RU2692004C1 - Способ лазерного отжига неметаллических материалов - Google Patents

Способ лазерного отжига неметаллических материалов Download PDF

Info

Publication number
RU2692004C1
RU2692004C1 RU2018122446A RU2018122446A RU2692004C1 RU 2692004 C1 RU2692004 C1 RU 2692004C1 RU 2018122446 A RU2018122446 A RU 2018122446A RU 2018122446 A RU2018122446 A RU 2018122446A RU 2692004 C1 RU2692004 C1 RU 2692004C1
Authority
RU
Russia
Prior art keywords
pulse
laser
laser pulse
equation
annealing
Prior art date
Application number
RU2018122446A
Other languages
English (en)
Inventor
Александр Фёдорович Коваленко
Original Assignee
Федеральное Государственное Унитарное Предприятие "Всероссийский Научно-Исследовательский Институт Автоматики Им.Н.Л.Духова" (Фгуп "Внииа")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное Государственное Унитарное Предприятие "Всероссийский Научно-Исследовательский Институт Автоматики Им.Н.Л.Духова" (Фгуп "Внииа") filed Critical Федеральное Государственное Унитарное Предприятие "Всероссийский Научно-Исследовательский Институт Автоматики Им.Н.Л.Духова" (Фгуп "Внииа")
Priority to RU2018122446A priority Critical patent/RU2692004C1/ru
Priority to EA201892466A priority patent/EA036035B1/ru
Application granted granted Critical
Publication of RU2692004C1 publication Critical patent/RU2692004C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • B23K26/402Removing material taking account of the properties of the material involved involving non-metallic material, e.g. isolators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/53Working by transmitting the laser beam through or within the workpiece for modifying or reforming the material inside the workpiece, e.g. for producing break initiation cracks
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B25/00Annealing glass products
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • C21D1/09Surface hardening by direct application of electrical or wave energy; by particle radiation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Plasma & Fusion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Laser Beam Processing (AREA)
  • Glass Compositions (AREA)

Abstract

Изобретение относится к способу лазерного отжига неметаллических материалов и может быть использовано для обработки полупроводниковых, керамических и стеклообразных материалов. Облучают поверхность лазерным импульсом прямоугольной временной формы с требуемой плотностью энергии. Диэлектрическим зеркалом с коэффициентом отражения 40% исходный лазерный импульс делят на два импульса и осуществляют временную задержку второго импульса на время действия первого импульса. Плотность мощности в первом импульсе составляет 60% от плотности мощности в первоначальном лазерном пучке. Техническим результатом изобретения является повышение выхода годной продукции в процессе лазерного отжига неметаллических материалов за счет уменьшения термоупругих напряжений и области возможного откольного разрушения материала. 3 ил.

Description

Изобретение относится к технологическим процессам и может быть использовано для лазерного отжига полупроводниковых, керамических и стеклообразных материалов.
Известен способ обработки неметаллических материалов, применяемый для аморфизации кремния и заключающийся в облучении их импульсом лазерного излучения Боязитов P.M. и др. Аморфизация и кристаллизация кремния субнаносекундными лазерными импульсами. Тезисы докладов Всесоюзной конференции по взаимодействию оптического излучения с веществом. Ленинград, 11-18 марта 1988 г., с. 24.
Известен также способ лазерной обработки Кузменченко Т.А. и др. Лазерный отжиг ионно-легированного кремния излучением с длиной волны 2,94 мкм. Тезисы докладов Всесоюзной конференции по взаимодействию оптического излучения с веществом. Ленинград, 11-18 марта 1988 г., с. 29.
Недостатком указанных способов является то, что возникающие в материалах термоупругие напряжения могут привести к откольному разрушению материала со стороны облучаемой поверхности.
Известен также способ лазерной обработки неметаллических материалов, заключающийся в облучении их поверхности импульсом лазерного излучения, временная форма которого описывается соотношением
Figure 00000001
где q(t) - плотность потока энергии лазерного излучения, Вт/м2;
τ - длительность импульса лазерного излучения, с;
b1 и b2 - константы, характеризующие фронт и спад лазерного импульса;
t - текущее время от начала воздействия, с.
Лазерный импульс, описываемый уравнением (1), создает минимальные термоупругие напряжения в поглощающем слое материала. Патент Российской Федерации на изобретение №2211753, МПК B23K 26/00, 10.09.2003. Недостатком способа является то, что указанный лазерный импульс формируется при реализации схемы задающий генератор - многокаскадный усилитель. Задающий генератор должен работать в режиме модулированной добротности. Причем последний каскад усилителя должен работать в режиме, близком к насыщению. Такой режим работы неблагоприятно сказывается на долговечности активной среды твердотельных лазеров. Как правило, ресурс активных стержней последнего каскада усилителя ограничивается несколькими сотнями выстрелов. Кроме того, подобные установки не выпускаются промышленностью, требуется их специальное проектирование и штучное изготовление. Промышленно выпускаемые твердотельные лазеры, работающие в режиме модулированной добротности, имеют колоколообразную форму импульса, близкую к полуволне синусоиды, когда для модуляции добротности лазера применяют электрооптические или пассивные модуляторы добротности, или близкую к прямоугольной, когда для модуляции добротности применяют акустооптические затворы [Макогон М.М. и др. Лазеры на гранате с модуляцией добротности кристаллами
Figure 00000002
. Оптика атмосферы и океана. 1996. Том 9, №2 - С. 239-242]. Длительность импульса лазерного излучения при пассивной модуляции добротности или при применении электрооптических затворов составляет 10-50 нс, при применении акустооптических затворов - 100-150 нс и даже до 300 нс [Мюллер С. Лазеры с модуляцией добротности для обработки поверхностей. Фотоника. 2011. - №2. - С. 26-28]. Применение лазеров с акустооптическими затворами для отжига неметаллических материалов является предпочтительнее, так как эти лазеры имеют большую длительность импульса, что способствует уменьшению термоупругих напряжений.
Известен также способ обработки неметаллических материалов, заключающийся в облучении их поверхности лазерным импульсом с плотностью энергии, определяемой по уравнению
Figure 00000003
где Tƒ - температура отжига;
Т0 - начальная температура;
с и ρ - удельная теплоемкость и плотность материала соответственно;
R - коэффициент отражения материала;
χ - показатель поглощения материала на длине волны лазерного излучения. [Бакеев А.А., Соболев А.П., Яковлев В.И. Исследования термоупругих напряжений, возникающих в поглощающем слое вещества под действием лазерного импульса. ПМТФ. 1982. - №6. - С. 92-98]. Недостатком способа является то, что возникающие в материале термоупругие напряжения могут привести к разрушению материала вследствие откола со стороны облучаемой поверхности.
Известен также способ лазерного отжига неметаллических материалов, заключающийся в облучении их поверхности лазерным импульсом прямоугольной временной формы с плотностью энергии, определяемой по уравнению (2), при этом диэлектрическим зеркалом с коэффициентом отражения 50% исходный лазерный импульс делят на два импульса равной мощности и осуществляют временную задержку второго импульса на время действия первого импульса. При этом временная форма лазерного импульса, воздействующего на поверхность обрабатываемого материала, будет описываться уравнением
Figure 00000004
где q - плотность мощности в исходном лазерном импульсе.
Патент Российской Федерации №2633860, МПК B23K 26/402, 18.10.2017. Данное техническое решение принято в качестве - прототипа.
Недостатком прототипа является то, что возникающие в материале термоупругие напряжения могут привести к разрушению материала вследствие откола со стороны облучаемой поверхности.
Техническим результатом изобретения является повышение выхода годной продукции в процессе лазерного отжига неметаллических материалов за счет уменьшения термоупругих напряжений и области возможного откольного разрушения материала.
Технический результат достигается тем, что в способе лазерного отжига неметаллических материалов, заключающемся в облучении их поверхности лазерным импульсом прямоугольной временной формы с плотностью энергии, определяемой по уравнению
Figure 00000005
где Тƒ - температура отжига;
Т0 - начальная температура;
с и ρ - удельная теплоемкость и плотность материала соответственно;
R - коэффициент отражения материала;
χ - показатель поглощения материала на длине волны лазерного излучения,
при этом диэлектрическим зеркалом исходный лазерный импульс делят на два импульса и осуществляют временную задержку второго импульса на время действия первого импульса, разделяют исходный лазерный импульс посредством диэлектрического зеркала с коэффициентом отражения 40%, и при этом плотность мощности первого импульса устанавливают равной 60% от плотности мощности исходного лазерного импульса.
Сущность способа поясняется чертежами.
На фиг. 1 представлена установка для лазерной обработки, позволяющая реализовать заявленный способ, где: 1 - лазер с модулятором добротности на основе акустооптического затвора, 2 - диэлектрическое зеркало с коэффициентом отражения 40%, 3 - диэлектрическое зеркало с коэффициентом отражения 99,9%, 4 - обрабатываемый материал, 5 и 6 - фокусирующие линзы, создающие на поверхности обрабатываемого материала 4 требуемую плотность энергии.
Диэлектрическим зеркалом 2 лазерный импульс делится на два импульса с плотностью мощности 0,6q и 0,4q (q - плотность мощности в лазерного излучения в первоначальном импульсе). Прошедший через зеркало 2 первый импульс с плотностью мощности 0,6q линзой 5 фокусируется на поверхность обрабатываемого материала 4 в пятно требуемого диаметра. Отраженный зеркалом 2 второй импульс с плотностью мощности 0,4q направляют на диэлектрическое зеркало 3 с коэффициентом отражения 99,9%, которое совмещает отраженный импульс на поверхности обрабатываемого материала 4 с импульсом, прошедшим через зеркало 2. Линзой 6 второй импульс фокусируется в пятно требуемого диаметра. Разница длин путей первого и второго лазерных импульсов обеспечивает задержку второго импульса на время воздействия первого импульса на поверхность обрабатываемого материала. В результате на поверхность обрабатываемого материала воздействует лазерный импульс, временная форма которого описывается уравнением:
Figure 00000006
Сравним воздействие на поверхность обрабатываемого материала двух лазерных импульсов равной плотности энергии, временная форма которых описывается уравнениями (3) и (4).
В соответствии с [Бакеев А.А. и др. Исследования термоупругих напряжений, возникающих в поглощающем слое вещества под действием лазерного импульса. ПМТФ. 1982. - №6. - С. 92-98.], максимальные растягивающие напряжения в поглощающем слое материала рассчитывают по уравнению:
Figure 00000007
где σm - максимальные растягивающие напряжения в поглощающем слое материала;
K - модуль всестороннего сжатия;
α - коэффициент линейного расширения материала;
e - основание натурального логарифма;
sh(χx) - функция «гиперболический синус»;
χ - показатель поглощения материала на длине волны лазерного излучения;
х - координата, отсчитываемая от поверхности материала вглубь;
с0 - скорость звука в материале;
τi - длительность лазерного импульса.
Подставив уравнения (3) и (4) в (5) и выполнив интегрирования получим уравнения для расчета максимальных растягивающих напряжений в поглощающем слое обрабатываемого материала:
Figure 00000008
Figure 00000009
где σm1 - максимальные растягивающие напряжения в поглощающем слое материала при воздействии лазерного импульса с временной формой, описываемой уравнением (3);
σm2 - максимальные растягивающие напряжения в поглощающем слое материала при воздействии лазерного импульса с временной формой, описываемой уравнением (4);
Разделив (7) на (6) и проведя математические преобразования, получим
Figure 00000010
На фиг. 2 показан график зависимости
Figure 00000011
, построенный по соотношению (8). Видно, что отношение
Figure 00000012
. Причем по мере возрастания параметра χс0τ отношение уменьшается и стремится к 0,8. Это доказывает, что лазерный импульс, описываемый уравнением (4), создает в материале максимальные растягивающие напряжения меньше, чем лазерный импульс, описываемый уравнением (3).
Из уравнений (6) и (7) определим плотность энергии лазерного излучения, вызывающую откольное разрушение материала со стороны облучаемой поверхности для воздействия лазерных импульсов, описываемых уравнениями (3) и (4) соответственно:
Figure 00000013
Figure 00000014
где σР - предел прочности материала на разрыв.
Уравнения (9) и (10) получены для минимальных значений плотностей энергии, когда
Figure 00000015
.
Плотность энергии лазерного излучения, необходимую для достижения поверхностью материала температуры отжига, определяют по уравнению (2). Разделив (6) и (7) соответственно на (2), получим:
Figure 00000016
Figure 00000017
Поставив условие
Figure 00000018
и
Figure 00000019
, после математических преобразований получим:
Figure 00000020
Figure 00000021
Проведем анализ неравенств (13) и (14). Левая часть неравенств является характеристикой материала, показывающей отношение предела прочности материала на разрыв к максимальным растягивающим напряжениям, возникающим при импульсном нагреве материала до температуры отжига. Правые части неравенств (13) и (14) являются функциями безразмерного параметра χс0τ. Если неравенства (13) и (14) выполняются, то возможен лазерный отжиг материала. В противном случае произойдет откольное разрушение материала. Анализ неравенств (13) и (14) необходимо проводить для конкретных материалов. Например, для стекла СЗС-21, у которого К=4⋅1010 Па, α=8,6⋅10-6 К-1, σР=6⋅107 Па, Tf=700 К, Т0=300 К, левая часть неравенств (13) и (14) равна 0,29. Показатель поглощения стекла СЗС-21 на длине волны 1,06 мкм составляет 22,4 см-1, скорость звука в материале - 5,7⋅103 м/с.
На фиг. 3 показано графическое решение неравенств (13) и (14) для цветного оптического стекла СЗС-21. Видно, что при воздействии лазерного импульса, временная форма которого описывается уравнением (3), неравенство (13) выполняется при χс0τ≥1,7, что соответствует длительности лазерного импульса τ≥1,33⋅10-7 с. Неравенство (14) для лазерного импульса, временная форма которого описывается уравнением (4), выполняется при χс0τ≥1,4, что соответствует длительности лазерного импульса τ≥1,1⋅10-7 с.
Таким образом, предложенное техническое решение позволяет уменьшить максимальные растягивающие напряжения в поглощающем слое материала и область изменения безразмерного параметра χс0τ, в которой возможно откольное разрушение материала, примерно на 20%, что позволит увеличить выход годной продукции при лазерном отжиге неметаллических материалов.
Пример реализации способа
Необходимо произвести лазерный отжиг поверхности оптического цветного стекла СЗС-21 импульсным лазером с длиной волны 1,06 мкм и длительностью импульса 120 нс. Требуемая плотность энергии на поверхности материала составляет 36,9 Дж/см2. Расчет проведен при с=0,76⋅103 Дж/(кг⋅К) и ρ=2,5⋅103 кг/м3 по уравнению (2). При этом плотность энергии, вызывающая откольное разрушение материала со стороны облучаемой поверхности лазерным импульсом, описываемым уравнением (3) составит 33 Дж/см2. Следовательно, лазерный отжиг не возможен, так как произойдет разрушение материала. Расчеты проведены по уравнению (9). Для осуществления лазерного отжига при помощи диэлектрического зеркала 2 (см. фиг. 1) с коэффициентом отражения 40% осуществляют разделение лазерного импульса на два импульса. Первый импульс воздействует на поверхность материала. Зеркалом 3 отраженный импульс направляется на поверхность обрабатываемого материала и совмещается с площадью первого импульса. Второй импульс должен пройти путь на 36 м больше, чем первый импульс для задержки на 120 нс. После прохождения дополнительного пути второй импульс воздействует на поверхность материала.
Таким образом, осуществляется воздействие лазерным импульсом, временная форма которого описывается уравнением (4). При этом плотность энергии, вызывающая откольное разрушение материала со стороны облучаемой поверхности составляет 38 Дж/см2. Следовательно, можно осуществлять лазерный отжиг материала. Расчеты проведены по уравнению (10). Как правило, лазеры с модуляцией добротности акустооптическими затворами работают в частотном режиме. Частота повторения импульсов составляет 1-8 кГц. Это позволяет производить лазерный отжиг поверхностей большой площади за счет перемещения заготовки после каждого импульса на требуемое расстояние.

Claims (8)

  1. Способ лазерного отжига неметаллических материалов, включающий облучение поверхности материала лазерным импульсом прямоугольной временной формы с плотностью энергии, которую определяют по уравнению
  2. Figure 00000022
  3. где Tƒ - температура отжига;
  4. Т0 - начальная температура;
  5. с и ρ - удельная теплоемкость и плотность материала соответственно;
  6. R - коэффициент отражения материала;
  7. χ - показатель поглощения материала на длине волны лазерного излучения,
  8. при этом исходный лазерный импульс делят на два импульса посредством диэлектрического зеркала и осуществляют временную задержку второго импульса на время действия первого импульса, отличающийся тем, что разделяют исходный лазерный импульс посредством диэлектрического зеркала с коэффициентом отражения 40%, при этом плотность мощности первого импульса устанавливают равной 60% от плотности мощности исходного лазерного импульса.
RU2018122446A 2018-06-20 2018-06-20 Способ лазерного отжига неметаллических материалов RU2692004C1 (ru)

Priority Applications (2)

Application Number Priority Date Filing Date Title
RU2018122446A RU2692004C1 (ru) 2018-06-20 2018-06-20 Способ лазерного отжига неметаллических материалов
EA201892466A EA036035B1 (ru) 2018-06-20 2018-11-28 Способ лазерного отжига неметаллических материалов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018122446A RU2692004C1 (ru) 2018-06-20 2018-06-20 Способ лазерного отжига неметаллических материалов

Publications (1)

Publication Number Publication Date
RU2692004C1 true RU2692004C1 (ru) 2019-06-19

Family

ID=66947496

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018122446A RU2692004C1 (ru) 2018-06-20 2018-06-20 Способ лазерного отжига неметаллических материалов

Country Status (2)

Country Link
EA (1) EA036035B1 (ru)
RU (1) RU2692004C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2757537C1 (ru) * 2021-03-29 2021-10-18 Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт автоматики им.Н.Л.Духова» (ФГУП «ВНИИА») Способ лазерного отжига неметаллических пластин
RU2763362C1 (ru) * 2020-11-05 2021-12-28 Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт автоматики им.Н.Л.Духова» (ФГУП «ВНИИА») Способ лазерного отжига неметаллических материалов
RU2785420C1 (ru) * 2022-05-12 2022-12-07 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова" (ФГУП "ВНИИА") Способ лазерного отжига неметаллических материалов

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6545248B2 (en) * 2001-03-16 2003-04-08 Semiconductor Energy Laboratory Co., Ltd. Laser irradiating apparatus
US6987240B2 (en) * 2002-04-18 2006-01-17 Applied Materials, Inc. Thermal flux processing by scanning
WO2010071202A1 (ja) * 2008-12-18 2010-06-24 日本板硝子株式会社 ガラス及びガラスの処理方法
US20100297856A1 (en) * 2007-11-08 2010-11-25 Stephen Moffatt Pulse train annealing method and apparatus
RU2566138C2 (ru) * 2014-02-13 2015-10-20 Федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "Военная академия Ракетных войск стратегического назначения имени Петра Великого" Министерства обороны Российской Федерации Способ лазерной обработки неметаллических материалов
RU2633860C1 (ru) * 2016-06-24 2017-10-18 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова" (ФГУП "ВНИИА") Способ лазерного отжига неметаллических материалов

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6545248B2 (en) * 2001-03-16 2003-04-08 Semiconductor Energy Laboratory Co., Ltd. Laser irradiating apparatus
US6987240B2 (en) * 2002-04-18 2006-01-17 Applied Materials, Inc. Thermal flux processing by scanning
US20100297856A1 (en) * 2007-11-08 2010-11-25 Stephen Moffatt Pulse train annealing method and apparatus
WO2010071202A1 (ja) * 2008-12-18 2010-06-24 日本板硝子株式会社 ガラス及びガラスの処理方法
RU2566138C2 (ru) * 2014-02-13 2015-10-20 Федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "Военная академия Ракетных войск стратегического назначения имени Петра Великого" Министерства обороны Российской Федерации Способ лазерной обработки неметаллических материалов
RU2633860C1 (ru) * 2016-06-24 2017-10-18 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова" (ФГУП "ВНИИА") Способ лазерного отжига неметаллических материалов

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2763362C1 (ru) * 2020-11-05 2021-12-28 Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт автоматики им.Н.Л.Духова» (ФГУП «ВНИИА») Способ лазерного отжига неметаллических материалов
RU2757537C1 (ru) * 2021-03-29 2021-10-18 Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт автоматики им.Н.Л.Духова» (ФГУП «ВНИИА») Способ лазерного отжига неметаллических пластин
RU2785420C1 (ru) * 2022-05-12 2022-12-07 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова" (ФГУП "ВНИИА") Способ лазерного отжига неметаллических материалов

Also Published As

Publication number Publication date
EA036035B1 (ru) 2020-09-16
EA201892466A1 (ru) 2019-12-30

Similar Documents

Publication Publication Date Title
CN106457467B (zh) 用于将飞秒或皮秒激光束掩模投射到衬底表面上的设备
Lahav et al. Long-lived waveguides and sound-wave generation by laser filamentation
RU2692004C1 (ru) Способ лазерного отжига неметаллических материалов
RU2566138C2 (ru) Способ лазерной обработки неметаллических материалов
RU2633860C1 (ru) Способ лазерного отжига неметаллических материалов
RU2573181C1 (ru) Способ лазерной обработки неметаллических пластин
RU2486628C1 (ru) Способ обработки неметаллических материалов
RU2630197C1 (ru) Способ лазерного отжига неметаллических пластин
Hashida et al. Threshold fluence for femtosecond laser nanoablation for metals
RU2582849C1 (ru) Способ лазерной пробивки сквозного отверстия в неметаллической пластине
Yu et al. Ultrafast imaging the light-speed propagation of a focused femtosecond laser pulse in air and its ionized electron dynamics and plasma-induced pulse reshaping
Glaser et al. Cavitation bubble oscillation period as a process diagnostic during the laser shock peening process
RU2634338C1 (ru) Способ и устройство для лазерной резки материалов
Jang et al. Shock wave generation in water by nanosecond pulse laser irradiation with 1064 and 2940 nm wavelengths
Shulyatyev et al. Generation of a laser beam with a high peak brightness in a CO2 laser with continuous pumping and mechanical Q-switching
RU2763362C1 (ru) Способ лазерного отжига неметаллических материалов
RU2785420C1 (ru) Способ лазерного отжига неметаллических материалов
RU2649054C1 (ru) Способ лазерной обработки неметаллических пластин
Khorkov et al. Experimental study of the filaments parameters at the focusing with cylindrical lens
RU2646177C1 (ru) Способ лазерной обработки неметаллических материалов
RU2695440C1 (ru) Способ лазерной обработки неметаллических материалов
RU2647387C2 (ru) Способ лазерной пробивки сквозного отверстия в неметаллической пластине
Petkov Factors influencing laser material removal process in micro cavity manufacturing
Bel’kov et al. Toothed apodizing stops with high radiation strength
RU2760764C1 (ru) Способ лазерной обработки неметаллических пластин