RU2694578C1 - Комбинированная установка охлаждения атмосферного воздуха для установок прессового производства сельского хозяйства - Google Patents

Комбинированная установка охлаждения атмосферного воздуха для установок прессового производства сельского хозяйства Download PDF

Info

Publication number
RU2694578C1
RU2694578C1 RU2018138760A RU2018138760A RU2694578C1 RU 2694578 C1 RU2694578 C1 RU 2694578C1 RU 2018138760 A RU2018138760 A RU 2018138760A RU 2018138760 A RU2018138760 A RU 2018138760A RU 2694578 C1 RU2694578 C1 RU 2694578C1
Authority
RU
Russia
Prior art keywords
air
cooling
cba
atmospheric air
cooling water
Prior art date
Application number
RU2018138760A
Other languages
English (en)
Inventor
Виктор Васильевич Тур
Евгений Владимирович Кабанов
Дмитрий Сергеевич Зибаев
Николай Георгиевич Иванченко
Виталий Владимирович Бондарев
Геннадий Юрьевич Трусов
Original Assignee
Общество с ограниченной ответственностью "Центр Соя"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Центр Соя" filed Critical Общество с ограниченной ответственностью "Центр Соя"
Priority to RU2018138760A priority Critical patent/RU2694578C1/ru
Application granted granted Critical
Publication of RU2694578C1 publication Critical patent/RU2694578C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C9/00Other milling methods or mills specially adapted for grain
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11BPRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
    • C11B1/00Production of fats or fatty oils from raw materials
    • C11B1/06Production of fats or fatty oils from raw materials by pressing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Food Science & Technology (AREA)

Abstract

Предложена установка подготовки атмосферного воздуха для прессового производства для охлаждения жмыха сои или подсолнечника, содержащая охладитель жмыха, связанный воздуховодами с вентилятором с атмосферным воздухом и средство охлаждения атмосферного воздуха, при этом средство охлаждения атмосферного воздуха выполнено в виде центробежно-барботажного аппарата (ЦБА) с одной или двумя барботажными ступенями, при этом ЦБА имеет патрубок, через который воздух поступает в ЦБА за счет разрежения, создаваемого вентилятором и по меньшей мере патрубок для охлаждающей воды, соединенный с баком охлаждающей воды, выход ЦБА воздухопроводом соединен с охладителем жмыха, причем бак с охлаждающей водой своим выходным патрубком соединен с патрубком для охлаждающей воды ЦБА через теплообменник, а теплообменник для его охлаждения дополнительно соединен с холодильной машиной, выполненной в виде чиллера.

Description

Изобретение относится к области сельского хозяйства, а именно к переработке подсолнечника и сои.
В условиях глобальных изменений климата на планете и, в частности, роста летних температур, производственные предприятия, использующие тепловые процессы как основную технологию в производстве сельскохозяйственной продукции, должны охлаждать ее до кондиционных температур.
Такая работа требует значительных энергетических затрат и крупных капиталовложений, которые при росте цен на энергоносители все более тяжким бременем ложатся на стоимость конечной продукции.
С такой проблемой столкнулось предприятие по переработке сои, расположенное в Краснодарском крае и выпускающее соевый белок.
Летние температуры в регионе могут достигать 40°С и выше в течение длительного времени.
Существующая на предприятии воздушная система охлаждения работает под разрежением, создаваемым вентилятором. Воздух на охлаждение забирается вентилятором из производственного помещения, что приводит к снижению его охлаждающего потенциала из-за повышенной температуры в зоне забора воздуха относительно температуры наружного воздуха на 5…10°С.
Кроме того, из-за запыленности воздуха, непосредственно охлаждающего продукт прессования (например, жмых сои), во избежание снижения его потребительских свойств, предусматривается установка воздушного фильтра, имеющего достаточно высокое гидравлическое сопротивление, приводящее к снижению производительности вентилятора.
Продукция производства, работающего в режиме 7/24, в конце технологического цикла имеет температуру +150°С. Существующая на предприятии система воздушного охлаждения при температуре атмосферного воздуха +40°С и выше не может обеспечить величину допустимой температуры конечной продукции в связи с низкой интенсивностью процессов охлаждения атмосферным воздухом, связанной с низким коэффициентом теплоотдачи и малой теплоемкостью воздуха и прежде всего с высокой температурой самого охлаждающего воздуха. Необходимо провести мероприятия по доработке системы воздушного охлаждения.
Из уровня техники известно, что во многих отраслях промышленного и сельскохозяйственного производства применяются установки воздушно-испарительного охлаждения с целью создания условий, обеспечивающих необходимые температурные режимы. Применение таких установок, во многом сохраняющих простоту и экономичность воздушной системы охлаждения, в значительной степени повышают эффективность охлаждающих свойств охлажденного воздуха для поддержания температурных режимов тепловых процессов прессового производства и кондиционирования рабочих мест обслуживающего персонала, см. например RU 2435447, RU 2404838, RU 2619278, RU 2473017, RU 2563753, SU 1689725, RU 2435447, RU 2640366.
Воздушно-испарительное охлаждение представляет собой охлаждение увлажненным воздухом. Увлажнение и охлаждение воздуха обычно производится в форсуночной оросительной камере, куда вентилятором подается атмосферный воздух, а холодоноситель (вода) с низкой температурой распыляется в объеме камеры форсунками.
Капли воды при контакте с воздухом приобретают температуру, равную температуре мокрого термометра. При контакте воздуха с водой, имеющей такую температуру, происходит процесс адиабатного (изоэнтальпийного) увлажнения и охлаждения воздуха. Предельному состоянию воздуха в этом процессе соответствует его насыщение влагой до 100%. Вода, непрерывно находясь в контакте с воздухом, также имеет температуру, близкую к температуре мокрого термометра, и в небольшой части испаряется и увлажняет проходящий через оросительную камеру воздух. В нашем случае: воздух, имеющий начальную температуру +45°С, охлаждается до температуры мокрого термометра (+37,5°С) за счет испарения орошаемой воды (около 3,5 г/кг сухого воздуха).
На процесс охлаждения и увлажнения воздуха в оросительной камере влияет степень (ρ) и плотность орошения (μ), а также скорость движения воздуха в камере W м/с, где ρ=Gводы/ Gвоздуха кг/кг; μ=Gводы/F кг/м2; F - сечение камеры.
Форсуночная оросительная камера при расходе охлаждающего воздуха 3,5…4 м3/с и при скорости обрабатываемого воздуха 2…3 м/с будет иметь поперечное сечение от 1,5 до 2 м2 при плотности размещения форсунок 20 шт на 1 м2 с трехрядным исполнением.
Эффективность форсуночной камеры зависит от количества форсунок и диаметра сопла распыляющих форсунок, и является следствием влияния распыла воды, т.е. преобладающего количества капель той или иной дисперсности, определяющего величину активной поверхности тепломассообмена.
Для тщательного перемешивания распыленных в форсунках капель воды с воздухом форсунки должны иметь малый диаметр сопел (∅2…∅3 мм) при их большом количестве, что усложняет эксплуатацию и снижает надежность их работы. Кроме того, наличие пыли в обрабатываемом воздухе приводит к загрязнению сопел форсунок с соответствующим ухудшением дисперсности капель, приводящим к общему снижению охлаждающего потенциала воздушно-испарительной установки.
Техническим результатом настоящего изобретения является создание комбинированной установки воздушно-испарительного охлаждения атмосферного воздуха, используемого в качестве хладоагента в тепловых процессах прессового производства при и обеспечивающего охлаждение жмыха сои и подсолнечника при температуре атмосферного воздуха до и выше +40°С и для кондиционирования рабочих мест обслуживающего персонала.
Указанный технический результат достигается тем, что установка подготовки атмосферного воздуха для прессового производства для охлаждения жмыха сои или подсолнечника содержит охладитель жмыха, связанный воздуховодами с вентилятором с атмосферным воздухом и средство охлаждения атмосферного воздуха, при этом средство охлаждения атмосферного воздуха выполнено в виде центробежно-барботажного аппарата (ЦБА) с одной или двумя барботажными ступенями, при этом ЦБА имеет патрубок, через который воздух поступает в ЦБА за счет разрежения, создаваемого вентилятором и по меньшей мере патрубок для охлаждающей воды, соединенный с баком охлаждающей воды, выход ЦБА воздухопроводом соединен с охладителем жмыха, причем бак с охлаждающей водой своим выходным патрубком соединен с патрубком для охлаждающей воды ЦБА через теплообменник, а теплообменник для его охлаждения дополнительно соединен с холодильной машиной, выполненной в виде чиллера.
Интенсивность охлаждения воздуха существенно зависит от начальных параметров воздуха (температура и относительная влажность) и температуры распыляемой воды, при том, что ее снижение увеличивает эффективность охлаждения. Поэтому желательно применять охлажденную воду с использованием холодильной машины (в нашем случае: чиллер с использованием в качестве хладоагента фреона R22 с холодопроизводительностью 40×103 ккал/час и температурой охлажденной воды +15°С).
Комбинированная установка охлаждения атмосферного воздуха может работать в двух режимах, при температуре наружного воздуха от -20 до +30°С установка работает без принудительного охлаждения хладоагента (атмосферного воздуха, подаваемого на охлаждение технологической продукции), и наоборот, для поддержания заданной температуры в диапазоне -20 до +30°С в воздух, подаваемый вентилятором, и имеющий отрицательную температуру, подмешивается воздух из производственного помещения, где при прессовании жмыха температура окружающего воздуха может достигать +30…40°С. Вместо форсуночной оросительной камеры для охлаждения атмосферного воздуха используется центробежно-барботажный аппарат (ЦБА). Применение ЦБА, как основной составляющей установки воздушно-испарительного охлаждения воздуха, обеспечивает высокие параметры тепломассообмена и соответственно компактное ее исполнение по сравнению с установками с форсуночной оросительной камерой, имеющей значительные габариты, с большим количеством сложных в изготовлении и эксплуатации жидкостных форсунок.
Сущность заявленного изобретения поясняется графическими материалами, на которых:
Фиг. 1 - общая схема подготовки атмосферного воздуха для охлаждения жмыха сои и кондиционирования рабочих мест обслуживающего персонала при температуре наружного воздуха от -30 до +45°С с Таблицей 1 основных режимов работы оборудования;
фиг. 2 - фрагмент I-d диаграммы влажного воздуха при охлаждении его по схеме, представленной на фиг. 1;
фиг. 3 - аппарат ЦБА в разрезе;
фиг. 4 - вид сверху на завихритель барботажной ступени.
Из диаграммы фиг. 2 видно, что при начальной температуре воздуха +45°С и относительной влажности 60% энтальпия влажного воздуха равна 35 ккал/кг, а абсолютная влажность 39 г/кг сухого воздуха. При обработке происходит адиабатное охлаждение воздуха до величины относительной влажности ϕ=100%, при этом температура влажного воздуха достигает температуры мокрого термометра (+37,5°С), а абсолютная влажность достигает 42,5 г/кг сухого воздуха; дальнейшее охлаждение воздуха до температуры охлаждающей воды, равной tм=+27°С происходит при относительной влажности ϕ=100%, при этом конечная абсолютная влажность достигает 23 г/кг сухого воздуха.
За счет тепла конденсации влаги воздуха от 42,5 г/кг сухого воздуха до 23 г/кг сухого воздуха воздух охлаждается:
Qконд=GвΔd⋅r, где Gв - весовой расход воздуха,Δd - количество сконденсированной влаги, r - теплота конденсации.
Qконд=3,5⋅1,14⋅3600 (42,5-23) ⋅ 10-3⋅600=168058,8 ккал/час
Общее количество холода, необходимого для охлаждения воздуха от +45°С до +27°С ΣQ=Gв⋅ΔI, где ΔI - разность энтальпий между начальной и конечной температурой
∑Q=3,5 1,14 3600(35-20,5)=208278 ккал/час
Дефицит холода при охлаждении за счет конденсации
ΔQ=∑Q - Qконд
ΔQ=208278 - 168058=40220 ккал/час
Этот дефицит покрывается за счет холодопроизводительности чиллера, равной 40000 ккал/час.
На фиг. 3 изображен ЦБА в разрезе. Аппарат может комплектоваться одной или двумя барботажными ступенями. Аппарат работает следующим образом: воздух через патрубок 1 поступает в ЦБА за счет разрежения, создаваемого вентилятором. Охлаждающая вода подается в аппарат через патрубок 2. Далее воздух с водой поступают в барботажную ступень 3 (завихритель). Вид сверху на завихритель барботажной ступени показан на рис. 4. Воздух с водой поступают внутрь барботажной ступени через тангенциальные щели 4, равномерно расположенные по периметру боковой поверхности завихрителя. Внутри завихрителя воздух начинает вращаться (вращение достигается за счет его ввода в барботажную ступень по касательной траектории через равномерно расположенные по боковой поверхности завихрителя тангенциальные щели 4). Вместе с воздухом начинает вращаться поступающая в барботажную ступень вода, раскручиваемая кинетической энергией воздуха.
Под действием центробежных сил вращающаяся вода прижимается к боковой поверхности завихрителя, где, постоянно раскручиваемая воздухом, вдуваемым в барботажную ступень, образует вращающееся пенное кольцо 5, заполняющее все внутреннее пространство до центрального отверстия.
Воздух с водой двигаются через вращающийся барботажный слой по спиральной траектории от периферии к центральному отверстию 6. Поскольку скорость воздуха в десятки раз превышает скорость воды, то при его прохождении через вращающийся слой, воздух с водой дробятся в поле центробежных сил на очень мелкие пузырьки с развитой быстрообновляемой поверхностью контакта фаз (размеры пузырьков обратно пропорциональны центробежным ускорениям).
После выхода из барботажной ступени газожидкостная смесь попадает в сепарационную зону, где происходит отделение жидкой фазы от воздуха (фиг. 3). После выхода из сепарационной зоны вода по стенкам стекает в нижнюю часть аппарата - поддон, откуда через патрубок 7 сливается из ЦБА. Охлажденный и увлажненный воздух через патрубок 8 поступает в охладитель жмыха и частично на кондиционирование рабочих мест обслуживающего персонала.
Аппараты ЦБА обладают следующими преимуществами:
1. Высокие коэффициенты тепломассообмена (высокая эффективность):
высокая скорость газа (на порядок выше, чем в других аппаратах), в десятки раз увеличивающая удельную поверхность контакта фаз газ - жидкость.
2. Малые габариты. При сопоставимой производительности аппараты ЦБА обладают значительно меньшими габаритами по сравнению с оросительными камерами или скрубберами.
3. Простота и надежность конструкции: отсутствие каких-либо вращающихся узлов; отсутствие форсунок.
4. Центробежно-барботажные аппараты одновременно с процессом охлаждения воздуха могут использоваться для мокрой очистки воздуха от различной крупно-, средне- и мелкодисперсной пыли. Эффективность улавливания пыли аппаратом ЦБА для частиц диаметром 1 мкм составляет >90%.
По воздушному охлаждающему тракту обеспечивается прокачка под разрежением охлажденного воздуха вентилятором типа ВДП-RV710.
Температура охлажденной воды, подаваемой в ЦБА насосом через теплообменник, может регулироваться за счет изменения расхода воды в контуре чиллера задвижкой.

Claims (1)

  1. Установка подготовки атмосферного воздуха для прессового производства для охлаждения жмыха сои или подсолнечника, содержащая охладитель жмыха, связанный воздуховодами с вентилятором с атмосферным воздухом и средство охлаждения атмосферного воздуха, при этом средство охлаждения атмосферного воздуха выполнено в виде центробежно-барботажного аппарата (ЦБА) с одной или двумя барботажными ступенями, при этом ЦБА имеет патрубок, через который воздух поступает в ЦБА за счет разрежения, создаваемого вентилятором и по меньшей мере патрубок для охлаждающей воды, соединенный с баком охлаждающей воды, выход ЦБА воздухопроводом соединен с охладителем жмыха, причем бак с охлаждающей водой своим выходным патрубком соединен с патрубком для охлаждающей воды ЦБА через теплообменник, а теплообменник для его охлаждения дополнительно соединен с холодильной машиной, выполненной в виде чиллера.
RU2018138760A 2018-11-02 2018-11-02 Комбинированная установка охлаждения атмосферного воздуха для установок прессового производства сельского хозяйства RU2694578C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018138760A RU2694578C1 (ru) 2018-11-02 2018-11-02 Комбинированная установка охлаждения атмосферного воздуха для установок прессового производства сельского хозяйства

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018138760A RU2694578C1 (ru) 2018-11-02 2018-11-02 Комбинированная установка охлаждения атмосферного воздуха для установок прессового производства сельского хозяйства

Publications (1)

Publication Number Publication Date
RU2694578C1 true RU2694578C1 (ru) 2019-07-16

Family

ID=67309262

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018138760A RU2694578C1 (ru) 2018-11-02 2018-11-02 Комбинированная установка охлаждения атмосферного воздуха для установок прессового производства сельского хозяйства

Country Status (1)

Country Link
RU (1) RU2694578C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU214544U1 (ru) * 2022-08-04 2022-11-02 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ") Устройство для охлаждения жмыха

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2404838C1 (ru) * 2009-07-20 2010-11-27 ООО Промышленно-Инновационная Компания Устройство для очистки газа и воздуха
RU2435447C1 (ru) * 2010-04-26 2011-12-10 Александр Васильевич Подобедов Установка для инактивационной переработки семян бобовых культур
RU2473017C2 (ru) * 2010-11-23 2013-01-20 Владимир Федорович Рацеев Способ охлаждения воздуха в здании и система для его реализации
RU2619278C1 (ru) * 2015-11-06 2017-05-15 Федеральное государственное бюджетное образовательное учреждение высшего образования "Воронежский государственный университет инженерных технологий" (ФГБОУ ВО "ВГУИТ"). Линия производства растительного масла

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2404838C1 (ru) * 2009-07-20 2010-11-27 ООО Промышленно-Инновационная Компания Устройство для очистки газа и воздуха
RU2435447C1 (ru) * 2010-04-26 2011-12-10 Александр Васильевич Подобедов Установка для инактивационной переработки семян бобовых культур
RU2473017C2 (ru) * 2010-11-23 2013-01-20 Владимир Федорович Рацеев Способ охлаждения воздуха в здании и система для его реализации
RU2619278C1 (ru) * 2015-11-06 2017-05-15 Федеральное государственное бюджетное образовательное учреждение высшего образования "Воронежский государственный университет инженерных технологий" (ФГБОУ ВО "ВГУИТ"). Линия производства растительного масла

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU214544U1 (ru) * 2022-08-04 2022-11-02 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ") Устройство для охлаждения жмыха
RU220218U1 (ru) * 2023-07-17 2023-09-04 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ") Установка для охлаждения жмыха
RU220228U1 (ru) * 2023-07-17 2023-09-04 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ") Установка для охлаждения жмыха

Similar Documents

Publication Publication Date Title
US20120324911A1 (en) Dual-loop cooling system
JP2001517772A (ja) 回転ディスク式蒸発冷却器
Mirmanto et al. Effect of capillary tube length on mass of water production
RU2694578C1 (ru) Комбинированная установка охлаждения атмосферного воздуха для установок прессового производства сельского хозяйства
US6247326B1 (en) Evaporative condensing unit utilizing normal and unsaturated air
CN204128100U (zh) 水冷却制冷工质的户式空调装置
Mehere et al. Review of direct evaporative cooling system with its applications
US3990260A (en) Low-temperature dehumidifier
CN107764037A (zh) 用于在干燥工艺中对空气进行再循环的方法和布置
Hepbasli et al. An exergetic performance assessment of three different food driers
US20210341157A1 (en) Combined direct and indirect evaporative cooling system and method
KR20150114232A (ko) 저노점 냉풍건조기
CN218784613U (zh) 一种喷淋式常压低温蒸发冷却物料装置
US2817960A (en) Heat exchangers
US2414135A (en) Cooling of gases or liquids
RU2662009C1 (ru) Газотурбинный газоперекачивающий агрегат компрессорной станции магистрального газопровода
KR20220152733A (ko) 가습기 겸용 유니트 쿨러
JP5256338B2 (ja) 除湿冷気生成方法及び空気冷却装置
JP6764020B2 (ja) タービン入口冷却を用いて天然ガスを液化するためのシステム及び方法
JP2010185663A (ja) 冷凍サイクル装置
CN102587453B (zh) 一种便携式空气取水装置
RU2552212C2 (ru) Способ работы башенной и вентиляторной градирни испарительного типа и устройство для его осуществления
RU2641503C1 (ru) Установка кондиционирования воздуха
RU2798113C1 (ru) Способ охлаждения воздуха и воды
ElGawady et al. Proposed New Experimental Setup for Direct/Indirect Evaporative Cooling Performance Analyses

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner
QB4A Licence on use of patent

Free format text: PLEDGE FORMERLY AGREED ON 20211028

Effective date: 20211028