RU2646482C2 - Способ получения нанокапсул метронидазола в каррагинане - Google Patents

Способ получения нанокапсул метронидазола в каррагинане Download PDF

Info

Publication number
RU2646482C2
RU2646482C2 RU2015140422A RU2015140422A RU2646482C2 RU 2646482 C2 RU2646482 C2 RU 2646482C2 RU 2015140422 A RU2015140422 A RU 2015140422A RU 2015140422 A RU2015140422 A RU 2015140422A RU 2646482 C2 RU2646482 C2 RU 2646482C2
Authority
RU
Russia
Prior art keywords
carrageenan
metronidazole
nanocapsules
producing
added
Prior art date
Application number
RU2015140422A
Other languages
English (en)
Other versions
RU2015140422A (ru
Inventor
Александр Александрович Кролевец
Original Assignee
Александр Александрович Кролевец
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Александр Александрович Кролевец filed Critical Александр Александрович Кролевец
Priority to RU2015140422A priority Critical patent/RU2646482C2/ru
Publication of RU2015140422A publication Critical patent/RU2015140422A/ru
Application granted granted Critical
Publication of RU2646482C2 publication Critical patent/RU2646482C2/ru

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/41641,3-Diazoles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J3/00Devices or methods specially adapted for bringing pharmaceutical products into particular physical or administering forms
    • A61J3/07Devices or methods specially adapted for bringing pharmaceutical products into particular physical or administering forms into the form of capsules or similar small containers for oral use
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Nanotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Biomedical Technology (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

Изобретение относится к области нанотехнологии, медицины, фармакологии и ветеринарной медицины и описывает способ получения нанокапсул метронидазола в оболочке из каррагинана. Способ характеризуется тем, что в суспензию каррагинана в петролейном эфире в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества добавляют порошок метронидазола, затем добавляют 10 мл хлороформа, полученную суспензию нанокапсул отфильтровывают и сушат, при этом массовое соотношение ядро:оболочка при пересчете на сухое вещество составляет 1:1, 1:3, 5:1 или 1:5. Способ обеспечивает упрощение и ускорение процесса получения нанокапсул, уменьшение потерь при получении нанокапсул. 1 ил., 4 пр.

Description

Изобретение относится к области нанотехнологии, медицины, фармакологии и ветеринарной медицины.
Ранее были известны способы получения микрокапсул лекарственных препаратов. Так, в пат. 2092155 МПК A61K 047/02, A61K 009/16, опубликован 10.10.1997, Российская Федерация, предложен метод микрокапсулирования лекарственных средств, основанный на применении специального оборудования с использованием облучения ультрафиолетовыми лучами.
Недостатками данного способа являются длительность процесса и применение ультрафиолетового излучения, что может оказывать влияние на процесс образования микрокапсул.
В пат. 2095055 МПК A61K 9/52, A61K 9/16, A61K 9/10 Российская Федерация, опубликован 10.11.1997, предложен способ получения твердых непористых микросфер, включает расплавление фармацевтически неактивного вещества-носителя, диспергирование фармацевтически активного вещества в расплаве в инертной атмосфере, распыление полученной дисперсии в виде тумана в замораживающей камере под давлением, в инертной атмосфере, при температуре от -15 до -50°C, и разделение полученных микросфер на фракции по размерам. Суспензия, предназначенная для введения путем парентеральной инъекции, содержит эффективное количество указанных микросфер, распределенных в фармацевтически приемлемом жидком векторе, причем фармацевтически активное вещество микросферы нерастворимо в указанной жидкой среде.
Недостатки предложенного способа: сложность и длительность процесса, применение специального оборудования.
В пат. 2076765 МПК B01D 9/02 Российская Федерация, опубликован 10.04.1997, предложен способ получения дисперсных частиц растворимых соединений в микрокапсулах посредством кристаллизации из раствора, отличающийся тем, что раствор диспергируют в инертной матрице, охлаждают и, изменяя температуру, получают дисперсные частицы.
Недостатком данного способа является сложность исполнения: получение микрокапсул путем диспергирования с последующим изменением температур, что замедляет процесс.
В пат. 2139046 МПК A61K 9/50, A61K 49/00, A61K 51/00 Российская Федерация, опубликован 10.10.1999, предложен способ получения микрокапсул следующим образом. Эмульсию масло-в-воде готовят из органического раствора, содержащего растворенный моно-, ди-, триглицерид, предпочтительно трипальмитин или тристеарин, и возможно, терапевтически активное вещество, и водного раствора, содержащего поверхностно-активное вещество, возможно выпаривают часть растворителя, добавляют редиспергирующий агент и смесь подвергают сушке вымораживанием. Подвергнутую сушке вымораживанием смесь затем снова диспергируют в водном носителе для отделения микрокапсул от остатков органических веществ и полусферические или сферические микрокапсулы высушивают.
Недостатками предложенного способа являются сложность и длительность процесса, использования высушивания вымораживанием, что занимает много времени и замедляет процесс получения микрокапсул.
В статье «Разраработка микрокапсулированных и гелеобразных продуктов и материалов для различных отраслей промышленности», Российский химический журнал, 2001, т. XLV, №5-6, с. 125-135, описан способ получения микрокапсул лекарственных препаратов методом газофазной полимеризации, так как авторы статьи считают непригодным метод химической коацервации из водных сред для микрокапсулирования лекарственных препаратов вследствие того, что большинство из них являются водорастворимыми. Процесс микрокапсулирования по методу газофазной полимеризации с использованием n-ксилилена включает следующие основные стадии: испарение димера n-ксилилена (170°С), термическое разложение его в пиролизной печи (650°C при остаточном давлении 0,5 мм рт.ст.), перенос продуктов реакции в «холодную» камеру полимеризации (20°С, остаточное давление 0,1 мм рт.ст.), осаждение и полимеризация на поверхности защищаемого объекта. Камера полимеризации выполнена в виде вращающегося барабана, оптимальная скорость для покрытия порошка 30 об/мин. Толщина оболочки регулируется временем нанесения покрытия. Этот метод пригоден для капсулирования любых твердых веществ (за исключением склонных к интенсивной сублимации). Получаемый поли-n-ксилилен высококристаллический полимер, отличающийся высокой ориентацией и плотной упаковкой, обеспечивает конформное покрытие.
Недостатками предложенного способа являются сложность и длительность процесса, использование метода газофазной полимеризации, что делает способ неприменимым для получения микрокапсул лекарственных препаратов в полимерах белковой природы вследствие денатурации белков при высоких температурах.
В статье «Разработка микро- и наносистем доставки лекарственных средств», Российский химический журнал, 2008, t.LII, №1, с. 48-57 представлен метод получения микрокапсул с включенными белками, который существенно не снижает их биологической активности, осуществляемый процессом межфазного сшивания растворимого крахмала или гидроксиэтилкрахмала и бычьего сывороточного альбумина (БСА) с помощью терефталоил хлорида. Ингибитор протеиназ - апротинин, либо нативный, либо с защищенным активным центром был микрокапсулирован при его введении в состав водной фазы. Сплющенная форма лиофилизованных частиц свидетельствует о получении микрокапсул или частиц резервуарного типа. Приготовленные таким образом микрокапсулы не повреждались после лиофилизации и легко восстанавливали свою сферическую форму после регидратации в буферной среде. Величина рН водной фазы являлась определяющим при получении прочных микрокапсул с высоким выходом.
Недостатком предложенного способа получения микрокапсул является сложность процесса, а отсюда плавающий выход целевых капсул.
В пат. WO/2010/076360 ES МПК B01J 13/00; A61K 9/14; A61K 9/10; A61K 9/12, опубликован 08.07.2010, предложен новый способ получения твердых микро- и наночастиц с однородной структурой с размером частиц менее 10 мкм, где обработанные твердые соединения имеют естественное кристаллическое, аморфное, полиморфное и другие состояния, связанные с исходным соединением. Метод позволяет получить твердые микро- и наночастицы существенно сфероидальной морфологи.
Недостатком предложенного способа является сложность и длительность процесса.
В пат. WO/2010/119041 ЕР МПК A23L 1/00, опубликован 21.10.2010, предложен способ получения микрошариков, содержащих активный компонент, инкапсулированный в гель-матрице сывороточного протеина, включающего денатурированный белок, сыворотку и активные компоненты. Изобретение относится к способу получения микрошариков, которые содержат такие компоненты, как пробиотические бактерии. Способ получения микрошариков включает стадию производства микрошариков в соответствии с методом изобретения, и последующее отверждение микрошариков в растворе анионный полисахарид с рН 4,6 и ниже в течение не менее 10, 30, 60, 90, 120, 180 минут. Примеры подходящих анионных полисахаридов: пектины, альгинаты, каррагинаны. В идеале, сывороточный протеин является тепло-денатурирующим, хотя и другие методы денатурации также применимы, например, денатурация индуцированным давлением. В предпочтительном варианте сывороточный белок денатурирует при температуре от 75°С до 80°С, надлежащим образом в течение от 30 минут до 50 минут. Как правило, сывороточный протеин перемешивают при тепловой денатурации. Соответственно, концентрация сывороточного белка составляет от 5 до 15%, предпочтительно от 7 до 12%, а в идеале от 9 до 11% (вес/объем). Как правило, продкет подлежит фильтрации, которая осуществляется через множество фильтров с постепенным снижением размера пор. В идеале, фильтр тонкой очистки имеет субмикронных размеров поры, например, от 0,1 до 0,9 микрон. Предпочтительным способом получения микрошариков является способ с применением вибрационных инкапсуляторов (Inotech, Швейцария) и машин производства Nisco Engineering AG. Как правило, форсунки имеют отверстия 100 и 600 мкм, а в идеале около 150 микрон.
Недостатком предложенного способа является применение центрифугирования для отделения от технологической жидкости, длительность процесса, а также применение данного способа не в фармацевтической промышленности.
В пат. WO/2011/150138 US ΜΠΚ C11D 3/37; B01J 3/08; C11D 17/00, опубликован 01.12.2011, описан способ получения микрокапсул твердых растворимых в воде агентов методом полимеризации.
Недостатками данного способа являются сложность исполнения и длительность процесса.
В пат. WO/2011/160733 ЕР МПК B01J 13/16, опубликован 29.12.2011, описан способ получения микрокапсул, которые содержат оболочки и ядра нерастворимых в воде материалов. Водный раствор защитного коллоида и раствор смеси по меньшей мере двух структурно различных бифункциональных диизоцианатов (А) и (В) нерастворимых в воде собираются вместе до образования эмульсии, затем добавляется к смеси бифункциональных аминов и нагревается до температуры не менее 60°С до формирования микрокапсул.
Недостатками предложенного способа являются сложность, длительность процесса, использование в качестве оболочек микрокапсул полимеров синтетического происхождения и их смесей.
Наиболее близким методом является способ, предложенный в пат. 2134967 ΜΠΚ Α01Ν 53/00, Α01Ν 25/28, опубликован 27.08.1999, Российская Федерация (1999). В воде диспергируют раствор смеси природных липидов и пиретроидного инсектицида в весовом отношении 2-4: 1 в органическом растворителе, что приводит к упрощению способа микрокапсулирования.
Недостатком метода является диспергирование в водной среде, что делает предложенный способ неприменимым для получения микрокапсул водорастворимых препаратов в водорастворимых полимерах.
Техническая задача - упрощение и ускорение процесса получения нанокапсул метронидазола в каррагинане, уменьшение потерь при получении нанокапсул (увеличение выхода по массе).
Решение технической задачи достигается способом получения нанокапсул метронидазола, отличающимся тем, что в качестве оболочки нанокапсул используется каррагинан, а также получение нанокапсул физико-химическим способом осаждения нерастворителем с использованием осадителя - хлороформа.
Отличительной особенностью предлагаемого метода является использование в качестве оболочки нанокапсул метронидазола каррагинана, а также получение нанокапсул физико-химическим способом осаждения нерастворителем с использованием осадителя - хлороформа.
Результатом предлагаемого метода являются получение нанокапсул метронидазола, в каррагинане при 25°С в течение 15 минут. Выход нанокапсул составляет 100%.
ПРИМЕР 1 Получение нанокапсул метронидазола в каррагинане, соотношение ядро: оболочка 1:3
В суспензию 1,5 г каррагинана в петролейном эфире и 0,01 г препарата Е472 с (сложный эфир глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты, причем лимонная кислота, как трехосновная, может быть этерифицирована другими глицеридами и, как оксокислота, - другими жирными кислотами. Свободные кислотные группы могут быть нейтрализованы натрием в качестве поверхностно-активного вещества, небольшими порциями добавляют 0,5 г порошка метронидазола. Затем по каплям добавляют 10 мл хлороформа. Полученную суспензию нанокапсул отфильтровывают и сушат.
Получено 2 г белого порошка. Выход составил 100%.
ПРИМЕР 2 Получение нанокапсул метронидазола в каррагинане, соотношение ядро:оболочка 1:1
В суспензию 1,5 г каррагинана в петролейном эфире и 0,01 г препарата в качестве поверхностно-активного вещества добавляют 1,5 г порошка метронидазола. Затем по каплям добавляют 10 мл хлороформа. Полученную суспензию нанокапсул отфильтровывают и сушат.
Получено 3 г белого порошка. Выход составил 100%.
ПРИМЕР 3 Получение нанокапсул метронидазола в каррагинане, соотношение ядро:оболочка 1:5
В суспензию 1,5 г каррагинана в петролейном эфире и 0,01 г препарата в качестве поверхностно-активного вещества добавляют 0,3 г порошка метронидазола. Затем по каплям добавляют 10 мл хлороформа. Полученную суспензию нанокапсул отфильтровывают и сушат.
Получено 1,8 г белого порошка. Выход составил 100%.
ПРИМЕР 4 Получение нанокапсул метронидазола в каррагинане, соотношение ядро:оболочка 5:1
В суспензию 0,5 г каррагинана в петролейном эфире и 0,01 г препарата Е472 с в качестве поверхностно-активного вещества добавляют 2,5 г порошка метронидазола. Затем по каплям добавляют 10 мл хлороформа. Полученную суспензию нанокапсул отфильтровывают и сушат.
Получено 3 г белого порошка. Выход составил 100%.
ПРИМЕР 5 Определение размеров нанокапсул методом NTA.
Измерения проводили на мультипараметрическом анализаторе наночастиц Nanosight LM0 производства Nanosight Ltd (Великобритания) в конфигурации HS-BF (высокочувствительная видеокамера Andor Luca, полупроводниковый лазер с длиной волны 405 нм и мощностью 45 мВт). Прибор основан на методе анализа траекторий наночастиц (Nanoparticle Tracking Analysis, NTA), описанном bASTM E2834.
Оптимальным разведением для разведения было выбрано 1:100. Для измерения были выбраны параметры прибора: Camera Level=16, Detection Threshold=10 (multi), Min Track Length: Auto, Min Expected Size: Auto. длительность единичного измерения 215s, использование шприцевого насоса.
Метронидазол (лат. Metronidazolum, действующее вещество: 1-(b-оксиэтил)-2-метил-5-нитроимидазол) - противопротозойный и противомикробный препарат. Метронидазол входит в перечень жизненно необходимых и важнейших лекарственных препаратов.

Claims (1)

  1. Способ получения нанокапсул метронидазола в каррагинане, характеризующийся тем, что в суспензию каррагинана в петролейном эфире в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества добавляют порошок метронидазола, затем добавляют 10 мл хлороформа, полученную суспензию нанокапсул отфильтровывают и сушат, при этом массовое соотношение ядро:оболочка при пересчете на сухое вещество составляет 1:1, 1:3, 5:1 или 1:5.
RU2015140422A 2015-09-22 2015-09-22 Способ получения нанокапсул метронидазола в каррагинане RU2646482C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015140422A RU2646482C2 (ru) 2015-09-22 2015-09-22 Способ получения нанокапсул метронидазола в каррагинане

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015140422A RU2646482C2 (ru) 2015-09-22 2015-09-22 Способ получения нанокапсул метронидазола в каррагинане

Publications (2)

Publication Number Publication Date
RU2015140422A RU2015140422A (ru) 2017-03-28
RU2646482C2 true RU2646482C2 (ru) 2018-03-05

Family

ID=58505170

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015140422A RU2646482C2 (ru) 2015-09-22 2015-09-22 Способ получения нанокапсул метронидазола в каррагинане

Country Status (1)

Country Link
RU (1) RU2646482C2 (ru)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2697253C1 (ru) * 2018-09-07 2019-08-13 Александр Александрович Кролевец Способ получения нанокапсул тринитротолуола
RU2697252C1 (ru) * 2018-09-06 2019-08-13 Александр Александрович Кролевец Способ получения нанокапсул этилнитрата
RU2697842C1 (ru) * 2018-09-24 2019-08-21 Александр Александрович Кролевец Способ получения нанокапсул 2,4-динитроанизола
RU2698192C1 (ru) * 2019-03-04 2019-08-23 Александр Александрович Кролевец Способ получения нанокапсул циклотриметилентринитроамина (гексогена)
RU2699014C1 (ru) * 2018-10-25 2019-09-03 Александр Александрович Кролевец Способ получения нанокапсул тринитротолуола

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004064544A1 (en) * 2003-01-22 2004-08-05 Durafizz, Llc Microencapsulation for sustained delivery of carbon dioxide
KR20130061608A (ko) * 2011-12-01 2013-06-11 강원대학교산학협력단 비이온성 양친성 반응성 전구체를 이용한 유용성 항균 물질 담지능을 가진 코아 가교 양친성 고분자 나노 캡슐 및 이의 제조 방법
RU2502510C1 (ru) * 2012-04-24 2013-12-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Курская государственная сельскохозяйственная академия имени профессора И.И. Иванова Министерства сельского хозяйства Российской Федерации Способ получения микрокапсул лекарственных препаратов группы цефалоспоринов в конжаковой камеди в четыреххлористом углероде
RU2575745C2 (ru) * 2010-07-16 2016-02-20 Универсидад Де Наварра Наночастица (варианты), способ получения наночастицы (варианты), композиция и пищевой продукт

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004064544A1 (en) * 2003-01-22 2004-08-05 Durafizz, Llc Microencapsulation for sustained delivery of carbon dioxide
RU2575745C2 (ru) * 2010-07-16 2016-02-20 Универсидад Де Наварра Наночастица (варианты), способ получения наночастицы (варианты), композиция и пищевой продукт
KR20130061608A (ko) * 2011-12-01 2013-06-11 강원대학교산학협력단 비이온성 양친성 반응성 전구체를 이용한 유용성 항균 물질 담지능을 가진 코아 가교 양친성 고분자 나노 캡슐 및 이의 제조 방법
RU2502510C1 (ru) * 2012-04-24 2013-12-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Курская государственная сельскохозяйственная академия имени профессора И.И. Иванова Министерства сельского хозяйства Российской Федерации Способ получения микрокапсул лекарственных препаратов группы цефалоспоринов в конжаковой камеди в четыреххлористом углероде

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NAGAVARMA B. V. N. Different techniques for preparation of polymeric nanoparticles, Asian Journal Pharm Clin Res, vol.5, suppl 3, 2012, стр.16-23. *
PARRIS N. et.al., Encapsulation of essential oils in zein nanospherical particles / J. Agric. Food Chem., 2005. 53: p. 4788-4792. *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2697252C1 (ru) * 2018-09-06 2019-08-13 Александр Александрович Кролевец Способ получения нанокапсул этилнитрата
RU2697253C1 (ru) * 2018-09-07 2019-08-13 Александр Александрович Кролевец Способ получения нанокапсул тринитротолуола
RU2697842C1 (ru) * 2018-09-24 2019-08-21 Александр Александрович Кролевец Способ получения нанокапсул 2,4-динитроанизола
RU2699014C1 (ru) * 2018-10-25 2019-09-03 Александр Александрович Кролевец Способ получения нанокапсул тринитротолуола
RU2698192C1 (ru) * 2019-03-04 2019-08-23 Александр Александрович Кролевец Способ получения нанокапсул циклотриметилентринитроамина (гексогена)

Also Published As

Publication number Publication date
RU2015140422A (ru) 2017-03-28

Similar Documents

Publication Publication Date Title
RU2491939C1 (ru) Способ получения микрокапсул лекарственных препаратов группы цефалоспоринов в конжаковой камеди в хлороформе
RU2646482C2 (ru) Способ получения нанокапсул метронидазола в каррагинане
RU2550918C1 (ru) Способ получения нанокапсул антибиотиков в геллановой камеди
RU2569736C1 (ru) Способ получения нанокапсул аденина в альгинате натрия
RU2613108C1 (ru) Способ получения нанокапсул метронидазола в конжаковой камеди
RU2619331C2 (ru) Способ получения нанокапсул умифеновира (Арбидола) в альгинате натрия
RU2631883C2 (ru) Способ получения нанокапсул лекарственных препаратов группы пенициллинов в конжаковой камеди
RU2627581C2 (ru) Способ получения нанокапсул хлоральгидрата в каппа-каррагинане
RU2611367C1 (ru) Способ получения нанокапсул антибиотиков тетрациклинового ряда в альгинате натрия
RU2550919C1 (ru) Способ получения нанокапсул антибиотиков в каррагинане
RU2550932C1 (ru) Способ получения нанокапсул цефалоспориновых антибиотиков в ксантановой камеди
RU2599007C1 (ru) Способ получения нанокапсул ципрофлоксацина гидрохлорида в альгинате натрия
RU2611368C1 (ru) Способ получения нанокапсул метронидазола в альгинате натрия
RU2640130C2 (ru) Способ получения нанокапсул сухого экстракта топинамбура
RU2730452C1 (ru) Способ получения нанокапсул доксициклина
RU2627580C2 (ru) Способ получения нанокапсул антибиотиков тетрациклинового ряда в конжаковой камеди
RU2609824C1 (ru) Способ получения нанокапсул лекарственных препаратов группы пенициллинов в альгинате натрия
RU2609740C1 (ru) Способ получения нанокапсул аминогликозидных антибиотиков в геллановой камеди
RU2618453C2 (ru) Способ получения нанокапсул лекарственных препаратов группы пенициллинов в каррагинане
RU2578403C2 (ru) Способ получения нанокапсул цитокининов
RU2725987C1 (ru) Способ получения нанокапсул салициловой кислоты в альгинате натрия
RU2626507C1 (ru) Способ получения нанокапсул хлоральгидрата в альгинате натрия
RU2580613C1 (ru) Способ получения нанокапсул антибиотиков в агар-агаре
RU2691391C1 (ru) Способ получения нанокапсул метронидазола в каппа-каррагинане
RU2573979C1 (ru) Способ получения нанокапсул антибиотиков в агар-агаре