RU2691439C1 - Препарат на основе литического микобактериофага и способ его получения - Google Patents
Препарат на основе литического микобактериофага и способ его получения Download PDFInfo
- Publication number
- RU2691439C1 RU2691439C1 RU2018129791A RU2018129791A RU2691439C1 RU 2691439 C1 RU2691439 C1 RU 2691439C1 RU 2018129791 A RU2018129791 A RU 2018129791A RU 2018129791 A RU2018129791 A RU 2018129791A RU 2691439 C1 RU2691439 C1 RU 2691439C1
- Authority
- RU
- Russia
- Prior art keywords
- mycobacteriophage
- liposomes
- phospholipid
- particles
- preparation
- Prior art date
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 19
- 230000002101 lytic effect Effects 0.000 title abstract description 9
- 238000004519 manufacturing process Methods 0.000 title abstract description 4
- 239000002502 liposome Substances 0.000 claims abstract description 44
- 239000002245 particle Substances 0.000 claims abstract description 30
- 241000187479 Mycobacterium tuberculosis Species 0.000 claims abstract description 20
- 150000003904 phospholipids Chemical class 0.000 claims abstract description 13
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 claims abstract description 12
- 230000003834 intracellular effect Effects 0.000 claims abstract description 11
- 239000011148 porous material Substances 0.000 claims abstract description 11
- 241001135877 Mycobacterium virus D29 Species 0.000 claims abstract description 8
- 238000000746 purification Methods 0.000 claims abstract description 8
- 241000187480 Mycobacterium smegmatis Species 0.000 claims abstract description 7
- 230000001580 bacterial effect Effects 0.000 claims abstract description 7
- 239000006166 lysate Substances 0.000 claims abstract description 7
- WTJKGGKOPKCXLL-RRHRGVEJSA-N phosphatidylcholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCC=CCCCCCCCC WTJKGGKOPKCXLL-RRHRGVEJSA-N 0.000 claims abstract description 7
- 235000012000 cholesterol Nutrition 0.000 claims abstract description 6
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 claims abstract description 6
- 229920000053 polysorbate 80 Polymers 0.000 claims abstract description 6
- 239000012614 Q-Sepharose Substances 0.000 claims abstract description 4
- 238000000034 method Methods 0.000 claims description 16
- 238000002955 isolation Methods 0.000 claims description 5
- 230000000415 inactivating effect Effects 0.000 claims description 2
- 238000004587 chromatography analysis Methods 0.000 claims 1
- 201000008827 tuberculosis Diseases 0.000 abstract description 20
- 230000000694 effects Effects 0.000 abstract description 11
- 238000001125 extrusion Methods 0.000 abstract description 8
- 238000004255 ion exchange chromatography Methods 0.000 abstract description 4
- 238000005119 centrifugation Methods 0.000 abstract description 3
- 230000009089 cytolysis Effects 0.000 abstract description 3
- 230000002779 inactivation Effects 0.000 abstract description 3
- 238000000926 separation method Methods 0.000 abstract description 3
- 239000000126 substance Substances 0.000 abstract description 2
- 239000003814 drug Substances 0.000 description 18
- 210000002540 macrophage Anatomy 0.000 description 18
- 229940079593 drug Drugs 0.000 description 17
- 208000015181 infectious disease Diseases 0.000 description 8
- 241001515965 unidentified phage Species 0.000 description 7
- 210000004027 cell Anatomy 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 241000699670 Mus sp. Species 0.000 description 4
- 239000003242 anti bacterial agent Substances 0.000 description 4
- 229940088710 antibiotic agent Drugs 0.000 description 4
- 230000035899 viability Effects 0.000 description 4
- 229940072185 drug for treatment of tuberculosis Drugs 0.000 description 3
- 238000001493 electron microscopy Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000011534 incubation Methods 0.000 description 3
- 239000002609 medium Substances 0.000 description 3
- 235000015097 nutrients Nutrition 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- 229920001817 Agar Polymers 0.000 description 2
- 206010059866 Drug resistance Diseases 0.000 description 2
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 2
- 206010061218 Inflammation Diseases 0.000 description 2
- 239000012980 RPMI-1640 medium Substances 0.000 description 2
- 238000011529 RT qPCR Methods 0.000 description 2
- COQLPRJCUIATTQ-UHFFFAOYSA-N Uranyl acetate Chemical compound O.O.O=[U]=O.CC(O)=O.CC(O)=O COQLPRJCUIATTQ-UHFFFAOYSA-N 0.000 description 2
- 239000008272 agar Substances 0.000 description 2
- 230000000844 anti-bacterial effect Effects 0.000 description 2
- 230000002365 anti-tubercular Effects 0.000 description 2
- 229910052792 caesium Inorganic materials 0.000 description 2
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 2
- 238000004113 cell culture Methods 0.000 description 2
- 210000003527 eukaryotic cell Anatomy 0.000 description 2
- 238000007710 freezing Methods 0.000 description 2
- 230000008014 freezing Effects 0.000 description 2
- 230000004054 inflammatory process Effects 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 230000000813 microbial effect Effects 0.000 description 2
- 244000005706 microflora Species 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 238000001066 phage therapy Methods 0.000 description 2
- 238000003753 real-time PCR Methods 0.000 description 2
- 238000012552 review Methods 0.000 description 2
- DAEPDZWVDSPTHF-UHFFFAOYSA-M sodium pyruvate Chemical compound [Na+].CC(=O)C([O-])=O DAEPDZWVDSPTHF-UHFFFAOYSA-M 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 2
- 238000010257 thawing Methods 0.000 description 2
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- 229920001661 Chitosan Polymers 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- 229930182816 L-glutamine Natural products 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 229920002684 Sepharose Polymers 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000005571 anion exchange chromatography Methods 0.000 description 1
- 230000001355 anti-mycobacterial effect Effects 0.000 description 1
- 230000000890 antigenic effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000000621 bronchi Anatomy 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000002512 chemotherapy Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000013068 control sample Substances 0.000 description 1
- 229940000406 drug candidate Drugs 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000003777 experimental drug Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000012091 fetal bovine serum Substances 0.000 description 1
- 239000012997 ficoll-paque Substances 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000010874 in vitro model Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000036512 infertility Effects 0.000 description 1
- 208000027866 inflammatory disease Diseases 0.000 description 1
- 238000011081 inoculation Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000002539 nanocarrier Substances 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 210000005259 peripheral blood Anatomy 0.000 description 1
- 239000011886 peripheral blood Substances 0.000 description 1
- 238000001050 pharmacotherapy Methods 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 229940054269 sodium pyruvate Drugs 0.000 description 1
- 229960005322 streptomycin Drugs 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 229960005486 vaccine Drugs 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 230000003612 virological effect Effects 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Wood Science & Technology (AREA)
- Biomedical Technology (AREA)
- Organic Chemistry (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biophysics (AREA)
- Microbiology (AREA)
- Plant Pathology (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Medicinal Preparation (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
Abstract
Изобретение относится к области биотехнологии. Изобретение касается препарата для инактивации (лизиса) внутриклеточных микобактерий туберкулеза на основе литического штамма микобактериофага, инактивирующего внутриклеточные микобактерий туберкулеза, представляющего собой микобактериофаг D29, включенный в бислойную фосфолипидную липосому размером 0,4 микрон, и способа его получения, заключающегося в выделении и очистке фаговых частиц из бактериальных лизатов M.smegmatis с последующим включением в фосфолипидные липосомы, где выделение и очистку фаговых частиц из бактериальных лизатов M.smegmatis проводят с помощью ионно-обменной хроматографии на колонке Q-sepharose, полученный очищенный микобактериофаг в концентрации не менее 10pfu/мл встряхивают с фосфолипидной пленкой в течение 5-10 минут, проводят экструзию полученных частиц через фильтр с порами 5 микрон и последующей 20-кратной экструзией с использованием фильтров размером пор 0,4 мкм, концентрированием и отделением включенной в липосомы фракции микобактериофага с помощью центрифугирования при 13±2 тыс. об/мин в течение 30±5 минут, при этом используют фосфолипидную пленку, полученную из фосфатидилхолина, холестерина и твин-80, взятых в массовом соотношении 5±1:1±0,8:1,2±0,2. 2 н. и 1 з.п. ф-лы, 5 ил.
Description
Область техники
Изобретение относится к медицине, в частности к проблеме лечения туберкулеза. Как известно, лечение туберкулеза требует очень длительных курсов специфической химиотерапии с использованием различных комбинаций противотуберкулезных препаратов, в основном, антибиотиков.
Уровень техники
Длительность курсов приема антибиотиков приводит возникновению лекарственной устойчивости возбудителя - микобактерий туберкулеза (МБТ). При этом, использование при лечении больных туберкулезом новых, вновь созданных противотуберкулезных препаратов также достаточно быстро приводит к появлению лекарственно-устойчивых штаммов МБТ. Кроме того, при туберкулезной инфекции значительная часть микобактерий находится - персистирует и размножается внутриклеточно - в тканевых макрофагах.
Известно, что применение бактериофагов для лечения различных микробных инфекции, в общем, рассматривается мировой научной общественностью в качестве альтернативы эры применения антибиотиков в связи с распространением лекарственной устойчивости к этим препаратам. Однако, практически, несмотря на имеющиеся публикации об успешном применении бактериофагов для лечения некоторых воспалительных заболеваний микробной природы, их применение в настоящее время ограничено (A. Nilsson. Phage therapy. Constraints and possibilities. Upsala J. of Med. Sciences, 2014, 119, 192-198).
Известны также, экспериментальные работы от 70-х годов и до 1991 г., в которых были предприняты попытки лечения туберкулезной инфекции с помощью различных штаммов микобактериофагов. Однако, полученные результаты были ограниченными по эффективности и уступали применению традиционных противотуберкулезных лекарственных веществ (Козьмин-Соколов Б.Н. и др. Влияние микобактериофагов на течение экспериментальной туберкулезной инфекции у белых мышей. Проблемы туберкулеза 1975, №4, с. 75-79; Земскова З.С., Дорожкова И.Р. Патоморфологическая оценка лечебного действия микобактериофагов при туберкулезе. Проблемы туберкулеза 1991, №11, с. 63-66).
В 2000-е годы интерес к применению микобактериофагов, в частности, к перспективе применения литического микобактериофага D 29 для лечения туберкулезной инфекции, вновь вырос и обсуждается в некоторых международных публикациях последнего времени (Gr. Hatfull. Mycobacteriophages: Windows into Tuberculosis. Plos patogens. 2014, v. 10, issue 3). Обсуждаются вопросы доступности, транспорта микобактериофагов к зонам туберкулезного воспаления и к внутриклеточно расположенным микобактериям, а также к вероятной возможности элиминации микобактериофагов микро и макрофагами периферической крови.
Известны способы лекарственного транспорта с помощью различных микронных, субмикронных и наноносителей. Чаще всего используются полимеры молочной и гликолевой кислоты, альгинаты, а также частицы хитозана. (Y. Wang et al. Review. Manufacturing Techniques and Surface Engineering of Polymer Based Nanoparticles for Targeted Drug Delivery to Cancer. Nanomaterials 2016, 6, 26 p. 1-18).
Липосомы также являются одним из наиболее известных методов лекарственного транспорта, а также в качестве перспективных антигенных носителей для получения вакцин, поскольку их фосфолипидная мембрана хорошо совместима с клетками эукариотов и может быть различным образом модифицирована, получением иммунолипосом и др. В этих целях их размер обычно не превышает 150-200 нм (R. Nisini et al. The Multirole of liposomes in therapy and prevention of infection diseases. Review. Frontiers in Immunology, 2018, v. 9 art. 155, p. 1-23.). Экспериментальные исследования применения липосомальных антибиотиков для лечения туберкулезной инфекции проводились с начала 80-х годов прошлого века, первой из которых была публикация одного авторов настоящей заявки (Vladimirsky М.А. and Ladigina G.A. Antibacterial activity of liposomal-entrapped streptomycin mice infected with Mycobacterium tuberculosis. Biomedicine and Pharmacotherapy, 1982, v. 36, N. 8-9, p. 375-377). Размеры этих липосом не превышали 100 нм. Эти работы в дальнейшем были подтверждены развивались, но препятствием к практическому применению липосомальных антибиотиков для лечения туберкулеза стало накопление препарата в печени, что позже несколько нивелировалось при использовании stealth липосом с полиэтиленгликолем. Липосомы, содержащие микобактериофаг, в качестве саморазмножающегося лекарства теоретически могли бы эффективно доставляться в мелкие бронхи дренирующие очаги специфического туберкулезного воспаления. Однако, идея использования липосом в качестве транспортного средства для применения микобактериофагов до сих пор сдерживалась размерами частиц микобактериофага, поскольку литический микобактериофаг имеет размер головки фага - 65 нм и размер фагового хвоста - 110 нм. Следовательно, липосомы, включающие частицы размером около 200 нм должны быть слишком большими для того чтобы быть фагоцитированными клетками эукариотов. Поэтому задача получения и применения липосом с включенными частицами микобактериофага не была тривиальной и до сих пор использование таких экспериментальных препаратов с целью их литического действия на микобактерий туберкулеза, в том числе, на внутриклеточную популяцию микобактерий не было описано.
Наиболее близким к заявляемому является препарат микобактериофага, получаемый способом по патенту Ю.Н. Курунова и сотр. 2001 г. «Способ фаготерапии туберкулеза» №2214829, 2001 г., который заключается в очищении микобактериофага от бактериального лизата при высокоскоростном (70-100 тыс g) центрифугировании в градиенте цезия, затем полученный препарат встряхивали вместе с фосфолипидной пленкой, получая таким образом многослойные липосомы и вводили их ректально мышам, инфицированным микобактериями туберкулеза.
Использованная в способе технология выделения микобактериофагов в градиенте цезия дает относительно низкий выход (Boulanger P. Purification of bacteriophages and SDS-PAGE analysis of phage structural proteins from ghost particles. In: Clokie MR, Kropinksi AM, editors. Bacteriophages: Methods and Protocols. Humana Press; New York: 2009. pp. 227-238), а также повреждает жизнеспособность фаговых частиц (Carlson K. Appendix: Working with bacteriophages: common techniques and methodological approaches. In: Kutter EM, Sulakvelidze A, editors. Bacteriophages: biology and application. CRC Press; Boca Raton, FL: 2005). Кроме того, приведенный авторами патента способ получения препарата микобактериофагов, позволяет получать только очень крупные многослойные липосомы размером 5-10 микрон («Липосомы в биологических системах», под ред Г. Грегориадиса пер. с англ., Москва 1983 г.). Также известный препарат не стерилизуется, поскольку его используют только для ректального введения. Препарат невозможно стерилизовать без повреждения жизнеспособности фаговых частиц, например, путем лиофилизации с последующим гамма облучением, что также приведет к повреждению ДНК микобактериофага. Кроме того, липосомы размером 5-10 микрон не могут фагоцитироваться клетками макроорганизма - макрофагами, что не позволит в полном объеме реализовать противотуберкулезный эффект препарата.
Раскрытие изобретения
Задачей заявляемого изобретения является создание препарата на основе литического штамма микобактериофага, инактивирующего внутриклеточные микобактерий туберкулеза.
Поставленная задача решается препаратом для инактивации (лизиса) внутриклеточных микобактерий туберкулеза, представляющий собой микобактериофаг D29 (АТСС - Американская коллекция клеточных культур), включенный в бислойную фосфолипидную липосому размером 0,4 микрон.
Также поставленная задача решается способом получения указанного препарата, заключающимся в выделении и очистке фаговых частиц из бактериальных лизатов M. smegmatis с помощью ионно-обменной хроматографии на колонке Q-sepharose. Полученный очищенный микобактериофаг в концентрации не менее 108 pfu/мл встряхивают с фосфолипидной пленкой в течение 5-10 минут, экструзией полученных частиц через фильтр с порами 5 микрон и последующей 20-кратной экструзией с использованием фильтров размером пор 0,4 мк, концентрированием и отделением включенной в липосомы фракции микобактериофага с помощью центрифугирования при 13±2 тыс об/мин в течение 30±5 минут. Предпочтительно использовать фосфолипидную пленку, полученную из фосфатидилхолина, холестерина и твин-80 взятых в массовом соотношении 5±1:1±0,8:1,2±0,2.
Преимуществом заявляемого технического решения является:
1. Для выделения микобактериофагов, в частности, микобактериофага D29 из бактериального лизата M. smegmatis, в суспензии которых производится размножение микобактериофага, используется альтернативная технология выделения и очистки микобактериофага: Evelien М. Adriaenssens, Susan М. Lehman et. al. CIM® Monolithic Anion-Exchange Chromatography as a Useful Alternative to CsCl Gradient Purification of Bacteriophage Particles. Virology 2012, 434(2), p. 265-270., K. Liu et al. Purification an concentration of mycobacteriophage D29 using monolithic chromatographic columns. J. of Virological Methods, 2012, v. 186, p. 7-13, которая позволяет сохранить жизнеспособность частиц бактериофага.
2. Заявляемым способом были получены липосомальные частицы с включенными микобактериофагами оптимального размера - в основном с размером частиц около 400 нм, что обеспечивает возможность их фагоцитоза макрофагами, что, в свою очередь, позволяет в полном объеме реализовать противотуберкулезный эффект препарата.
3. Получение стерильного препарата, подтверждаемого размером фильтруемых частиц и сохранением стерильности в отношении банальной микрофлоры в течение 3-4-недельного периода культивирования инфицированных микобактериями макрофагов на агаровой питательной среде 7Н10, при котором определяли рост МБТ при отсутствии банальной микрофлоры.
4. Заявляемым способом достигается высокая - 80% эффективность включения частиц микобактериофага в липосомы, тогда как в ранее описанном способе не производилось отделение фракции липосом с включенным микобактериофагом и не изучалась эффективность его включения.
5. Полученный таким способом, заявляемый препарат на основе микобактериофага обеспечивает проникновение частиц микобактериофага в клетки перевиваемой культуры макрофагов не менее, чем в 4 раза более эффективно и обеспечивает е инактивацию микобактерий туберкулеза, инфицирующих макрофаги также не менее чем в 4-5 раз более эффективно.
Краткое описание чертежей
Изобретение поясняется следующими чертежами, где на фиг. 1 представлено негативное контрастирование бислойных липосом без фага.
На фиг. 2 показано позитивное контрастирование контрольного образца микобактериофага уранилцетатом. Видны ДНК головка фага и хвост.
На фиг. 3 показано позитивное контрастирование. Справа внизу - головка фага, включенного в липосому.
На фиг. 4 показано позитивное контрастирование. Головка фага, включенного в липосому.
На фиг. 5 показано негативное контрастирование разрушенной липосомы. При затекании контрастирующего вещества видны головки фагов.
Осуществление изобретения
Для получения липосом очищенный при ионно-обменной хроматографии на колонке Q-sepharose препарат микобактериофагов D29 (набор реагентов Fast Plaque ТВ, Biotec laboratories Ltd. Ipswich United Kingdom) в концентрации фаговых частиц не менее 108 плакобразующих единиц (pfu)/мл и диализованный против фагового буферного раствора, встряхивают в течение 5-10 минут с фосфолипидной пленкой. Полученные многослойные липосомы подвергают последовательной экструзии через фильтры с размером пор 5 микрон, а затем 20 кратной экструзии (продавливание) через фильтры с размером пор 0,4 микрон, после чего для концентрирования и отделения липосом с включившимися микобактериофагами от не включившихся частиц микобактериофага, а также для освобождения препарата от мелких липосомных частиц, препарат центрифугируют при 13±2 тыс. об/мин. в течение 30±5 мин. Далее концентрацию микобактериофага, включенного в липосомы измеряют с помощью количественной ПЦР в реальном времени и определяют процент включения частиц фага в липосомы, который составляет не менее 80%.
В качестве фосфолипидных пленок могут быть использованы пленки, образованные фосфотидилхолином, для укрепления мембраны получаемых липосом в состав пленки добавляют холестерин, взятый в массовом соотношении 1±0,8 к 5±1 фосфатидилхолина. Также для стабильности препарата в пленки дополнительно добавляют неионогенное поверхностно активное вещество - твин-80 в количестве 1,2±0,2 мг на 5±1 мг фосфатидилхолина.
Размер и морфология получаемых бислойных липосом продемонстрированы с помощью электронной микроскопии при негативном и позитивном контрастировании уранилацетатом (фиг. 1-5).
Достижение литического действия микобактериофагов на внутриклеточно МБТ, расположенные демонстрируется при использовании, в качестве примера, модели макрофагов мышей, в качестве которых были использованы клетки перевиваемой линии RAW 264.7 (АТСС - американская коллекция клеточных культур), инфицированных МБТ (музейный штамм H37Rv, получен из Государственного института стандартизации и контроля биопрепаратов (ГИСК) им. Л.А. Тарасевича). Для аналогичных исследований могут быть также использованы перевиваемая линия макрофагов человека ТНР (АТСС), а также возможно менее изученная модель микрогранулемы in vitro, состоящая из лимфоцитов и макрофагов крови человека, инфицированных микобактериями туберкулеза. Литическое действие микобактериофага D29, включенного в липосомы в отношении внутриклеточных микобактерий туберкулеза (МБТ), а также эффективность проникновения липосомного микобактериофага в клетки макрофагов сравнивается с микобактериофагом не включенным в липосомы при аналогичной фаговой активности. Литическое (антибактериальное) действие МБТ измеряется при посевах инфицированных макрофагов, после их двукратного замораживания и оттаивания на агаровую питательную среду 7Н10 Миддлбрук.
Способ получения препарата для литического действия в отношении внутриклеточной популяции микобактерий туберкулеза (МБТ) на основе микобактериофага D29 реализуется путем его размножения в культуре нетуберкулезных микобактерий M. smegmatis (АТСС 101), выделения и очистки с помощью ионно-обменной хроматографии, получением многослойных липосом при 5-10 минутном встряхивании препарата микобактериофага специфической активностью не менее 108 плакобразующих фаговых частиц (pfu) в мл фагового буферного раствора, Ph-7,5 с фосфолипидной пленкой, получаемой после выпаривания на роторном испарителе растворенного в 96° этанола фосфатидилхолина, холестерина и твин-80 в соотношении 5±1:1±0,8:1,2±0,2 с экструзией через фильтр с порами 5 микрон и последующей 20-кратной экструзией с использованием фильтров с размером пор 0,4 мк, концентрированием и отделением включенной в липосомы фракции микобактериофага от не включенных фаговых частиц, а также отделением более мелких липосомных частиц с помощью центрифугирования при 13 тыс об/ мин в течение 30 минут, исследованием количественного (процентного) содержания включенных в липосомы частиц микобактериофага путем определения ДНК микобактериофага с помощью количественной ПЦР в реальном времени, составляющего не менее 80% от внесенного микобактериофага, контролем полученного препарата с помощью электронной микроскопии и анализом биологической активности в культуре макрофагов перевиваемой линии, инфицированных МБТ. Пример осуществления изобретения.
1. Модель внутриклеточной инфекции микобактерий туберкулеза: макрофаги перевиваемой линии RAW 264.7 (АТСС), инфицировали МБТ музейного штамма H37Rv при инкубации в течение 24 часов; суспензия инфицированных макрофагов выделяли с освобождением от не включившихся микобактерий с помощью центрифугирования при 2 тыс обор/мин в градиенте плотности раствора Ficoll-Paque (GE Healthcare) на разделе сред и отмывали в питательной среде RPMI 1640 с последующим культивированием в лунках 6-луночного культурального планшета с использованием среды RPMI 1640 с 20% фетальной бычьей сыворотки, L-глютамина, MEM Vitamins, MEM NEAA, Sodium Pyruvate PenStrep (0,1) mcg/ml); затем после суточной инкубации в лунках планшета вносили микобактериофаг D29 известной активности - 108 плакобразующих частиц (pfu) в мл в липосомальной форме и не включенного в липосомы в равных количествах, определяемых по числу pfu и концентрации ДНК фага.
2. Приготовление липосомального микобактерифага: 40 мг яичного фосфатидилхолина (фирма Lipoid, Германия), 8 мг холестерина (Sigma) и 8,8 мг твин 80 растворяли в 3 мл 96% этанола; высушивали на роторном испарителе до получения липидной пленки; вносили 3 мл хроматографически очищенного на ионнообменной колонке Q сефарозы препарата микобактериофага с активностью не менее 108 pfu/мл; встряхивали до образования суспензии, продавливали через стерильный фильтр 5,0 с размером пор 5 мк, а затем не менее 20 раз через стерильный фильтр с размером пор 0,4 мк; центрифугировали для освобождения от не включенного в липосомы микобактериофага и измеряли относительное количество ДНК фага в осадке в сравнении с общим количеством ДНК внесенного в препарат фага. Контроль полученного липосомального препарата микобактериофага проводили также при использовании электронной микроскопии фиг. 1-5.
3. Исследование эффективности антимикобактериального действия липосомального микобактериофага: после 24 часовой инкубации культуры макрофагов с внутриклеточными МБТ с препаратами микобактериофагов (липосомальный и свободный микобактериофаг) клетки отмывали однократно питательной средой; снимали инфицированные макрофаги с поверхности лунок в объеме 200 мкл; проводили двукратное замораживание и оттаивание материалов, после чего по 100 мкл из каждого образца засевали на чашки с питательной средой 7Н10 для определения жизнеспособности МБТ, а также по 100 мкл аналогичных материалов исследовали для определения количества ДНК микобактериофага с помощью ПЦР в реальном времени.
Результаты исследования: 1. Количество ДНК фага, включенного в липосомы, определяемого в клетках инфицированных макрофагов по данным количественного ПЦР -анализа в 4-8 раз (в разных экспериментах) превышало количество ДНК свободного, не включенного в липосомы фага.
2. Количество колоний МБТ выявленных в результате культивирования: в контрольных чашках без фага - 300-500; в чашках с микобактериофагом не включенным в липосомы составляло - 15-27 колоний, тогда как в чашках с после воздействия липосомального фага число колоний - 3-4 на чашку. Различия статистически значимы.
Claims (3)
1. Препарат для инактивации внутриклеточных микобактерий туберкулеза, представляющий собой микобактериофаг D29, включенный в бислойную фосфолипидную липосому размером 0,4 микрон.
2. Способ получения препарата по п. 1, заключающийся в выделении и очистке фаговых частиц из бактериальных лизатов M.smegmatis с последующим включением в фосфолипидные липосомы, отличающийся тем, что выделение и очистку фаговых частиц из бактериальных лизатов M.smegmatis проводят с помощью ионно-обменной хроматографии на колонке Q-sepharose, полученный очищенный микобактериофаг в концентрации не менее 108 pfu/мл встряхивают с фосфолипидной пленкой в течение 5-10 минут, проводят экструзию полученных частиц через фильтр с порами 5 микрон и последующей 20-кратной экструзией с использованием фильтров размером пор 0,4 мкм, концентрированием и отделением включенной в липосомы фракции микобактериофага с помощью центрифугирования при 13±2 тыс. об/мин в течение 30±5 минут.
3. Способ по п. 2, отличающийся тем, что используют фосфолипидную пленку, полученную из фосфатидилхолина, холестерина и твин-80, взятых в массовом соотношении 5±1:1±0,8:1,2±0,2.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2018129791A RU2691439C1 (ru) | 2018-08-16 | 2018-08-16 | Препарат на основе литического микобактериофага и способ его получения |
PCT/RU2019/050132 WO2020036517A1 (ru) | 2018-08-16 | 2019-08-16 | Препарат на основе литического микобактериофага и способ его получения |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2018129791A RU2691439C1 (ru) | 2018-08-16 | 2018-08-16 | Препарат на основе литического микобактериофага и способ его получения |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2691439C1 true RU2691439C1 (ru) | 2019-06-13 |
Family
ID=66947556
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2018129791A RU2691439C1 (ru) | 2018-08-16 | 2018-08-16 | Препарат на основе литического микобактериофага и способ его получения |
Country Status (2)
Country | Link |
---|---|
RU (1) | RU2691439C1 (ru) |
WO (1) | WO2020036517A1 (ru) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2214829C2 (ru) * | 2001-11-05 | 2003-10-27 | Новосибирский научно-исследовательский институт туберкулеза | Способ фаготерапии туберкулеза |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2622755C1 (ru) * | 2016-05-04 | 2017-06-19 | федеральное государственное бюджетное образовательное учреждение высшего образования "Башкирский государственный медицинский университет" Министерства здравоохранения Российской Федерации | Средство с липосомами, содержащими изониазид |
-
2018
- 2018-08-16 RU RU2018129791A patent/RU2691439C1/ru active
-
2019
- 2019-08-16 WO PCT/RU2019/050132 patent/WO2020036517A1/ru active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2214829C2 (ru) * | 2001-11-05 | 2003-10-27 | Новосибирский научно-исследовательский институт туберкулеза | Способ фаготерапии туберкулеза |
Non-Patent Citations (3)
Title |
---|
ЛАПЕНКОВА М.Б. и др. Исследование активности литического микобактериофага D29 на модели перевиваемой линии макрофагов, инфицированных микобактериями туберкулеза, Бюллетень экспериментальной биологии и медицины, N9, 2017, с.326-329. * |
СМИРНОВА Н.С. и др. Применение литического микобактериофага D29 для ускоренного фенотипического определения чувствительности микобактерий туберкулеза к противотуберкулезным препаратам, Клиническая лабораторная диагностика, 62 (12), 2017, с.757-763. * |
СМИРНОВА Н.С. и др. Применение литического микобактериофага D29 для ускоренного фенотипического определения чувствительности микобактерий туберкулеза к противотуберкулезным препаратам, Клиническая лабораторная диагностика, 62 (12), 2017, с.757-763. ЛАПЕНКОВА М.Б. и др. Исследование активности литического микобактериофага D29 на модели перевиваемой линии макрофагов, инфицированных микобактериями туберкулеза, Бюллетень экспериментальной биологии и медицины, N9, 2017, с.326-329. * |
Also Published As
Publication number | Publication date |
---|---|
WO2020036517A1 (ru) | 2020-02-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7122976B2 (ja) | 医学に使用するためのヒト血小板溶解物由来細胞外小胞 | |
CN107875124B (zh) | 一种从细胞悬液中提取和纯化包裹药物的细胞囊泡的方法 | |
US20230172989A1 (en) | System and a method for obtaining an improved plasma extract | |
NELSON et al. | An electron-microscopic study of bacterial meningitis: I. Experimental alterations in the leptomeninges and subarachnoid space | |
TW201130980A (en) | A new lytic phage specific to Klebsiella pneumoniae | |
Zhang et al. | Effects of panax notoginseng saponins on homing of C-kit+ bone mesenchymal stem cells to the infarction heart in rats | |
Lapenkova et al. | Bactericidal activity of liposomal form of lytic Mycobacteriophage D29 in cell models of tuberculosis infection in vitro | |
RU2691439C1 (ru) | Препарат на основе литического микобактериофага и способ его получения | |
Hutchins et al. | Atypical mycobacterial infection complicating mineral oil pneumonia | |
Feng et al. | Exosomes: Applications in respiratory infectious diseases and prospects for coronavirus disease 2019 (COVID-19) | |
CN112675203A (zh) | 一种细胞来源的外泌体在制备治疗哮喘和/或肺纤维化生物制剂中的应用 | |
CN116515762A (zh) | 一种促进糖尿病创面愈合的工程化改造外泌体及其制备方法和应用 | |
Ghosh et al. | Transmission electron microscopic study of renal haemopoietic tissues of Channa punctatus (Bloch) experimentally infected with two species of aeromonads | |
CN113073071B (zh) | 一株假小链双歧杆菌及其在代谢综合征中的应用 | |
CN115029322A (zh) | 一株多药耐药肺炎克雷伯菌噬菌体及其应用 | |
CN114869999A (zh) | 白屈菜红碱联合多黏菌素e在抑制多黏菌素e耐药菌中的应用 | |
KR102365657B1 (ko) | 젬피브로질을 포함하는 비결핵항산균 감염 질환의 예방 또는 치료용 약학 조성물 | |
CN116196332A (zh) | 凋亡小体在制备治疗脓毒血症产品中的应用 | |
Faizal et al. | THE EFFECT OF INCREASING INTERLEUKIN 6 EXPRESSION WITH THE DOSES OF MACROPHAGES ON TUBERCULOSIS GRANULOMA IN VITRO. | |
WO2023169594A1 (zh) | 血液来源的样品在制备囊泡中的应用 | |
JPH01104182A (ja) | 新規多糖類、それらの製造法及びそれらを有効成分として含有する医薬組成物 | |
CN117338820A (zh) | 一种副拟杆菌外泌体的治疗急性肺损伤的用途 | |
CN117004566A (zh) | 一种具有抗结核免疫保护作用的巨噬细胞来源的外泌体和相关蛋白及用途 | |
Kudoyarov et al. | Possibilities of sterilization by track membranes | |
GOBLE et al. | Effects of Certain Surface‐Active Po lyoxyethylene Ethers in Experimental Protozoal Infections |