RU2694455C2 - Способ возведения стрельчатых купольных конструкций - Google Patents

Способ возведения стрельчатых купольных конструкций Download PDF

Info

Publication number
RU2694455C2
RU2694455C2 RU2017112457A RU2017112457A RU2694455C2 RU 2694455 C2 RU2694455 C2 RU 2694455C2 RU 2017112457 A RU2017112457 A RU 2017112457A RU 2017112457 A RU2017112457 A RU 2017112457A RU 2694455 C2 RU2694455 C2 RU 2694455C2
Authority
RU
Russia
Prior art keywords
dome
formwork
base
radius
construction
Prior art date
Application number
RU2017112457A
Other languages
English (en)
Other versions
RU2017112457A3 (ru
RU2017112457A (ru
Inventor
Илья Владимирович Янов
Александр Михайлович Пыжов
Вениамин Валентинович Пойлов
Наталья Викторовна Лукашова
Original Assignee
Илья Владимирович Янов
Александр Михайлович Пыжов
Вениамин Валентинович Пойлов
Наталья Викторовна Лукашова
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Илья Владимирович Янов, Александр Михайлович Пыжов, Вениамин Валентинович Пойлов, Наталья Викторовна Лукашова filed Critical Илья Владимирович Янов
Priority to RU2017112457A priority Critical patent/RU2694455C2/ru
Publication of RU2017112457A publication Critical patent/RU2017112457A/ru
Publication of RU2017112457A3 publication Critical patent/RU2017112457A3/ru
Application granted granted Critical
Publication of RU2694455C2 publication Critical patent/RU2694455C2/ru

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/32Arched structures; Vaulted structures; Folded structures
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G11/00Forms, shutterings, or falsework for making walls, floors, ceilings, or roofs
    • E04G11/04Forms, shutterings, or falsework for making walls, floors, ceilings, or roofs for structures of spherical, spheroid or similar shape, or for cupola structures of circular or polygonal horizontal or vertical section; Inflatable forms
    • E04G11/045Inflatable forms

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Conveying And Assembling Of Building Elements In Situ (AREA)
  • Moulds, Cores, Or Mandrels (AREA)

Abstract

Изобретение используется в строительстве для изготовления стрельчатых купольных зданий и сооружений гражданского, промышленного, культового и сельскохозяйственного назначения. Изобретение представляет собой способ возведения купольных стрельчатых конструкций на пневмоопалубке с помощью кирпичей или других блочных изделий, длина которых больше их удвоенной толщины, и которые укладывают горизонтальными рядами параллельно основанию. Одними торцами блоки упираются в оболочку опалубки и образуют внутреннюю поверхность купола, а другие торцы изделий образуют его наружную поверхность. Изобретение позволяет снизить расход материалов и трудовых затрат на изготовление, установку и разборку опалубки, упростить укладку строительного материала при возведении стрельчатых купольных конструкций и расширить географию возведения подобных сооружений. 2 ил.

Description

Изобретение используется в строительстве для изготовления стрельчатых купольных зданий и сооружений гражданского, промышленного, культового и сельскохозяйственного назначения.
Купольные покрытия применяют для круглых, эллиптических или полигональных в плане зданий и сооружений. Поверхность купола с круговым основанием получается вращением вокруг вертикальной оси меридиональной кривой (образующей) - дуги круга, эллипса, параболы, циклоиды или комбинации из них. Образующей может быть прямая, при вращении которой получается конус (Лебедева Н.В. Фермы, арки, тонкостенные пространственные конструкции / Лебедева Н.В.: Учеб. Пособие. - М: «Архитектура - С». 2006. - 120 с., (С. 64). В зависимости от очертания образующей купол может быть шаровым (сферическим), коническим, эллиптическим, стрельчатым, зонтичным и другой формы (Тур В.И. Купольные конструкции: формообразование, расчет, конструирование, повышение эффективности: Учебное пособие. - М.: Издательство АСВ, 2004. - 94 с. (С. 8). Купол является одной из наиболее рациональных и выгоднейших форм пространственных тонкостенных конструкций (Цай Т.Н. Строительные конструкции. Железобетонные конструкции: Учебник. 3-е изд., стер. - СПб.: Издательство «Лань». 2012. - 464 с. (С. 337). Так, например, считается, что среди пространственных жестких систем купольные конструкции по расходу материалов являются самыми экономичными (Тур В.И. Купольные конструкции: формообразование, расчет, конструирование, повышение эффективности: Учебное пособие. - М.: Издательство АСВ, 2004. - 94 с. (С.7).
Все это позволяет применять купольные сооружения не только при строительстве объектов различного назначения, но и в различных климатических зонах, в том числе и в условиях сурового климата (там же, С. 8), например, на Луне и других космических объектах нашей планетной системы.
В настоящее время наиболее востребованным материалом для возведения самых разнообразных сооружений во всех странах применяют бетон и железобетон. Это связано с практически неисчерпаемыми запасами сырья на планете Земля для производства вяжущих и заполнителей бетона. Однако, помимо достоинств монолитного бетона и железобетона, имеются и недостатки данного вида строительства, как, например, большая трудоемкость выполнения работ. Так, например, в общем объеме трудовых затрат на выполнение монолитных работ опалубочные работы составляют от 18 до 50%, арматурные - 15-20% и бетонные - до 50% в зависимости от вида строительства, типа и размеров бетонируемых конструкций, применяемых систем опалубок и т.п. (Василенко, А.Н. Проектирование и возведение монолитных зданий и сооружений с применением пневматической опалубки: учеб. пособие / А.Н. Василенко; Воронеж. гос. арх. - строит. ун-т. - Воронеж, 2010. - 180 с. (С. 3-4).
Предпочтительным способом сооружения монолитных бетонных купольных пространственных конструкции в настоящее время считается способ с применением пневматической опалубки (Лебедева Н.В. Фермы, арки, тонкостенные пространственные конструкции / Лебедева Н.В..: Учеб. Пособие. - М.: «Архитектура-С». 2006. - 120 с., (С. 70). К недостаткам таких способов изготовления монолитных купольных сооружений относятся сложность возводимой конструкции, необходимость применения большого количества жидкого бетона и технологии торкретирования (пневмонабрызга), а также торкрет-пушки, что сопровождается неизбежными потерями бетонной смеси. Кроме того, использование большого количества бетона или другого подобного материала при изготовлении монолитных бетонных куполов с применением пневматической опалубки затруднительно или практически невозможно в отдаленных, труднодоступных местностях и в условиях сурового климата, например, на Луне.
В связи с этим, нами предложен достаточно простой способ возведения купольных сооружений на пневматической опалубке с помощью кирпичей, камней или блочных изделий, изготавливаемых из местных материалов без использования цементных растворов (например, изготовление блочных изделий из местного материала «реголита» в условиях Луны) или с применением относительно небольшого количества цементных растворов (в условиях Земли).
Пневматическая опалубка не требует больших затрат на транспортирование, монтаж и эксплуатацию. С помощью такой опалубки можно возводить конструкции в самых труднодоступных местах. Важными преимуществами пневмоопалубок является их малая масса, высокая оборачиваемость и низкая трудоемкость монтажа и демонтажа.
Купольные строительные конструкции известны человечеству с древних времен. Их применяли в Месопотамии, Сирии, Иране, Древнем Риме (Тур В.И. Купольные конструкции: формообразование, расчет, конструирование, повышение эффективности: Учебное пособие. - М.: Издательство АСВ, 2004.-94 с. (С. 7). Основным материалом для строительства куполов был камень. Древние купола имели пролет до 30-40 м, а их толщина составляла от 1/15-1/17 диаметра в основании до 1/30-1/40 в верхней части. Однако способ возведения каменных куполов на сплошных лесах и подмостях, повторяющих геометрию купола, сложен и требует больших затрат.
Наиболее близким к предложенному изобретению является способ возведения купольных конструкций, включающий установку опалубки, укладку кирпичей последовательными рядами по направлению от опорного кольца купола к его ключу и разработку опалубки. Для осуществления данного способа изготавливают сплошную опалубку, кружала и поддерживающие их элементы (Н.И. Аистов, Б.Д. Васильев, В.Ф. Иванов и др. История строительной техники. - Л.: Госстройиздат, 1962, стр. 123).
Недостатком известного способа возведения каменных купольных сооружений является достаточная сложность, большой расход материалов и трудовых затрат на изготовление, установку и разборку опалубки, кружал и поддерживающих их элементов.
Технический результат, на решение которого направлено изобретение, заключается в снижении расхода материалов и трудовых затрат на изготовление, установку и разборку опалубки при возведении купольных конструкций, в простоте кладки строительного материала, и расширении географии возведения подобных сооружений.
Технический результат достигается тем, что в способе возведения купольных конструкций, включающий установку опалубки, укладку кирпичей последовательными рядами по направлению от опорного кольца купола к его ключу и разработку опалубки, в качестве формы купольной конструкции используют стрельчатую форму, а в качестве опалубки - пневматическую опалубку из эластичного материала, которая изготавливаться, как минимум, из трех герметично соединенных секций, верхняя из которых представляет собой прямой круговой конус, образующая которого наклонена к его основанию под углом в 45°, а высота и радиус основания составляют 7/10 частей от радиуса основания купола, средняя секция является слоем сферы, меньший радиус которой равен радиусу основания конусной части опалубки, а больший радиус равен радиусу основания купола, нижняя секция укладывается на строительную площадку и является кругом, радиус которого равен радиусу основания купола, а для формирования оболочки купольной конструкции используют кирпичи или другие блочные изделия, длина которых больше их удвоенной толщины, и которые укладывают горизонтальными рядами параллельно основанию, причем одними торцами блоки упираются в оболочку опалубки и образуют внутреннюю поверхность купола, а другие торцы изделий образуют его наружную поверхность.
Для того чтобы оценить равноценность замены сферической формы купола (прототип) стрельчатой конструкцией (изобретение) были проведены сравнительные испытания моделей этих куполов. В экспериментах оценивалась прочность при сжатии моделей куполов на гидравлическом прессе. Купола изготавливались из гипса на пневмоопалубке. Для изготовления стрельчатых куполов использовались предварительно подготовленные гипсовые блочные изделия габаритами 3,5×7,0×7,8 мм. Каждый горизонтальный ряд формировался кладкой в два гипсовых изделия. Формирование куполов производилось на резиновой надувной пневмоопалубке, диаметром 86 мм. Толщина стенок у основания куполов составляла 16 мм, а на вершине - 10 мм. На изготовление каждого стрельчатого купола понадобилось в среднем около 700 шт. гипсовых изделий. На рис. 1 приведены фотографии модели стрельчатого купола в разных ракурсах: А - вид сбоку, Б - вид сверху, В - вид снизу. На купола устанавливались массивные цилиндрические гипсовые блоки, в торцах которых были углубления, по форме повторяющие конфигурацию верхних частей куполов. Габариты опорного пояса моделей куполов были одинаковыми. Удельное давление разрушения сферического купола при сжатии составило 4,24 мПа (43,2 кгс/см2), а стрельчатого - 5,15 мПа (51,5 кгс/см2), т.е. прочность стрельчатого купола оказалась на 14% больше прочности сферического купола. Таким образом, была показана равноценность замены сферического купола стрельчатым.
Ниже приведены примеры способов изготовления стрельчатых купольных сооружений в соответствии с предлагаемым изобретением в условиях Земли и Луны.
1. Способ изготовления купольных стрельчатых сооружений на Земле Составляется проект купола, на основании которого оцениваются форма, размеры и материал пневматической опалубки, вид, форма и количество используемых кирпичей или блоков, которые изготавливаются из керамических, бетонных или других местных природных материалов. Длина используемых блочных изделий должна быть больше их удвоенной толщины. При необходимости заказывают некоторое количество фасонного и клинового кирпича, изготовленного по специальному лекалу. Такой кирпич понадобится, например, при изготовлении верхней, конусной части купола. Кроме того, в случае применения фасонных кирпичей со скошенными или закругленными торцами внутренняя и наружная поверхности купола становятся более ровной, а значит более подходящей для нанесения каких-либо декоративных или защитных покрытий. Кроме того, в этом случае снижается расход применяемого строительного материала и его стоимость. Для изготовления опалубки используют прочную прорезиненную ткань или полимерную пленку. Опалубку раскраивают по специальным выкройкам, сшивают, швы проклеивают тем же материалом. В соответствии с предлагаемым изобретением конструкция пневмоопалубки, как минимум, должна состоять из трех частей - верхней, конусообразной, средней, в виде слоя сферы и нижней, в виде круга, являющегося основанием опалубки. Причем, угол наклона образующей верхнего конуса к основанию опалубки должен составлять 45 градусов. Только в этом случае возможна укладка кирпичей параллельно основанию купола. После этого готовят строительную площадку. С этой целью площадку выравнивают и при необходимости изготавливают ленточный фундамент. Опалубку закрепляют по контуру основания, затем в нее нагнетают воздух под давлением 0,05 Мпа (0,49 атм). Затем в случае необходимости устанавливают на поверхности пневмоопалубки опалубки, формирующие проемы окон и дверей. После подготовки опалубки производят кладку кирпича горизонтальными рядами по направлению от опорного кольца купола к вершине конусной части опалубки. На рис. 2 показано вертикальное сечение стрельчатого купола на пневмоопалубке, изготовленное из блочных изделий «в один ряд», где 1 - блочные изделия, 2 - основание, 3 - трубопровод для нагнетания воздуха, 4 - пневмоопалубка. Для повышения прочности купола проводят кладку в два кирпича и больше. Кладка ведется с продольной перевязкой швов. После выкладывания оболочки купола производится демонтаж пневмоопалубки. После изготовления купола его ступенчатая наружная поверхность может быть оштукатурена. При необходимости, изготовленная купольная конструкция может использоваться в качестве подземного убежища. В этом случае купол возводится в заранее подготовленном углублении, после чего покрывается специальными защитными покрытиями и засыпается грунтом. В этом случае ступенчатая наружная поверхность купола способствует более прочному сцеплению с насыпным грунтом.
2. Способ изготовления купольных стрельчатых сооружений на Луне
Купольное сооружение в условиях Луны может быть использовано как внешняя защитная оболочка стационарной обитаемой станции. В связи со значительной отдаленностью Луны строительные материалы для строительства купола предполагается изготавливать из лунного вещества.
Как показали дозиметрические исследования образцов лунного вещества, доставленного с поверхности Луны советскими космическими аппаратами, интенсивность гамма-излучения лунного грунта незначительно превышает интенсивность гамма-излучения земных пород с малым содержанием естественных радиоактивных элементов (За лунным камнем. Алексеев В, Лебедев В.:М., «Машиностроение», 1972, с. 120 (С. 37). Это говорит о том, что лунное вещество - реголит можно вполне безопасно использовать как строительный материал для возведения купола. Реголит - это рыхлый обломочно-пылевой поверхностный материал, который состоит из изверженных пород, минералов, метеоритов, содержит алюминий, железо и титан, покрывающий многометровым слоем поверхность естественного спутника Земли. Реголит представляет собой мелкодисперсный порошок, который легко слипается и формуется в отдельные комки. По химическому составу вещество лунного грунта представляет собой остеклованную породу базальтового типа (там же, С. 42).
Для строительства купола предполагается использовать реголит, из которого можно прессованием с одновременным спеканием каким-либо способом формовать керамические блоки. Скреплять блоки между собой можно будет, например, с помощью композиции на основе воды, загущенной натриевой солью карбоксиметилцеллюлозы, которая после нанесения на поверхности блоков превращается в лед и прочно их скрепляет. Данное предположение основано на результатах исследований, проведенных американскими автоматическими межпланетными станциями (АМС) в 2009 году. На одном из АМС был установлен российский прибор ЛЕНД-детектор, предназначенный для поиска замерзшей воды. В районе южного полюса Луны было обнаружено большое количество водорода, который может быть признаком наличия воды в связанном состоянии (Поиск замерзшей воды. Е.Левитан. Наука и жизнь, №4, 2010. С. 81-85).
Строительная площадка для возведения купола оборудуется в углублении подходящего кратера в полярных областях Луны, где возможно наличие линз водяного льда в затененных кратерах. Подготавливается основание, на котором закрепляется пневмоапалубка, после чего ее наполняют каким-либо газом. На поверхности пневмоопалубки монтируют опалубку, формирующую шлюзовой выход из станции. После строительства купола проводят демонтаж опалубки. Затем купол засыпается слоем лунного грунта толщиной не менее полутора метров, на который укладываются блоки из реголита. Такая конструкция необходима для защиты обитателей станции от гамма-излучения и метеоритов. Внутри купола устанавливается жилой надувной модуль. При необходимости рядом устанавливаются еще несколько защитных куполов, связанных между собой защищенными тоннелями.

Claims (1)

  1. Способ возведения купольных конструкций, включающий установку опалубки, укладку кирпичей последовательными рядами по направлению от опорного кольца купола к его ключу и разработку опалубки, отличающийся тем, что в качестве формы купольной конструкции используют стрельчатую форму, а в качестве опалубки - пневматическую опалубку из эластичного материала, которая изготавливается, как минимум, из трех герметично соединенных секций, верхняя из которых представляет собой прямой круговой конус, образующая которого наклонена к его основанию под углом в 45°, а высота и радиус основания составляют 7/10 частей от радиуса основания купола, средняя секция является слоем сферы, меньший радиус которой равен радиусу основания конусной части опалубки, а больший радиус равен радиусу основания купола, нижняя секция укладывается на строительную площадку и является кругом, радиус которого равен радиусу основания купола, а для формирования оболочки купольной конструкции используют кирпичи или другие блочные изделия, длина которых больше их удвоенной толщины, и которые укладывают горизонтальными рядами параллельно основанию, причем одними торцами блоки упираются в оболочку опалубки и образуют внутреннюю поверхность купола, а другие торцы изделий образуют его наружную поверхность.
RU2017112457A 2017-04-11 2017-04-11 Способ возведения стрельчатых купольных конструкций RU2694455C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017112457A RU2694455C2 (ru) 2017-04-11 2017-04-11 Способ возведения стрельчатых купольных конструкций

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017112457A RU2694455C2 (ru) 2017-04-11 2017-04-11 Способ возведения стрельчатых купольных конструкций

Publications (3)

Publication Number Publication Date
RU2017112457A RU2017112457A (ru) 2018-10-11
RU2017112457A3 RU2017112457A3 (ru) 2019-05-08
RU2694455C2 true RU2694455C2 (ru) 2019-07-15

Family

ID=63863477

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017112457A RU2694455C2 (ru) 2017-04-11 2017-04-11 Способ возведения стрельчатых купольных конструкций

Country Status (1)

Country Link
RU (1) RU2694455C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2779953C1 (ru) * 2021-07-21 2022-09-15 Альберт Амаякович Деремян Арочно-кольцевое здание и способ его возведения

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB603655A (en) * 1945-10-26 1948-06-21 Wallace Neff Construction of concrete buildings
FR2228379A5 (en) * 1973-05-04 1974-11-29 Jauffret Gilbert Concrete cylindrical-based spherical building - is formed with pneumatic mould, circular base-sections arc-shaped gangway
RU2008420C1 (ru) * 1991-09-17 1994-02-28 Проектный научно-исследовательский конструкторский институт "Уральский промстройНИИпроект" Способ возведения железобетонного свода на пневмоопалубке
RU2261959C2 (ru) * 2003-08-25 2005-10-10 Общество с ограниченной ответственностью "Лола Дом" Способ возведения сводчатой строительной конструкции со сдвоенной стенкой
RU2346123C1 (ru) * 2007-07-06 2009-02-10 Евгений Владимирович Основин Способ бетонирования на пневмоопалубке и устройство для его осуществления

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB603655A (en) * 1945-10-26 1948-06-21 Wallace Neff Construction of concrete buildings
FR2228379A5 (en) * 1973-05-04 1974-11-29 Jauffret Gilbert Concrete cylindrical-based spherical building - is formed with pneumatic mould, circular base-sections arc-shaped gangway
RU2008420C1 (ru) * 1991-09-17 1994-02-28 Проектный научно-исследовательский конструкторский институт "Уральский промстройНИИпроект" Способ возведения железобетонного свода на пневмоопалубке
RU2261959C2 (ru) * 2003-08-25 2005-10-10 Общество с ограниченной ответственностью "Лола Дом" Способ возведения сводчатой строительной конструкции со сдвоенной стенкой
RU2346123C1 (ru) * 2007-07-06 2009-02-10 Евгений Владимирович Основин Способ бетонирования на пневмоопалубке и устройство для его осуществления

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Н.И.Аистов и др. История строительной техники. Л. Госстройиздат, 1962, стр. 123. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2779953C1 (ru) * 2021-07-21 2022-09-15 Альберт Амаякович Деремян Арочно-кольцевое здание и способ его возведения
RU2787490C1 (ru) * 2022-06-16 2023-01-09 Дмитрий Вячеславович Мерсаль Купольное здание и способ строительства купольного здания

Also Published As

Publication number Publication date
RU2017112457A3 (ru) 2019-05-08
RU2017112457A (ru) 2018-10-11

Similar Documents

Publication Publication Date Title
CN106121039B (zh) 村镇砌体结构装配整体式圈梁‑构造柱组合方法
CN107268834B (zh) 无构造柱组合镂空清水砖墙及其施工方法
CN102817375A (zh) 装配式预制钢筋混凝土检查井系统
WO2020172654A1 (en) Self-constructing structures
CN204919573U (zh) 一种复合式边坡支护结构
CN105839651A (zh) 路基边坡装配式变形自适应防护骨架及其拼接方法
CN112627846B (zh) 一种适用于软岩大变形隧/巷道的复合支护体系及方法
De Benedictis et al. Methodology applied to the removal of the ruins and to the survey of the remains after the collapse of the Noto Cathedral in Sicily
RU2694455C2 (ru) Способ возведения стрельчатых купольных конструкций
CN110541505A (zh) 一种喷筑式复合石膏墙体施工的方法
CN205653804U (zh) 一种路基边坡装配式变形自适应防护骨架
Torge et al. Ramla
KR20100074609A (ko) 에어막을 이용한 아치형 콘크리트 구조물의 시공방법 및 그시공방법에 의한 아치형 구조물
Negev Survey and trial excavations at Ḥaluza (Elusa), 1973
RU2482245C2 (ru) Способ строительства фундамента и его устройство
Paech et al. Fast‐track design and build of a FIFA compliant stadium: The Hazza Bin Zayed Stadium in Al Ain/UAE
RU126341U1 (ru) Купольное сооружение
Samec Light formwork for earthen monolithic shells
CN219119257U (zh) 一种隧洞底部大型溶洞空腔的立柱支撑结构
RU2747998C1 (ru) Быстровозводимый ангар на базе пневматической опалубки
Pinheiro-Alves et al. Rehabilitation of Penhas Chapel in Mitra's Homestead
CN206840399U (zh) 一种养护窑
CN206692571U (zh) 砂加气混凝土砌块
CN205917821U (zh) 一种装配式钢筋混凝土收水井
CN115306025A (zh) 一种用于水利建筑的榫卯混凝土组合型材及其拼装方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20190709