RU2690765C1 - Генератор периодических псевдослучайных двоичных последовательностей сложной структуры - Google Patents

Генератор периодических псевдослучайных двоичных последовательностей сложной структуры Download PDF

Info

Publication number
RU2690765C1
RU2690765C1 RU2018127716A RU2018127716A RU2690765C1 RU 2690765 C1 RU2690765 C1 RU 2690765C1 RU 2018127716 A RU2018127716 A RU 2018127716A RU 2018127716 A RU2018127716 A RU 2018127716A RU 2690765 C1 RU2690765 C1 RU 2690765C1
Authority
RU
Russia
Prior art keywords
sequence
output
length
bit
binary
Prior art date
Application number
RU2018127716A
Other languages
English (en)
Inventor
Евгений Ильич Кренгель
Илья Викторович Барков
Павел Викторович Иванов
Original Assignee
Акционерное общество "Современные беспроводные технологии"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "Современные беспроводные технологии" filed Critical Акционерное общество "Современные беспроводные технологии"
Priority to RU2018127716A priority Critical patent/RU2690765C1/ru
Application granted granted Critical
Publication of RU2690765C1 publication Critical patent/RU2690765C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/58Random or pseudo-random number generators
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/60Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers
    • G06F7/72Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers using residue arithmetic

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Computing Systems (AREA)
  • Mathematical Physics (AREA)
  • Error Detection And Correction (AREA)

Abstract

Изобретение относится к вычислительной технике. Технический результат заключается в повышении быстродействия генератора псевдослучайных двоичных последовательностей сложной структуры. Устройство содержит генератор m-последовательности длины (ГМП) над GF(p) длины p-1, где n=2m, (p-l)≡0 (mod 4), с арифметикой в GF(p), блок преобразования (БП) выходного символа m-последовательности в виде m р-ичных коэффициентов в ⎡m(logp)⎤-разрядное двоичное число, двоичные выходы которого соединены с соответствующими адресными входами ПЗУ объемом p×1 бит. ГМП над GF(p) длины p-1 реализован в виде последовательно соединенных генератора m-последовательности над GF(p) длины p-1, состоящего из n разрядного регистра сдвига p-ичных чисел, выходные разряды которого подключены к входам блока скалярного перемножения (БСП), при этом выход БСП подключен к входу регистра сдвига, и блока умножения на матрицу (БУМ) р-ичных чисел порядка n×m, первый столбец которой соответствует нулевому сдвигу и равен (1 0 0…0), соответственно, i-столбец этой матрицы соответствует сдвигу m-последовательности на (i-1)(p+1), 1=2,…,m, при этом n входов БУМ соединены с соответствующими выходами разрядов регистра сдвига, а m выходов БУМ подключены к m входам БП m-разрядного р-ичного числа в двоичное, причем введены последовательно соединенные дешифратор нуля и прореживателя единиц, а также двухвходовой элемент ИЛИ, подключенный по первому входу к выходу прореживателя единиц, а по второму входу - к выходу ПЗУ, при этом вход дешифратора нуля соединен с выходом БП. 1 з.п. ф-лы, 3 ил., 1 табл.

Description

Изобретение относится к вычислительной технике и предназначено для генерации псевдослучайных двоичных последовательностей сложной структуры с почти идеальной автокорреляцией (с нулевой зоной автокорреляции N/2), используемых в широкополосных системах связи, в радарах с непрерывным излучением, а также в криптографии. Последовательность длины N называется почти идеальной, если ее периодическая автокорреляционная функция при всех ненулевых сдвигах кроме одного равна нулю. Последовательностями с нулевой зоной автокорреляции D называют последовательностями, имеющими нулевые значения боковых выбросов периодической автокорреляционной функции (ПАКФ) в некоторой зоне τ≤D относительно нулевого сдвига. Двоичную последовательность четной длины называют сбалансированной, если число нулей (единиц) в ней равно числу единиц (минус единиц) и почти сбалансированной, если разность между числом единиц и нулей по модулю равно двум.
В настоящее время известны различные генераторы псевдослучайных двоичных последовательностей (RU 2642351 (С1) - 2018-01-24, KR 20160067992 (А) - 2016-06-14, GB 1518997 (А) - 1978-07-26, ЕР 0492325 (А2) - 1992-07-01, RU 2013802 (А) - 1994-05-30, SU 1265973 (А1) - 1986-10-23, US 2018011691 (А1) - 2018-01-11, ES 2644485 (Т3) - 2017-11-29, CN 107683502 (А) - 2018-02-09, US 9813181 B2, Ипатов В.И. Периодические дискретные сигналы с оптимальными корреляционными свойствами. – М.: Радио и связь, 1992, Fan Р. and Darnell М. Sequence Design for Communications Applications. - RSP-John Wiley & Sons Inc., London, 1996 и др.) с хорошими корреляционными свойствами. В частности, в литературе описаны почти сбалансированные (ПС) почти идеальные двоичные последовательности (ПИДП) длины 2(pm+1), где р>2 простое число, а m≥1 целое
Figure 00000001
Н. D. Schotten, Н. Hadinejad-Mahram. Binary and quadriphase sequences with optimal autocorrelation properties: survey. - IEEE Transaction on Information Theory, vol. IT-49, No. 12, pp. 3271-3282, 2003), и почти идеальные троичные последовательности (ПИТП) с алфавитом {1,-1,0} длины 4(pm+1), (pm-l≡0 (mod 4), имеющие четыре нуля и равное число единиц и минус единиц (Кренгель Е.И. Конструирование почти идеальных и нечетно-идеальных троичных последовательностей. - журнал «Радиотехника», №9, 2006, стр. 8-12). ПИТП длины 4(pm+1) при замене нулей на последовательность 1 -1 1 -1 преобразуются по существу в сбалансированную ПИДП с малыми энергетическими потерями при обработке в несогласованном фильтре в приемнике. Полученные с помощью такого метода двоичные последовательности получили название несогласованных ПИДП (НПИДП) (Кренгель Е.И. Несогласованные почти идеальные двоичные последовательности. - журнал «Цифровая обработка сигналов», №4, 2006, стр. 44-47). НПИДП относятся к нелинейным псевдослучайным двоичным последовательностям сложной структуры, характеризуемой высоким значением линейной сложности. Линейная сложность является одной из важных характеристик двоичных последовательностей и численно равна наименьшей длине регистра сдвига с обратными связями, генерирующего эту последовательность.
В работе (Edemskiy V., Minin A. About the linear complexity of the almost perfect sequences. - International Journal of Communications, Vol.1, 2016, pp. 223-226) было доказано, что линейная сложность L ПИДП длины 2(pm+1) и НПИДП длины 4(pm+1) равна соответственно 2(pm+1) и 3(pm+1), т.е. больше или равна 75% их длины, ограничивающей сверху величину линейной сложности последовательности.
Математическое определение этих последовательностей дано в (Кренгель Е.И. Конструирование почти идеальных и нечетно-идеальных троичных последовательностей. - журнал «Радиотехника», №9, 2006, стр. 8-12, Кренгель Е.И. Несогласованные почти идеальные двоичные последовательности. - журнал «Цифровая обработка сигналов», №4, 2006, стр. 44-47).
Пусть р>2 есть простое, и α есть примитивный элемент поля GF(pn), где n=2m, m≥1. Пусть β есть примитивный элемент поля GF(pm) и Т=(pn-1)/(pm-1)=pm+1. Тогда последовательность w, задаваемая правилом
Figure 00000002
где
Figure 00000003
есть ПИТП длины 2(pm+l) с пиковыми значениями 2pm и числом нулевых элементов 2.
Здесь
Figure 00000004
- след элемента x GF(pn) относительно GF(pm), a indβx - индекс (логарифм) х по основанию β. При замещении 2-х равноотстоящих на Т нулей в последовательности w единицами или минус единицами мы получим ПИДП длины 2(pm+1).
Пусть р>2 - простое число, и а - примитивный элемент поля Галуа GF(pn), где n=2m, m≥1, такие, что pm-1 кратно 4. Пусть β - примитивный элемент поля Галуа GF(pm) и Т=(pn-l)/(pm-l)=pm+1. Тогда последовательность v, задаваемая правилом
Figure 00000005
i=0, 1, …4T-1,
где
Figure 00000006
Figure 00000007
есть ПИТП длины 4(pm+1) с пиковыми значениями ACF(0)=-ACF(2T)=4pm и числом нулевых элементов 4. Здесь ⎣ u ⎦ есть max {n⎪n≤u, n - целое}, то есть ⎣и ⎦ есть операция округления числа к меньшему. При замещении 4-х равноотстоящих на Т нулей в последовательности ν на одну из трех двоичных последовательностей 1 1 1 1, -1 -1 -1 -1 или 1 -1 1 -1 мы получим НПИДП. Причем, в последнем случае последовательность будет сбалансированная, т.е. с равным числом -1 и 1, а при переходе к двоичному алфавиту {0,1} соответственно с равным числом 1 и 0. Обозначим полученную двоичную последовательность через v'.
В работе (Кренгель Е.И. Новые идеальные 4-фазные и 8-фазные последовательности с нулями. - журнал «Радиотехника», №5, 2007, стр. 3-8) описаны два варианта реализации генератора ПИТП длины 4(pm+1) с 4-мя нулями. В первом варианте генератор ПИТП длины 4(pm+1) состоит из генератора m-последовательности над Галуа GF(pm) длины pn-1 и блока вычисления функции ψ(x). Во втором варианте генератор ПИТП длины 4(pm+1) строится на основе ПЗУ объема 2(pm+l)x2, в котором хранятся троичные символы {-1, 0, 1}, и счетчика на 2(pm+1). Причем, через каждые 2(pm+1) тактов выходные символы инвертируются. Очевидно, что при переходе от ПИТП к НПИДП этот вариант генератора упрощается, поскольку в этом случае объем ПЗУ уменьшается в два раза до 2(pm+1)x1.
В первом варианте вычисление символов НПИДП производится посредством соответствующего генератора m-последовательности над GF(pm) длины pn-1, выход которого соединен с входом блока вычисления функции ψ(x). Генератор m-последовательности над GF(pm) длины pn-1 представляет собой регистр сдвига длины из n ячеек, содержащих символы поля Галуа GF(pm) (pm-ичные целые числа), охваченный линейной обратной связью по модулю pm. Основная сложность реализации первого варианта генератора НПИДП связана с вычислением дискретного логарифма х по основанию примитивного элемента β. Поэтому наибольшее быстродействие достигается при использовании таблиц, содержащих логарифмы всех pm элементов из GF(pm). Объем таблиц в этом случае максимален и составляет pm слов длиной приблизительно m⎡(log2p)⎤ бит, что почти в m⎡(log2p)⎤/4 раз превышает длину генерируемой двоичной последовательности. Здесь ⎡u⎤ есть min {n ⎟ n≥ u, n - целое}, т.е. ⎡u⎤ есть операция округления числа u к большему.
Для уменьшения объема памяти можно упростить блок вычисления функции ψ(xj) за счет использования таблицы отображения pm элементов х поля GF(pm) в соответствующий двоичный символ последовательности v' по следующему правилу: х→ψ(x), x≠0, а ψ(0) равно 1 или 0. В результате длина слова в таблице отображения равна 1 биту. Эта таблица может быть реализована с помощью ПЗУ объемом pm×1, адресным входом в которое является двоичное представление элемента x∈GF(pm) на выходе генератора m-последовательности над GF(pm). В этом случае генератор НПИДП длины 4(pm+1) состоит из последовательно соединенных генератора m-последовательности над GF(pm), блока преобразования (БП), отображающего выходной символ генератора m-последовательности виде m р-ичных коэффициентов в m⎡log2p⎤-разрядное двоичное число, являющееся адресным входом ПЗУ объемом pm × 1 бит.
Основным недостатком первого варианта является сложность разработки и реализация генератора m-последовательности над GF(pm), поскольку операции умножения и сложения в нем выполняются над элементами в поле Галуа GF(pm), что является достаточно трудоемкой задачей, требующей значительного числа операций. Кроме того, для больших значений р и m велика вероятность, что отсутствуют таблицы с характеристическими или примитивными полиномами с такими параметрами.
Второй тип генератора состоит из последовательно соединенных счетчика на 2(pm+1), устройства управления и ПЗУ объема 2(pm+1)×1, которое содержит 2(pm+1) первых двоичных символов НПИДП. По существу, это просто управляемая память, в которой значение выходного бита инвертируется через каждые 2(pm+1). Такой вариант генератора функционально намного проще, но требует в два раза больший объем памяти, что при достаточно больших длинах НПИДП будет намного более затратным.
Уменьшение сложности разработки и реализации генератора m-последовательности над GF(pm) длины pn-1 для n=2m осуществляется посредством его замены генератором из m=n/2 сдвинутых относительно друг друга на Т разрядов копий m-последовательности над GF(p) длины pn-1. Очевидно, что выполнение операций умножения над GF(p) значительно проще, чем над GF(pm). Кроме того, использование m сдвинутых копий m-последовательности над GF(p) позволяет распараллелить процесс формирования символа m-последовательности над GF(pm), что приводит к повышению быстродействия генератора m-последовательности над GF(pm) длины pn-1. Идея синтеза генератора m-последовательности над GF(pm) длины pn-1 посредством генерации m сдвинутых на (pn-1)/(pm-1) разрядов копий m-последовательности над GF(p) длины pn-1 в качестве вектора координат с последующим его скалярным умножением на базис {β0, β1,…, βm-1} поля GF(pm) над GF(p) в обобщенном виде была представлена в работе (G. Gong, G.Z. Xiao. Synthesis and uniqueness of m-sequences over GF(qn) as n-phase sequences over GF(q). - IEEE Trans. Commun. 42 (8), 1994, pp. 2501-2505).
Подобного рода генераторы в настоящее время используются в системах связи с псевдослучайной перестройкой рабочей частоты (ППРЧ), а также в криптографии (Y.-P. Hong and H.-Y. Song. Frequency /time hopping sequences with large linear complexities. - Coding and Cryptography, Vol. 3969 of the series LNCS, 2006, pp. 386-396).
Для отображения m-разрядного p-ичного числа на выходе генератора сдвинутых копий (ГСК) m-последовательности над GF(p) длины pn-1 в двоичное число, соответствующее функции ψ(х), согласно (G. Gong, G.Z. Xiao. Synthesis and uniqueness of m-sequences over GF(qn) as n-phase sequences over GF(q). - IEEE Trans. Commun. 42 (8), 1994, pp. 2501-2505) поступим следующим образом. pm-1 различным ненулевым наборам (ai,m-1 ai,m-2,… ai0,) m разрядных p-ичных чисел на выходе ГСК, соответствующим элементам поля Галуа αTi, i=0,l,…,pm-2, поставим в соответствие двоичную последовательность (1- (-1)⎣(i mod 4)/2⎦)/2 и запишем ее по адресам двоичного числа (ai,m-1pm-1 + ai,m-2pm-2 + ai0)2 в ПЗУ. Соответственно m-разрядному числу 00…0 поставим в соответствие число 1 или 0, которое записывается в ПЗУ по нулевому адресу. В результате на выходе ПЗУ формируется несбалансированная НПИДП, поскольку разность между числом единиц и нулей в этом случае равна 4. Очевидно, для формирования сбалансированной НПИДП необходимо каждые Т тактов изменять считываемый по нулевому адресу символ на противоположный. Следует отметить, что при несогласованной фильтрации на вход коррелятора приемника поступает НПИДП v' с алфавитом {1, -1}, а в качестве весовой последовательности в нем используется ПИТП v с символами {1, -1, 0}.
С учетом вышеизложенного технический результат изобретения состоит в уменьшении сложности разработки и реализации, а также повышении быстродействия генераторов периодических псевдослучайных двоичных последовательностей сложной структуры за счет замены генератора m-последовательности над GF(pm) длины (pn-1) с арифметикой в GF(pm), генератором сдвинутых относительно друг друга на Т символов копий m-последовательности) над GF(p) длины pn-1 с арифметикой в GF(p).
Указанный результат для НПИДП длины 4(pm+1) с неравным числом единиц и нулей достигается генератором периодических псевдослучайных двоичных последовательностей сложной структуры, содержащим генератор m-последовательности (ГМП) 1 над GF(pm) длины pn-1, где n=2m, (pm-l)≡0 (mod 4), с арифметикой в GF(pm), блок преобразования (БП) m-разрядного p-ичного числа в m⎡(log2p)⎤-разрядное двоичное число, двоичные выходы которого соединены с соответствующими адресными входами ПЗУ объемом pm × 1 бит, отличающимся тем, что ГМП над GF(pm) длины pn-1 реализован в виде последовательно соединенных генератора m-последовательности длины pn-1, состоящего из n разрядного регистра сдвига p-ичных чисел, выходные разряды которого подключены к входам блока скалярного перемножения (БСП), осуществляющего скалярное перемножения n-разрядного вектора состояний регистра сдвига на вектор из коэффициентов характеристического полинома m-последовательности над GF(p) длины pn-1, при этом выход БСП подключен к входу регистра сдвига, и блока умножения на матрицу (БУМ) р-ичных чисел порядка n×m, первый столбец которой соответствует нулевому сдвигу и равен (1 0 0…0)T, соответственно i-столбец этой матрицы соответствует сдвигу m-последовательности на (i-1)(pm+l), i=2,…,m, при этом n входов БУМ соединены с соответствующими выходами разрядов регистра сдвига, a m выходов БУМ подключены к m входам БП. Здесь верхний индекс T над вектором-строкой (1 0 0…0) обозначает операцию транспонирования.
Блок-схема генератора периодических псевдослучайных двоичных последовательностей сложной структуры длины 4(pm+1) с неравным числом единиц и нулей представлена на Фиг. 1. Устройство содержит генератор m-последовательности 1 над GF(p) длины pn-1, состоящий из n-разрядного регистра сдвига p-ичных чисел 2 и БСП 3, осуществляющего скалярное перемножения n-разрядного вектора состояний регистра 2 на вектор из коэффициентов характеристического полинома m-последовательности, выход которого подключен к входу регистра сдвига 2, блок умножения на матрицу (БУМ) сдвиговых p-ичных коэффициентов порядка n×m 4, n входов которого соединены с соответствующими выходами разрядов регистра сдвига 2, БП m-разрядного p-ичного числа в m⎡(log2p)⎤-разрядное двоичное 5, m входов которого соединены с соответствующими m выходами БУМ 4 и ПЗУ 6 объема pm×1 бит, адресные входы которого подключены к m⎡(log2p)⎤ двоичным выходам БП 5.
Генератор работает следующим образом. Предварительно в регистр сдвига 2 записывается некоторое ненулевое число. Обычно это единица. На вход генератора 1 поступают тактовые импульсы с частотой ft. На каждом такте информация в регистре 2 сдвигается на разряд вправо, а в его самый младший р-ичный разряд записывается следующий p-ичный символ, появляющийся на выходе БСП 3. В БУМ 4 происходит умножение n-разрядного p-ичного вектора содержимого регистра 2 на матрицу сдвиговых коэффициентов порядка n×m, при этом используется арифметика в поле Галуа GF(p), которая эквивалентна арифметике по модулю р. Полученное в БУМ 4 m-разрядное p-ичное число поступает в БП 5, где из р-ичного преобразуется в двоичное и служит адресом, по которому из ПЗУ 6 извлекается текущий двоичный символ НПИДП. В результате на выходе ПЗУ 6 периодически появляются все символы НПИДП.
В соответствии с описанным выше преобразованием несбалансированной НПИДП в сбалансированную НПИДП генератор периодических псевдослучайных двоичных последовательностей сложной структуры длины 4(pm+1) с равным числом единиц и нулей отличается от описанного выше генератора периодических псевдослучайных двоичных последовательностей сложной структуры (Фиг. 1) введением последовательно соединенных дешифратора нуля и прореживателя единиц, а также двухвходового элемента ИЛИ, подключенного по первому входу к выходу прореживателя единиц, а по второму входу - к выходу ПЗУ, при этом вход дешифратора нуля соединен с выходом БП. В результате на выходе прореживателя единиц формируется последовательность периода 2(pm+1), состоящая из одной единицы и 2pm+1 нулей. Начало периода этой последовательности совпадает с появлением нулевой комбинации на выходе БП. При этом предполагается, что по нулевому адресу в ПЗУ хранится 0.
Блок-схема генератора периодических псевдослучайных двоичных последовательностей сложной структуры длины 4(pm+1) с равным числом единиц и нулей (сбалансированной несогласованной почти идеальной двоичной последовательности) представлена на Фиг. 2. Устройство содержит генератор m-последовательности 1 над GF(p) длины pn-1, состоящий из p-разрядного регистра сдвига р-ичных чисел 2 и БСП 3, осуществляющего скалярное перемножение n-разрядного вектора состояний регистра 2 на вектор из коэффициентов характеристического полинома m-последовательности, выход которого подключен к входу регистра сдвига 2, БУМ 4 сдвиговых p-ичных коэффициентов порядка n×m, n входов которого соединены с соответствующими выходами разрядов регистра 2, блок преобразования (БП) m-разрядного р-ичного числа в m⎡(log2p)⎤-разрядное двоичное 5, m входов которого соединены с соответствующими m выходами БУМ 4, a m⎡(log2p)⎤ двоичных выходов БП 5 с адресными входами ПЗУ 6 и дешифратором нуля 7, подключенного к входу прореживателя единиц 8, и двухвходовый элемент ИЛИ 9, подключенный по первому входу к выходу прореживателя 8, а по второму входу - к выходу ПЗУ 6.
Работа этого генератора происходит аналогично описанному выше генератору периодических псевдослучайных двоичных последовательностей сложной структуры длины 4(pm+1), представленному на Фиг. 1. Первоначально в регистр сдвига 2 также записывается некоторое ненулевое число. Полученное в БУМ 4 m-разрядное р-ичное число поступает в БП 5, где из p-ичного формируется двоичный адрес чтения символа из ПЗУ 6, и в дешифратор нуля 7, где оно дешифрируется. В случае нулевой комбинации на выходе БП на выходе дешифратора нуля 7 появляется единица, а в случае всех ненулевых комбинаций - нуль. Таким образом, на выходе дешифратора 7 формируется последовательность из одной единицы и pm нулей с периодом pm+1. Прореживатель единиц 8 осуществляет обнуление каждой второй появляющейся на его входе единицы, формируя на своем выходе последовательность из одной единицы и 2pm+1 нулей с периодом 2(pm+1). В элементе ИЛИ 9 происходит объединение выходных двоичных сигналов ПЗУ и прореживателя единиц 8. В результате на выходе элемента ИЛИ 9 появляются символы периодической сбалансированной НПИДП.
Для иллюстрации работы предлагаемого изобретения рассмотрим конструкцию генератора периодических псевдослучайных двоичных последовательностей сложной структуры длины 104 с неравным числом единиц и нулей. В этом случае р=5, n=4, m=2 и Т=26. Выбираем характеристический полином степени 4 над GF(5) вида f(x)=x4+x2+2x+2. Функциональная блок-схема генератора периодических последовательностей НПИДП длины 104 изображена на Фиг. 3. ГСК включает ГМП над полем GF(5) длины N=54-1=624, выполненный на регистре сдвига длины 4 с вынесенными сумматорами по mod 5 в схеме обратной связи (тип Фибоначчи), и БУМ с размером матрицы 4×2.
Первый столбец этой матрицы имеет вид (1 0 0 0)T. Поэтому практически берется выход первого (младшего) разряда регистра сдвига генератора m-последовательности. Вторая строка находится из следующих соображений. Примитивным нормализованным полиномом (старший коэффициент равен единице), двойственным к f(x), является F(x)=x43+3х2+3. Согласно работе
(Питерсон У. Коды, исправляющие ошибки. - Москва, изд-во «Мир», 1964) последовательность состояний генератора m-последовательности длины 624, выполненного на основе примитивного полинома F(x) по схеме с встроенными сумматорами (по схема Галуа), будет определять всю совокупность векторов, необходимых для получения любого сдвига этой же (с точностью до фиксированного множителя) m-последовательности, но выполненной на основе по схеме с вынесенными сумматорам на основе полинома f(x). Рассмотрим m- последовательность, получаемую на выходе первого (младшего) разряда ГМП.
Циклическому сдвигу этой m-последовательности влево на T=26 будет соответствовать состояние генератора m-последовательности с полиномом F(х) по схеме Галуа при его сдвиге на 26*23=598 относительно начального состояния 1 0 0 0. В результате расчета находим, что этому сдвигу соответствует состояние 0 3 0 2. В результате матрица сдвиговых коэффициентов равна
Figure 00000008
В Таблице ниже представлена структура данных ПЗУ генератора НПИДП длины 104.
Figure 00000009
Здесь А означает адрес ПЗУ, а Б - бит данных. В результате на выходе генератора получаем периодическую НПИДП длины 104 вида: 1 1 1 0 1 1 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 0 1 0 1 1 1 0 1 1 0 1 0 1 1 1 0 1 1 1 0 0 0 0 1 1 0 1 0 0 1 1 0 0 0 1 0 0 1 0 0 0 0 0 0 1 1 1 1 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0 0 0 1 1 1 0 0 0 1 0 1 1 0 0 с линейной сложностью L=3Т=78.
Регистр сдвига 2 генератора m-последовательности 1 состоит из последовательно соединенных 4-х 5-ричных элементов задержки на один такт 10, БСП состоит из трех умножителей 11, в которых осуществляется умножение по модулю 5 содержимого соответствующих разрядов регистра сдвига 2 на коэффициенты 4, 3 и 3, и сумматора 12 по модулю 5, а БУМ соответственно состоит из двух умножителей 11, в которых выполняется умножение по модулю 5 содержимого 2-го и 4-го разрядов регистра сдвига 2 соответственно на коэффициенты 3 и 2, и сумматора 12 по модулю 5.
Предлагаемое изобретение может быть реализовано на соответствующей элементной базе по типовым технологиям.

Claims (2)

1. Генератор периодических псевдослучайных двоичных последовательностей сложной структуры, содержащий генератор m-последовательности (ГМП) над GF(pm) длины рn-1, где n=2m, (pm-1)≡0 (mod 4), с арифметикой в GF(pm), блок преобразования (БП) выходного символа m-последовательности в виде m p-ичных коэффициентов в ⎡m(lоg2p)⎤ - разрядное двоичное число, двоичные выходы которого соединены с соответствующими адресными входами ПЗУ объемом рm×1 бит, отличающийся тем, что ГМП над GF(pm) длины рn-1 реализован в виде последовательно соединенных генератора m-последовательности над GF(p) длины рn-1, состоящего из n разрядного регистра сдвига p-ичных чисел, выходные разряды которого подключены к входам блока скалярного перемножения (БСП), осуществляющего скалярное перемножение n-разрядного вектора состояний регистра сдвига на вектор из коэффициентов характеристического полинома m-последовательности, при этом выход БСП подключен к входу регистра сдвига, и блока умножения на матрицу (БУМ) р-ичных чисел порядка n×m, первый столбец которой соответствует нулевому сдвигу и равен (1 0 0 …0)T, соответственно, i-столбец этой матрицы соответствует сдвигу m-последовательности на (i-l)(pm+1), i=2,…,m, при этом n входов БУМ соединены с соответствующими выходами разрядов регистра сдвига, а m выходов БУМ подключены к m входам БП m-разрядного p-ичного числа в двоичное.
2. Генератор периодических псевдослучайных двоичных последовательностей сложной структуры по п. 1, отличающийся введением последовательно соединенных дешифратора нуля и прореживателя единиц, а также двухвходового элемента ИЛИ, подключенного по первому входу к выходу прореживателя единиц, а по второму входу - к выходу ПЗУ, при этом вход дешифратора нуля соединен с выходом БП.
RU2018127716A 2018-07-27 2018-07-27 Генератор периодических псевдослучайных двоичных последовательностей сложной структуры RU2690765C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018127716A RU2690765C1 (ru) 2018-07-27 2018-07-27 Генератор периодических псевдослучайных двоичных последовательностей сложной структуры

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018127716A RU2690765C1 (ru) 2018-07-27 2018-07-27 Генератор периодических псевдослучайных двоичных последовательностей сложной структуры

Publications (1)

Publication Number Publication Date
RU2690765C1 true RU2690765C1 (ru) 2019-06-05

Family

ID=67037859

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018127716A RU2690765C1 (ru) 2018-07-27 2018-07-27 Генератор периодических псевдослучайных двоичных последовательностей сложной структуры

Country Status (1)

Country Link
RU (1) RU2690765C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2769539C1 (ru) * 2021-04-13 2022-04-01 Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский национальный исследовательский технический университет им. А.Н. Туполева - КАИ" Способ формирования псевдослучайных сигналов и устройство для его осуществления

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2080651C1 (ru) * 1994-04-14 1997-05-27 Военная академия связи Генератор псевдослучайных n-разрядных двоичных чисел
UA67872U (ru) * 2011-07-26 2012-03-12 Академия Налоговой Службы Украины Генератор псевдослучайной последовательности на основе использования первого столбца матрицы состояний в конечном поле gf(3)
RU2446444C1 (ru) * 2010-11-12 2012-03-27 Государственное образовательное учреждение высшего профессионального образования Казанский государственный технический университет им. А.Н. Туполева Генератор псевдослучайных последовательностей

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2080651C1 (ru) * 1994-04-14 1997-05-27 Военная академия связи Генератор псевдослучайных n-разрядных двоичных чисел
RU2446444C1 (ru) * 2010-11-12 2012-03-27 Государственное образовательное учреждение высшего профессионального образования Казанский государственный технический университет им. А.Н. Туполева Генератор псевдослучайных последовательностей
UA67872U (ru) * 2011-07-26 2012-03-12 Академия Налоговой Службы Украины Генератор псевдослучайной последовательности на основе использования первого столбца матрицы состояний в конечном поле gf(3)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2769539C1 (ru) * 2021-04-13 2022-04-01 Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский национальный исследовательский технический университет им. А.Н. Туполева - КАИ" Способ формирования псевдослучайных сигналов и устройство для его осуществления

Similar Documents

Publication Publication Date Title
Charpin et al. On bent and semi-bent quadratic Boolean functions
US6038577A (en) Efficient way to produce a delayed version of a maximum length sequence using a division circuit
Yu et al. Constructions of quadratic bent functions in polynomial forms
JP3556461B2 (ja) M系列の位相シフト係数算出方式
RU2690765C1 (ru) Генератор периодических псевдослучайных двоичных последовательностей сложной структуры
US5270956A (en) System and method for performing fast algebraic operations on a permutation network
CN110022187B (zh) 通信调制系统中(n,n(n-1),n-1)-PGC代数解码方法及解码器
CN108809323B (zh) 循环冗余校验码的生成方法和装置
Balaji et al. Design of FIR filter with Fast Adders and Fast Multipliers using RNS Algorithm
RU2665290C1 (ru) Генератор периодических идеальных троичных последовательностей
CN109756291B (zh) 一种基于查表法的混沌扩频码生成方法及系统
Das et al. A novel multiplier-free generator for complete complementary codes
No et al. Generalized construction of binary bent sequences with optimal correlation property
Liu et al. Frequency hopping sequence sets with good aperiodic Hamming correlation properties and large family size
Kolokotronis et al. Minimum linear span approximation of binary sequences
RU2446444C1 (ru) Генератор псевдослучайных последовательностей
JP3913921B2 (ja) 有限フィールドでの任意要素の逆数具現回路
Wang et al. F [x]-lattice basis reduction algorithm and multisequence synthesis
US6138134A (en) Computational method and apparatus for finite field multiplication
RU2694439C1 (ru) Генератор периодических псевдослучайных двоичных последовательностей сложной структуры с корреляционными свойствами, близкими к идеальным
Kumari et al. 2-Adic and linear complexities of a class of Whiteman’s generalized cyclotomic sequences of order four
RU151948U1 (ru) Генератор нелинейных псевдослучайных последовательностей
CN111934713B (zh) 基于移位寄存器的实时捕获并动态判定的跳频点预测方法
Beletsky Generalized Galois and Fibonacci Matrices in Cryptographic Applications
Radhakrishnan Modulo multipliers using polynomial rings