМ «Программно-вычислительный комплекс имитационного моделирования морской информационной ситуации при идентификации целей» № 2018612944 от 01.03.2018).
Сформированный генератором 6.1 сигнал накачки стабилизированной частоты поступает на вход усилителя мощности 6.2, затем на вход блока согласования 6.3 выхода усилителя мощности 6.2 с подводным кабелем, соединяющим выход тракта излучения сигналов накачки 6 и вход излучающего преобразователя 1.
Излучающий преобразователь 1 озвучивает среду сигналами накачки стабилизированной частоты в диапазоне десятки-сотни герц.
На различных режимах движения объекты 5 генерируют излучения, приводящие к изменению величины характеристик проводящей жидкости (плотности и (или) температуры и (или) теплоемкости и т.д.), которые в зависимости от их физической сущности модулируют низкочастотные сигналы накачки морской среды. В спектре информационной волны появляются низкочастотные и высокочастотные составляющие, как результат модуляции амплитуды и фазы низкочастотной волны накачки излучениями и полями объектов 5. Являясь неразрывно связанной компонентой просветной волны, модуляционные составляющие переносятся на большие расстояния и обнаруживаются в блоках тракта приема, обработки и регистрации информационных сигналов 7.
Сигнал приемного преобразователя 2 по кабельной линии подается на вход широкополосного усилителя 7.1 тракта приема обработки и регистрации информационных сигналов 7. Задачей блоков, входящих в состав тракта приема обработки и регистрации информационных сигналов 2, является измерение признаков проявления информационных волн источников.
Сигнал с выхода широкополосного усилителя 7.1 подается на вход преобразователя частотно-временного масштаба 7.2. Преобразователь частотно-временного масштаба сигнала обеспечивает увеличение концентрации энергии просветных сигналов и эффективность выделения из них признаков полей, формируемых объектами.
Сигнал с выхода преобразователя частотно-временного масштаба 7.1 поступает на вход спектроанализатора 7.3. Задачей спектрального анализа является выделение дискретных составляющих суммарной или разностной частоты в узкополосных спектрах преобразованных информационных сигналов, по которым восстанавливают характеристики волн объектов 5.
Далее сигнал с выхода спектроанализатора 7.3 передается на вход рекордера 7.4 и на вход блока распознавания класса цели по амплитудно-частотным характеристикам 8.1 тракта нейросетевого распознавания и классификации 8. Задача распознавания и классификации надводных и подводных источников гидроакустических сигналов решается с помощью трехслойной нейронной сети, которая распознает семь объектов и позволяет выделить один неизвестный класс, что в перспективе позволит значительно расширить круг распознаваемых морских технических объектов.
Анализ низкочастотной, среднечастотной и высокочастотной составляющих амплитудно-частотной характеристики производится раздельно, так как генеральные признаки для различных типов объектов могут находиться в различных частотных диапазонах. Как показано на фиг. 2, на каждый нейрон первого слоя через синапсы с весами {Tij (1)}, i = 1, 2, 3; j = 1, 2, 3 подаются все компоненты входного вектора
Figure 00000031
На каждый нейрон второго слоя через синапсы с весами {Tij (2)}, i = 1, 2, 3; j = 1, 2, 3 подаются выходные сигналы первого слоя. На каждый нейрон третьего слоя через синапсы с весами {Tij (3)}, i = 1, 2, 3; j = 1, 2, 3 подаются выходные сигналы второго слоя. Значения выходных сигналов третьего слоя образуют вектор решений
Figure 00000032
элементы которого представлены в табл.1. на фиг. 5.
Набор выходных сигналов блока распознавания класса цели по амплитудно-частотным характеристикам 8.1 поступает в память блока обучения 8.2, где происходит сравнение результатов с математическими образами спектрограмм морских объектов для формирования вывода о степени принадлежности исследуемой области спектра объекту классификации, а настройка весовых коэффициентов распознающей сети определяется алгоритмом обратного распространения ошибки. Основная идея которого состоит в распространении сигналов ошибки от выходов сети к её входам, в направлении, обратном прямому распространению сигналов в обычном режиме работы. Для возможности применения метода обратного распространения ошибки необходимо, чтобы передаточная функция нейронов была дифференцируема.
Сформированный третьим слоем распознающей нейронной сети сигнал по типу цели, согласно степени принадлежности исследуемой области спектра объекту классификации, поступает с выхода блока 8.2 на вход блока 8.1, выход которого является выходом тракта нейросетевого распознавания и классификации 8.
Таким образом, обнаружив цель по признакам амплитудно-фазовой модуляции низкочастотных сигналов накачки морской среды излучениями и полями объекта и используя оперативно обновляемую библиотеку математически обработанных образов спектрограмм морских целей, а также архитектуру распознающей нейронной сети в виде трехслойного персептрона, можно в автоматизированном режиме распознавать класс цели по амплитудно-частотным характеристикам и делать вывод о степени принадлежности исследуемой области спектра объекту классификации.
Интеллектуальная система обнаружения и классификации морских целей промышленно применима, так как для ее создания используются распространенные компоненты и изделия радиотехнической промышленности и вычислительной техники.

Claims (1)

  1. Интеллектуальная система обнаружения и классификации морских целей, содержащая сформированную в морской среде рабочую зону нелинейного взаимодействия и параметрического преобразования волн накачки и информационных волн, причем длина рабочей зоны равна протяженности контролируемого участка морской среды, для чего излучающий и приемный преобразователи размещены на противоположных границах участка, при этом вход излучающего преобразователя соединен подводным кабелем с выходом тракта излучения сигналов накачки, который содержит последовательно соединенные генератор сигналов накачки стабилизированной частоты, усилитель мощности и блок согласования его выхода с подводным кабелем, а выход приемного преобразователя соединен подводным кабелем с входом тракта приема, обработки и регистрации информационных сигналов, который содержит последовательно соединенные широкополосный усилитель, преобразователь частотно-временного масштаба, спектроанализатор и функционально связанный с ним регистратор, отличающаяся тем, что дополнительно введен тракт нейросетевого распознавания и классификации, содержащий блок распознавания класса цели по амплитудно-частотным характеристикам, охваченный обратной связью с блоком обучения; при этом выход спектроанализатора тракта приема, обработки и регистрации информационных волн соединен с входом блока распознавания класса цели по амплитудно-частотным характеристикам тракта нейросетевого распознавания и классификации, на выходе которого формируется сигнал по типу цели согласно степени принадлежности исследуемой области спектра объекту классификации.
RU2018118675A 2018-05-21 2018-05-21 Интеллектуальная система обнаружения и классификации морских целей RU2681242C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018118675A RU2681242C1 (ru) 2018-05-21 2018-05-21 Интеллектуальная система обнаружения и классификации морских целей

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018118675A RU2681242C1 (ru) 2018-05-21 2018-05-21 Интеллектуальная система обнаружения и классификации морских целей

Publications (1)

Publication Number Publication Date
RU2681242C1 true RU2681242C1 (ru) 2019-03-05

Family

ID=65632762

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018118675A RU2681242C1 (ru) 2018-05-21 2018-05-21 Интеллектуальная система обнаружения и классификации морских целей

Country Status (1)

Country Link
RU (1) RU2681242C1 (ru)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2724990C1 (ru) * 2020-01-09 2020-06-29 Федеральное Государственное Казенное Военное Образовательное Учреждение Высшего Образования "Тихоокеанское Высшее Военно-Морское Училище Имени С.О. Макарова" Министерства Обороны Российской Федерации (Г. Владивосток) Способ обнаружения и классификации морских целей с использованием математической модели определения типа цели
RU2726992C1 (ru) * 2020-01-09 2020-07-17 Федеральное Государственное Казенное Военное Образовательное Учреждение Высшего Образования "Тихоокеанское Высшее Военно-Морское Училище Имени С.О. Макарова" Министерства Обороны Российской Федерации (Г. Владивосток) Система обнаружения и классификации морских целей с использованием математической модели определения типа цели
RU2730048C1 (ru) * 2019-12-06 2020-08-14 Акционерное Общество "Концерн "Океанприбор" Способ адаптивной дихотомической классификации морских объектов
CN113219871A (zh) * 2021-05-07 2021-08-06 淮阴工学院 一种养护室环境参数检测系统
RU2763125C1 (ru) * 2021-04-13 2021-12-27 Федеральное Государственное Казенное Военное Образовательное Учреждение Высшего Образования "Тихоокеанское Высшее Военно-Морское Училище Имени С.О. Макарова" Министерства Обороны Российской Федерации (Г. Владивосток) Способ оперативной идентификации морских целей по их информационным полям на базе нейро-нечетких моделей
RU2763384C1 (ru) * 2021-04-13 2021-12-28 Федеральное Государственное Казенное Военное Образовательное Учреждение Высшего Образования "Тихоокеанское Высшее Военно-Морское Училище Имени С.О. Макарова" Министерства Обороны Российской Федерации (Г. Владивосток) Система оперативной идентификации морских целей по их информационным полям на базе нейро-нечетких моделей
RU2780606C1 (ru) * 2021-12-14 2022-09-28 Федеральное Государственное Казенное Военное Образовательное Учреждение Высшего Образования "Тихоокеанское Высшее Военно-Морское Училище Имени С.О. Макарова" Министерства Обороны Российской Федерации (Г. Владивосток) Способ обнаружения и классификации морских целей на базе нейросетевых технологий и элементов искусственного интеллекта
CN116973922A (zh) * 2023-08-29 2023-10-31 中国水产科学研究院珠江水产研究所 一种基于水声信号探测的水下生物分布特征分析方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08201500A (ja) * 1995-01-31 1996-08-09 Nec Corp 水中音響信号検出装置
RU2472116C1 (ru) * 2011-06-15 2013-01-10 Учреждение Российской академии наук Специальное конструкторское бюро средств автоматизации морских исследований Дальневосточного отделения РАН (СКБ САМИ ДВО РАН) Гидроакустическая система параметрического приема волн различной физической природы в морской среде
RU2474793C1 (ru) * 2011-06-15 2013-02-10 Учреждение Российской академии наук Специальное конструкторское бюро средств автоматизации морских исследований Дальневосточного отделения РАН (СКБ САМИ ДВО РАН) Способ параметрического приема волн различной физической природы в морской среде
RU2536836C1 (ru) * 2013-07-01 2014-12-27 Федеральное государственное бюджетное учреждение науки Специальное конструкторское бюро средств автоматизации морских исследований Дальневосточного отделения Российской академии наук (СКБ САМИ ДВО РАН) Система параметрического приема гидрофизических и геофизических волн в морской среде
RU2593673C2 (ru) * 2015-04-22 2016-08-10 Федеральное Государственное Казенное Военное Образовательное Учреждение Высшего Образования "Тихоокеанское Высшее Военно-Морское Училище Имени С.О. Макарова" Министерства Обороны Российской Федерации (Г. Владивосток) Радиогидроакустическая система параметрического приема волн источников и явлений атмосферы, океана и земной коры в морской среде
RU2593625C2 (ru) * 2015-04-22 2016-08-10 Федеральное Государственное Казенное Военное Образовательное Учреждение Высшего Образования "Тихоокеанское Высшее Военно-Морское Училище Имени С.О. Макарова" Министерства Обороны Российской Федерации (Г. Владивосток) Способ передачи информационных волн из морской среды в атмосферу и обратно

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08201500A (ja) * 1995-01-31 1996-08-09 Nec Corp 水中音響信号検出装置
RU2472116C1 (ru) * 2011-06-15 2013-01-10 Учреждение Российской академии наук Специальное конструкторское бюро средств автоматизации морских исследований Дальневосточного отделения РАН (СКБ САМИ ДВО РАН) Гидроакустическая система параметрического приема волн различной физической природы в морской среде
RU2474793C1 (ru) * 2011-06-15 2013-02-10 Учреждение Российской академии наук Специальное конструкторское бюро средств автоматизации морских исследований Дальневосточного отделения РАН (СКБ САМИ ДВО РАН) Способ параметрического приема волн различной физической природы в морской среде
RU2536836C1 (ru) * 2013-07-01 2014-12-27 Федеральное государственное бюджетное учреждение науки Специальное конструкторское бюро средств автоматизации морских исследований Дальневосточного отделения Российской академии наук (СКБ САМИ ДВО РАН) Система параметрического приема гидрофизических и геофизических волн в морской среде
RU2593673C2 (ru) * 2015-04-22 2016-08-10 Федеральное Государственное Казенное Военное Образовательное Учреждение Высшего Образования "Тихоокеанское Высшее Военно-Морское Училище Имени С.О. Макарова" Министерства Обороны Российской Федерации (Г. Владивосток) Радиогидроакустическая система параметрического приема волн источников и явлений атмосферы, океана и земной коры в морской среде
RU2593625C2 (ru) * 2015-04-22 2016-08-10 Федеральное Государственное Казенное Военное Образовательное Учреждение Высшего Образования "Тихоокеанское Высшее Военно-Морское Училище Имени С.О. Макарова" Министерства Обороны Российской Федерации (Г. Владивосток) Способ передачи информационных волн из морской среды в атмосферу и обратно

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2730048C1 (ru) * 2019-12-06 2020-08-14 Акционерное Общество "Концерн "Океанприбор" Способ адаптивной дихотомической классификации морских объектов
RU2724990C1 (ru) * 2020-01-09 2020-06-29 Федеральное Государственное Казенное Военное Образовательное Учреждение Высшего Образования "Тихоокеанское Высшее Военно-Морское Училище Имени С.О. Макарова" Министерства Обороны Российской Федерации (Г. Владивосток) Способ обнаружения и классификации морских целей с использованием математической модели определения типа цели
RU2726992C1 (ru) * 2020-01-09 2020-07-17 Федеральное Государственное Казенное Военное Образовательное Учреждение Высшего Образования "Тихоокеанское Высшее Военно-Морское Училище Имени С.О. Макарова" Министерства Обороны Российской Федерации (Г. Владивосток) Система обнаружения и классификации морских целей с использованием математической модели определения типа цели
RU2763125C1 (ru) * 2021-04-13 2021-12-27 Федеральное Государственное Казенное Военное Образовательное Учреждение Высшего Образования "Тихоокеанское Высшее Военно-Морское Училище Имени С.О. Макарова" Министерства Обороны Российской Федерации (Г. Владивосток) Способ оперативной идентификации морских целей по их информационным полям на базе нейро-нечетких моделей
RU2763384C1 (ru) * 2021-04-13 2021-12-28 Федеральное Государственное Казенное Военное Образовательное Учреждение Высшего Образования "Тихоокеанское Высшее Военно-Морское Училище Имени С.О. Макарова" Министерства Обороны Российской Федерации (Г. Владивосток) Система оперативной идентификации морских целей по их информационным полям на базе нейро-нечетких моделей
CN113219871A (zh) * 2021-05-07 2021-08-06 淮阴工学院 一种养护室环境参数检测系统
RU2780606C1 (ru) * 2021-12-14 2022-09-28 Федеральное Государственное Казенное Военное Образовательное Учреждение Высшего Образования "Тихоокеанское Высшее Военно-Морское Училище Имени С.О. Макарова" Министерства Обороны Российской Федерации (Г. Владивосток) Способ обнаружения и классификации морских целей на базе нейросетевых технологий и элементов искусственного интеллекта
RU2780607C1 (ru) * 2021-12-14 2022-09-28 Федеральное Государственное Казенное Военное Образовательное Учреждение Высшего Образования "Тихоокеанское Высшее Военно-Морское Училище Имени С.О. Макарова" Министерства Обороны Российской Федерации (Г. Владивосток) Система обнаружения и классификации морских целей на базе нейросетевых технологий и элементов искусственного интеллекта
CN116973922A (zh) * 2023-08-29 2023-10-31 中国水产科学研究院珠江水产研究所 一种基于水声信号探测的水下生物分布特征分析方法
CN116973922B (zh) * 2023-08-29 2024-04-16 中国水产科学研究院珠江水产研究所 一种基于水声信号探测的水下生物分布特征分析方法

Similar Documents

Publication Publication Date Title
RU2681242C1 (ru) Интеллектуальная система обнаружения и классификации морских целей
RU2694846C1 (ru) Способ формирования системы морского мониторинга с программируемым нейросетевым комплексом управления
Khishe et al. Passive sonar target classification using multi-layer perceptron trained by salp swarm algorithm
Hui et al. Underwater acoustic channel
RU2682088C1 (ru) Способ обнаружения и нейросетевого распознавания признаков полей различной физической природы, генерируемых морскими целями
RU2681252C1 (ru) Система обнаружения гидроакустических сигналов и их нейросетевой классификации
Ioana et al. Recent advances in non-stationary signal processing based on the concept of recurrence plot analysis
Ozkaya et al. Deep dictionary learning application in GPR B-scan images
RU2695527C1 (ru) Масштабируемая система обнаружения и классификации морских целей с элементами искусственного интеллекта
RU2694848C1 (ru) Способ формирования масштабируемой системы обнаружения и классификации морских целей с элементами искусственного интеллекта
CN113253248B (zh) 一种基于迁移学习的小样本垂直阵目标距离估计方法
Luo et al. A space-frequency joint detection and tracking method for line-spectrum components of underwater acoustic signals
Van Komen et al. A convolutional neural network for source range and ocean seabed classification using pressure time-series
Acciani et al. Angular and axial evaluation of superficial defects on non-accessible pipes by wavelet transform and neural network-based classification
Yurt et al. Buried object characterization using ground penetrating radar assisted by data-driven surrogate-models
RU2697719C1 (ru) Система морского мониторинга с программируемым нейросетевым комплексом управления
RU2726992C1 (ru) Система обнаружения и классификации морских целей с использованием математической модели определения типа цели
RU2724990C1 (ru) Способ обнаружения и классификации морских целей с использованием математической модели определения типа цели
RU2695985C1 (ru) Нейросетевая система обнаружения и оперативной идентификации морских целей
Houégnigan et al. A novel approach to real-time range estimation of underwater acoustic sources using supervised machine learning
RU2300781C1 (ru) Устройство гидрометеорологоакустических наблюдений за акваторией морского полигона
Menze et al. Estimating the spatial distribution of vocalizing animals from ambient sound spectra using widely spaced recorder arrays and inverse modelling
CN115047448A (zh) 一种基于声电磁互调的室内目标快速探测方法与系统
RU2763384C1 (ru) Система оперативной идентификации морских целей по их информационным полям на базе нейро-нечетких моделей
de Souza et al. Passive sonar classification using time-domain information and recurrent neural networks

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20200522