RU2694776C1 - Способ получения нанокапсул доксициклина в гуаровой камеди - Google Patents

Способ получения нанокапсул доксициклина в гуаровой камеди Download PDF

Info

Publication number
RU2694776C1
RU2694776C1 RU2018137748A RU2018137748A RU2694776C1 RU 2694776 C1 RU2694776 C1 RU 2694776C1 RU 2018137748 A RU2018137748 A RU 2018137748A RU 2018137748 A RU2018137748 A RU 2018137748A RU 2694776 C1 RU2694776 C1 RU 2694776C1
Authority
RU
Russia
Prior art keywords
nanocapsules
guar gum
doxycycline
microcapsules
producing
Prior art date
Application number
RU2018137748A
Other languages
English (en)
Inventor
Александр Александрович Кролевец
Original Assignee
Александр Александрович Кролевец
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Александр Александрович Кролевец filed Critical Александр Александрович Кролевец
Priority to RU2018137748A priority Critical patent/RU2694776C1/ru
Application granted granted Critical
Publication of RU2694776C1 publication Critical patent/RU2694776C1/ru

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/65Tetracyclines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Optics & Photonics (AREA)
  • Medicinal Preparation (AREA)

Abstract

Изобретение относится к области нанотехнологии, медицины, фармакологии и ветеринарной медицины. Способ получения нанокапсул доксициклина характеризуется тем, что в суспензию гуаровой камеди в гексане и 0,01 г препарата Е472с в качестве поверхностно-активного вещества добавляют порошок доксициклина, затем добавляют хладон-112, причем массовое соотношение доксициклин : гуаровая камедь составляет 1:1, 1:2 или 1:3, полученную суспензию нанокапсул отфильтровывают и сушат. 3 пр.

Description

Изобретение относится к области нанотехнологии, медицины, фармакологии и ветеринарной медицины.
Ранее были известны способы получения микрокапсул лекарственных препаратов. Так, в пат. 2092155 МПК A61K 047/02, A61K 009 /16 опубликован 10.10.1997 Российская Федерация предложен метод микрокапсулирования лекарственных средств, основанный на применении специального оборудования с использованием облучения ультрафиолетовыми лучами.
Недостатками данного способа являются длительность процесса и применение ультрафиолетового излучения, что может оказывать влияние на процесс образования микрокапсул.
В пат. 2076765 МПК B01D 9/02 Российская Федерация опубликован 10.04.1997 предложен способ получения дисперсных частиц растворимых соединений в микрокапсулах посредством кристаллизации из раствора, отличающийся тем, что раствор диспергируют в инертной матрице, охлаждают и, изменяя температуру, получают дисперсные частицы.
Недостатком данного способа является сложность исполнения: получение микрокапсул путем диспергирования с последующим изменением температур, что замедляет процесс.
В пат. 2101010 МПК A61K 9/52, A61K 9/50, A61K 9/22, A61K 9/20, A61K 31/19 Российская Федерация опубликован 10.01.1998 предложена жевательная форма лекарственного препарата со вкусовой маскировкой, обладающая свойствами контролируемого высвобождения лекарственного препарата, содержит микрокапсулы размером 100-800 мкм в диаметре и состоит из фармацевтического ядра с кристаллическим ибупрофеном и полимерного покрытия, включающего пластификатор, достаточно эластичного, чтобы противостоять жеванию. Полимерное покрытие представляет собой сополимер на основе метакриловой кислоты.
Недостатки изобретения: использование сополимера на основе метакриловой кислоты, так как данные полимерные покрытия способны вызывать раковые опухоли; получение микрокапсул методом суспензионной полимеризации; сложность исполнения; длительность процесса.
В статье «Разраработка микрокапсулированных и гелеобразных продуктов и материалов для различных отраслей промышленности», Российский химический журнал, 2001, т. XLV, №5-6, с. 125-135 Описан способ получения микрокапсул лекарственных препаратов методом газофазной полимеризации, так как авторы статьи считают непригодным метод химической коацервации из водных сред для микрокапсулирования лекарственных препаратов вследствие того, что большинство из них являются водорастворимыми. Процесс микрокапсулирования по методу газофазной полимеризации с использованием n-ксилилена включает следующие основные стадии: испарение димера n-ксилилена (170°С), термическое разложение его в пиролизной печи (650°С при остаточном давлении 0,5 мм рт. ст.), перенос продуктов реакции в «холодную» камеру полимеризации (20°С, остаточное давление 0,1 мм рт. ст.), осаждение и полимеризация на поверхности защищаемого объекта. Камера полимеризации выполнена в виде вращающегося барабана, оптимальная скорость для покрытия порошка 30 об/мин. Толщина оболочки регулируется временем нанесения покрытия. Этот метод пригоден для капсулирования любых твердых веществ (за исключением склонных к интенсивной сублимации). Получаемый поли-n-ксилилен высококристаллический полимер, отличающийся высокой ориентацией и плотной упаковкой, обеспечивает конформное покрытие.
Недостатками предложенного способа являются сложность и длительность процесса, использование метода газофазной полимеризации, что делает способ неприменимым для получения микрокапсул лекарственных препаратов в полимерах белковой природы вследствие денатурации белков при высоких температурах.
В статье «Разработка микро- и наносистем доставки лекарственных средств», Российский химический журнал, 2008, т. LII, №1, с. 48-57 представлен метод получения микрокапсул с включенными белками, который существенно не снижает их биологической активности, осуществляемый процессом межфазного сшивания растворимого крахмала или гидроксиэтилкрахмала и бычьего сывороточного альбумина (БСА) с помощью терефталоил хлорида. Ингибитор протеиназ - апротинин, либо нативный, либо с защищенным активным центром был микрокапсулирован при его введении в состав водной фазы. Сплющенная форма лиофилизованных частиц свидетельствовует о получении микрокапсул или частиц резервуарного типа. Приготовленные таким образом микрокапсулы не повреждались после лиофилизации и легко восстанавливали свою сферическую форму после регидратации в буферной среде. Величина рН водной фазы являлась определяющим при получении прочных микрокапсул с высоким выходом.
Недостатком предложенного способа получения микрокапсул является сложность процесса, а отсюда плавающий выход целевых капсул.
В пат. 2359662 МПК A61K 009/56, A61J 003/07, B01J 013/02, A23L 001/00 опубликован 27.06.2009 Российская Федерация предложен способ получения микрокапсул с использованием распылительного охлаждения в распылительной градирне Niro при следующих условиях: температура воздуха на входе 10°С, температура воздуха на выходе 28°С, скорость вращения распыляющего барабана 10000 оборотов/мин. Микрокапсулы по изобретению обладают улучшенной стабильностью и обеспечивают регулируемое и/или пролонгированное высвобождение активного ингредиента.
Недостатками предложенного способа являются длительность процесса и применение специального оборудования, комплекс определенных условий (температура воздуха на входе 10°С, температура воздуха на выходе 28°С, скорость вращения распыляющего барабана 10000 оборотов/мин).
В пат. WO/2010/076360 ES МПК B01J 13/00; A61K 9/14; A61K 9/10; A61K 9/12 опубликован 08.07.2010 предложен новый способ получения твердых микро- и наночастиц с однородной структурой с размером частиц менее 10 мкм, где обработанные твердые соединения имеют естественное кристаллическое, аморфное, полиморфное и другие состояния, связанные с исходным соединением. Метод позволяет получить твердые микро- и наночастиц с существенно сфероидальной морфологи.
Недостатком предложенного способа является сложность и длительность процесса.
В пат. WO/2011/160733 ЕР МПК B01J 13/16 опубликован 29.12.2011 описан способ получения микрокапсул, которые содержат оболочки и ядра нерастворимых в воде материалов. Водный раствор защитного коллоида и раствор смеси по меньшей мере двух структурно различных бифункциональных диизоцианатов (А) и (В) нерастворимых в воде собираются вместе до образования эмульсии, затем добавляется к смеси бифункциональных аминов и нагревается до температуры не менее 60°С до формирования микрокапсул.
Недостатками предложенного способа являются сложность, длительность процесса, использование в качестве оболочек микрокапсул полимеров синтетического происхождения и их смесей.
Наиболее близким методом является способ, предложенный в пат. 2134967 МПК A01N 53/00, A01N 25/28 опубликован 27.08.1999 Российская Федерация (1999). В воде диспергируют раствор смеси природных липидов и пиретроидного инсектицида в весовом отношении 2-4:1 в органическом растворителе, что приводит к упрощению способа микрокапсулирования.
Недостатком метода является диспергирование в водной среде, что делает предложенный способ неприменимым для получения микрокапсул водорастворимых препаратов в водорастворимых полимерах.
Техническая задача - упрощение и ускорение процесса получения нанокапсул антибиотиков тетрациклинового ряда в альгинате натрия, уменьшение потерь при получении нанокапсул (увеличение выхода по массе).
Решение технической задачи достигается способом получения нанокапсул доксициклина, отличающийся тем, что в качестве оболочки нанокапсул используется гуаровая камедь, а также получение нанокапсул физико-химическим способом осаждения нерастворителем с использованием осадителя - хладона-112.
Отличительной особенностью предлагаемого метода является использование в качестве оболочки нанокапсул доксициклина гуаровой камеди, а также получение нанокапсул физико-химическим способом осаждения нерастворителем с использованием осадителя - хладона-112.
Результатом предлагаемого метода являются получение нанокапсул доксициклина в гуаровой камеди при 25°С в течение 15 минут. Выход нанокапсул составляет 100%.
ПРИМЕР 1 Получение нанокапсул доксициклина в гуаровой камеди, соотношение ядро:оболочка 1:3
В суспензию 0,6 г гуаровой камеди в гексане и 0,01 г препарата Е472с (сложный эфир глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты, причем лимонная кислота, как трехосновная, может быть этерифицирована другими глицеридами и как оксокислота - другими жирными кислотами. Свободные кислотные группы могут быть нейтрализованы натрием) в качестве поверхностно-активного вещества, небольшими порциями добавляют 0,2 г порошка доксициклина. Затем добавляют 5 мл хладона-112. Полученную суспензию нанокапсул отфильтровывают и сушат.
Получено 0,8 г белого порошка. Выход составил 100%.
ПРИМЕР 2 Получение нанокапсул диоксициклина в гуаровой камеди, соотношение ядро:оболочка 1:2
В суспензию 1,0 г гуаровой камеди в гексане и 0,01 г препарата Е472с в качестве поверхностно-активного вещества, добавляют 0,5 г порошка диоксициклина. Затем добавляют 5 мл хладона-112. Полученную суспензию нанокапсул отфильтровывают и сушат.
Получено 1,5 г порошка. Выход составил 100%.
ПРИМЕР 3 Получение нанокапсул диоксициклина в гуаровой камеди, соотношение ядро:оболочка 1:1
В суспензию 0,5 г гуаровой камеди в гексане и 0,01 г препарата Е472с в качестве поверхностно-активного вещества, добавляют 0,5 г порошка диоксициклина. Затем добавляют 5 мл хладона-112. Полученную суспензию нанокапсул отфильтровывают и сушат.
Получено 1 г порошка. Выход составил 100%.

Claims (1)

  1. Способ получения нанокапсул доксициклина, характеризующийся тем, что в суспензию гуаровой камеди в гексане и 0,01 г препарата Е472с в качестве поверхностно-активного вещества добавляют порошок доксициклина, затем добавляют хладон-112, причем массовое соотношение доксициклин : гуаровая камедь составляет 1:1, 1:2 или 1:3, полученную суспензию нанокапсул отфильтровывают и сушат.
RU2018137748A 2018-10-25 2018-10-25 Способ получения нанокапсул доксициклина в гуаровой камеди RU2694776C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018137748A RU2694776C1 (ru) 2018-10-25 2018-10-25 Способ получения нанокапсул доксициклина в гуаровой камеди

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018137748A RU2694776C1 (ru) 2018-10-25 2018-10-25 Способ получения нанокапсул доксициклина в гуаровой камеди

Publications (1)

Publication Number Publication Date
RU2694776C1 true RU2694776C1 (ru) 2019-07-16

Family

ID=67309344

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018137748A RU2694776C1 (ru) 2018-10-25 2018-10-25 Способ получения нанокапсул доксициклина в гуаровой камеди

Country Status (1)

Country Link
RU (1) RU2694776C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2730452C1 (ru) * 2020-02-21 2020-08-24 Александр Александрович Кролевец Способ получения нанокапсул доксициклина
RU2730844C1 (ru) * 2020-03-16 2020-08-26 Александр Александрович Кролевец Способ получения нанокапсул доксициклина
RU2736053C1 (ru) * 2020-02-21 2020-11-11 Александр Александрович Кролевец Способ получения нанокапсул хлорамфеникола (левомицетина)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2611367C1 (ru) * 2015-08-17 2017-02-21 Александр Александрович Кролевец Способ получения нанокапсул антибиотиков тетрациклинового ряда в альгинате натрия

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2611367C1 (ru) * 2015-08-17 2017-02-21 Александр Александрович Кролевец Способ получения нанокапсул антибиотиков тетрациклинового ряда в альгинате натрия

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Солодовник В.Д. Микрокапсулирование, 1980, стр.136-137. Nagavarma B.V.N. Different techniques for preparation of polymeric nanoparticles / Asian Journal Pharm Clin Res, 2012, vol.5, suppl. 3, pages 16-23. *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2730452C1 (ru) * 2020-02-21 2020-08-24 Александр Александрович Кролевец Способ получения нанокапсул доксициклина
RU2736053C1 (ru) * 2020-02-21 2020-11-11 Александр Александрович Кролевец Способ получения нанокапсул хлорамфеникола (левомицетина)
RU2730844C1 (ru) * 2020-03-16 2020-08-26 Александр Александрович Кролевец Способ получения нанокапсул доксициклина

Similar Documents

Publication Publication Date Title
RU2550918C1 (ru) Способ получения нанокапсул антибиотиков в геллановой камеди
RU2694776C1 (ru) Способ получения нанокапсул доксициклина в гуаровой камеди
RU2569736C1 (ru) Способ получения нанокапсул аденина в альгинате натрия
RU2646482C2 (ru) Способ получения нанокапсул метронидазола в каррагинане
RU2613108C1 (ru) Способ получения нанокапсул метронидазола в конжаковой камеди
RU2730452C1 (ru) Способ получения нанокапсул доксициклина
RU2631883C2 (ru) Способ получения нанокапсул лекарственных препаратов группы пенициллинов в конжаковой камеди
RU2550919C1 (ru) Способ получения нанокапсул антибиотиков в каррагинане
RU2691395C1 (ru) Способ получения нанокапсул танина в каппа-каррагинане
RU2619331C2 (ru) Способ получения нанокапсул умифеновира (Арбидола) в альгинате натрия
RU2550932C1 (ru) Способ получения нанокапсул цефалоспориновых антибиотиков в ксантановой камеди
RU2611367C1 (ru) Способ получения нанокапсул антибиотиков тетрациклинового ряда в альгинате натрия
RU2627581C2 (ru) Способ получения нанокапсул хлоральгидрата в каппа-каррагинане
RU2730844C1 (ru) Способ получения нанокапсул доксициклина
RU2627580C2 (ru) Способ получения нанокапсул антибиотиков тетрациклинового ряда в конжаковой камеди
RU2657767C1 (ru) Способ получения нанокапсул стрептоцида в каппа-каррагинане
RU2676677C1 (ru) Способ получения нанокапсул танина
RU2611368C1 (ru) Способ получения нанокапсул метронидазола в альгинате натрия
RU2725987C1 (ru) Способ получения нанокапсул салициловой кислоты в альгинате натрия
RU2736049C1 (ru) Способ получения нанокапсул хлорамфеникола (левомицетина)
RU2667404C1 (ru) Способ получения нанокапсул этилнитрата в альгинате натрия
RU2731854C1 (ru) Способ получения нанокапсул хлорамфеникола (левомицетина)
RU2736053C1 (ru) Способ получения нанокапсул хлорамфеникола (левомицетина)
RU2657755C1 (ru) Способ получения нанокапсул солей лантаноидов в каррагинане
RU2691391C1 (ru) Способ получения нанокапсул метронидазола в каппа-каррагинане