RU2690323C1 - Устройство для определения пропускания ультрафиолетового излучения в водных средах - Google Patents

Устройство для определения пропускания ультрафиолетового излучения в водных средах Download PDF

Info

Publication number
RU2690323C1
RU2690323C1 RU2018140537A RU2018140537A RU2690323C1 RU 2690323 C1 RU2690323 C1 RU 2690323C1 RU 2018140537 A RU2018140537 A RU 2018140537A RU 2018140537 A RU2018140537 A RU 2018140537A RU 2690323 C1 RU2690323 C1 RU 2690323C1
Authority
RU
Russia
Prior art keywords
ultraviolet radiation
sensors
ultrasonic emitter
radiation
radiation sensors
Prior art date
Application number
RU2018140537A
Other languages
English (en)
Inventor
Андрей Николаевич Ульянов
Александр Николаевич Воронин
Александр Николаевич Панин
Вадим Валентинович Ромадин
Валерий Михайлович Смирнов
Original Assignee
Общество С Ограниченной Ответственностью "Сварог"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество С Ограниченной Ответственностью "Сварог" filed Critical Общество С Ограниченной Ответственностью "Сварог"
Priority to RU2018140537A priority Critical patent/RU2690323C1/ru
Application granted granted Critical
Publication of RU2690323C1 publication Critical patent/RU2690323C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/15Preventing contamination of the components of the optical system or obstruction of the light path

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Physical Water Treatments (AREA)

Abstract

Изобретение относится к области охраны окружающей среды и касается устройства для определения пропускания ультрафиолетового излучения в водных средах. Устройство содержит фланец, на котором герметично установлены два разной длины датчика ультрафиолетового излучения и ультразвуковой излучатель. Каждый датчик состоит из корпуса, диафрагмированной линзы из кварцевого стекла и фотоэлемента ультрафиолетового светового спектра с контактами для подключения питания и вывода сигнала. Ультразвуковой излучатель снабжен на конце изгибным волноводом. Датчики ультрафиолетового излучения и ультразвуковой излучатель электрически соединены с блоком считывания и обработки сигналов датчиков ультрафиолетового излучения и питания датчиков ультрафиолетового излучения и ультразвукового излучателя. В обоих датчиках ультрафиолетового излучения используют фотоэлементы с одинаковыми характеристиками. Технический результат заключается в повышении достоверность измерений пропускания ультрафиолетового излучения в процессе обеззараживания водных сред и упрощении конструкции устройства. 2 з.п. ф-лы, 3 ил.

Description

Изобретение относится к охране окружающей среды, а именно к области обеззараживания питьевых, промышленных и бытовых сточных вод, а также поверхностных водоисточников ультрафиолетовым (УФ) облучением в централизованных и нецентрализованных системах коммунального водоснабжения, водоподготовки пищевых и лекарственных производств, оборотного водоснабжения, бассейнов, очистных сооружений и т.п., и может быть использовано в процессе обработки водных сред, в том числе, в протоке.
Снабжение населения питьевой водой высокого качества, а также требования, предъявляемые к сбросу производственных и бытовых сточных вод, во все времена являлись и являются весьма актуальными. В системах очистки и обработки водных сред часто используют прием обеззараживания с использованием ультрафиолетовых ламп. Эффективность обеззараживания водной среды при помощи УФ-излучения зависит как от интенсивности УФ-излучения, так и от загрязнений, содержащихся в обрабатываемой среде и снижающих глубину проникновения в нее УФ-излучения. Поскольку концентрация загрязнений может непрерывно изменяться во времени, то для объективного контроля процесса обеззараживания, необходимо непрерывное и достоверное определение пропускания УФ-излучения обрабатываемой водной средой, что особо актуально для использования в системах с автоматическим регулированием интенсивности УФ-излучения.
В системах с автоматическим регулированием интенсивности УФ-излучения недостоверность и прерывистость процесса измерения пропускания УФ-излучения водной средой могут стать причиной скачков интенсивности ультрафиолетовых ламп, приводящей к сокращению срока их службы, дополнительному расходу электроэнергии, или, наоборот, к недостаточной эффективности процесса обеззараживания, "проскоку" через установку загрязненной воды.
Известно устройство, предназначенное для постоянного определения пропускания УФ-излучения через поток обрабатываемой жидкости, в котором пропускание УФ-излучения определяется по измерению и оценке интенсивности источника УФ-излучения, в качестве которого может использоваться газоразрядная лампа в защитном чехле, прошедшего через обрабатываемую среду. Излучающая поверхность УФ-лампы частично находится в потоке обрабатываемой среды и частично в референтной среде или же на границе этих сред. Устройство содержит два датчика УФ-излучения, которые направлены на зоны одинаковой интенсивности излучения ультрафиолетовой лампы, причем один УФ-датчик размещен в потоке обрабатываемой среды, а другой - в референтной среде. Датчики могут располагаться как на равном, так и на различном расстоянии от источника УФ-излучения, Датчики соединены с устройством для измерения и оценки сигналов, снимаемых с обоих датчиков. Используемая референтная среда может быть такой же, как и обрабатываемая среда. При этом референтную среду герметично отделяют от обрабатываемой среды специальным уплотнением. Устройство снабжено системой очистки источника УФ-излучения и датчика, расположенного в обрабатываемой среде. Чистящие элементы источника УФ-излучения (лампы), предназначенные для очистки его чехла, выполнены в виде кольцевых сегментов и установлены на чехле лампы. Чистящие элементы датчика закреплены на сегментах. Устройство для очистки приводят в движение подъемным цилиндром, который перемещает его в крайнюю верхнюю и нижнюю позиции. / Патент US 6313468, G01N 21/33; G01N 21/85, 2001 г.)
Известное техническое решение не позволяет обеспечить достоверность полученных сведений о состоянии реальной обрабатываемой среды по следующим причинам:
- так как УФ-лучи по-разному преломляются в референтной среде и в обрабатываемой жидкости, особенно если референтной средой служит воздух или твердое вещество, то доля излучения, падающего на референтный датчик и датчик, находящийся в среде, будет иной, чем при измерении в одной среде;
- датчик референтной среды находится в иных условиях очистки, чем источник Уф-излучения и датчик, расположенный в обрабатываемой жидкости, поэтому существует вероятность загрязнения окна референтного датчика;
- датчики находятся в разных условиях старения и в разных температурных режимах;
- участки источника излучения, на которые направлены различные датчики, охлаждаются по-разному, что может приводить к неодинаковому изменению интенсивности лампы при изменении температуры рабочей или референтной среды;
- поскольку в устройстве не предусмотрен контроль за перемещением системы очистки, это может привести к тому, что, находясь в промежуточном положении, она может затенять источник излучения или окна датчиков.
К недостаткам устройства также можно отнести необходимость герметичной изоляции референтной среды от обрабатываемой среды для сохранения ее характеристик, что усложняет конструкцию в целом.
В современных системах с автоматическим регулированием интенсивности Уф-излучения недостоверность измерения пропускания обрабатываемой среды может повлиять на выбор несоответствующего для данной среды оборудования, а также в процессе обработки послужить причиной неоправданного изменения интенсивности УФ-ламп, что приведет к дополнительному расходу энергии при ее увеличении, или недостаточной эффективности процесса дезинфекции при ее снижении.
Наиболее близким по технической сущности к предложенному является устройство, предназначенное для определения пропускания ультрафиолетового излучения в жидких средах, содержащее источник УФ-излучения, расположенные на разном расстоянии от источника излучения и направленные на участки источника излучения с одинаковой интенсивностью датчики УФ-излучения, электрически соединенные с блоком измерения и обработки сигнала, а также приспособление для очистки, содержащее чистящие элементы источника УФ-излучения и обоих датчиков УФ-излучения, установленное на источнике УФ-излучения с возможностью перемещения за счет соединения с пневмоцилиндром, на котором установлены датчики, фиксирующие крайние положения приспособления для очистки и служащие для его возврата в крайние положения после завершения очистки, при этом оба датчика УФ-излучения расположены непосредственно в жидкой среде. /Патент РФ №2308022, G01N 21/33; C02F 1/32, 2007 г./
Известное техническое решение не обеспечивает непрерывности, точности и достоверности полученных сведений о состоянии обрабатываемой среды по следующим причинам:
- используемые УФ-датчики не имеют средств ограничения боковой засветки фотоэлементов, т.е. не диафрагмированы, в поле зрения датчика попадает не только перпендикулярное излучение, проходящее через слой жидкости, величина, которая учитывается в расчетах, но и боковое излучение, снижающее точность измерений. Это особенно важно, при использовании устройства в многоламповых установках, где боковая засветка от других ламп вносит существенные искажения в измерения;
- используемая в устройстве система механической очистки требует остановки измерений на время процесса очистки и, следовательно, остановки всего процесса обеззараживания водной среды;
- при использовании механических систем очистки, в период между чистками происходит постепенное загрязнение линз УФ-датчиков, а также кварцевого чехла УФ-лампы, величина которого зависит от состава обрабатываемой водной среды, например ее жесткости, что вносит искажения в процесс измерения, поскольку процесс соляризации стекол не равномерен и зависит от многих факторов;
- используемая в устройстве система механической очистки счищает осадочный абразивный слой солей и тем постепенно разрушает, царапает поверхность кварцевого стекла чехла УФ-лампы и линз УФ-датчиков, существенно ухудшая оптическую прозрачность стекла что, в результате, снижает достоверность измерений и срок службы устройства в целом.
К недостаткам устройства также можно отнести сложность механической системы очистки, низкую надежность, необходимость дополнительных герметичных соединений, что усложняет конструкцию в целом.
Технической проблемой, решение которой обеспечивается осуществлением изобретения, является создание универсального устройства для непрерывного определения интенсивности пропускания ультрафиолетового излучения в водных средах, содержащих любой состав загрязнений.
Технический результат от использования предложенного устройства заключается в повышении достоверности измерений пропускания ультрафиолетового излучения в процессе обеззараживания водных сред при одновременном упрощении конструкции.
Техническая проблема решается, а технический результат достигается за счет того, что устройство для определения пропускания ультрафиолетового излучения в водных средах содержит фланец, на котором герметично установлены два разной длины датчика ультрафиолетового излучения, каждый из которых состоит из корпуса, диафрагмированной линзы из кварцевого стекла и фотоэлемента ультрафиолетового светового спектра с контактами для подключения питания и вывода сигнала, и ультразвуковой излучатель с контактами питания, снабженный на конце изгибным волноводом, датчики ультрафиолетового излучения и ультразвуковой излучатель электрически соединены с блоком считывания и обработки сигналов датчиков ультрафиолетового излучения и питания датчиков ультрафиолетового излучения и ультразвукового излучателя, при этом в обоих датчиках ультрафиолетового излучения используют фотоэлементы с одинаковыми характеристиками.
Предпочтительно, что расстояние между датчиками ультрафиолетового излучения составляет 5-10 мм, а в качестве изгибного волновода используют стержень или пластину.
Изобретение поясняется чертежами.
Для большей наглядности соотношение между отдельными элементами устройства изменены.
На Фиг. 1 схематически изображено устройство для определения пропускания ультрафиолетового излучения в водных средах; на Фиг. 2 - вид устройства в плане; на Фиг. 3 - разрез по АА на Фиг. 1
Устройство для измерения интенсивности ультрафиолетового излучения в водных средах (Фиг. 1, Фиг. 2, Фиг. 3) состоит из фланца 1, на котором герметично закреплены разной длины УФ-датчики 2 и 3, состоящие соответственно из корпуса 4 и 5, диафрагмированной для исключения боковой засветки линзы для ввода УФ-излучения соответственно 6 и 7 и фотоэлементов соответственно 8 и 9 с контактами для подключения питания соответственно 10 и 11 и контактами для вывода сигнала соответственно 12 и 13. На фланце 1 также герметично закреплен ультразвуковой излучатель 14 с контактами питания 15 и расположенным на его конце изгибным волноводом 16, выполненным в виде стержня или пластины, длина которого кратна длине полуволны ультразвука. УФ-датчики 2 и 3 и ультразвуковой излучатель 14 посредством контактов питания 10,11 и 15 соответственно, а также контактов 12 и 13 для вывода сигналов от УФ-датчиков 2 и 3 электрически соединены с блоком 17 считывания и обработки сигналов УФ-датчиков 2 и 3 и питания УФ-датчиков 2 и 3 и ультразвукового излучателя 14.
Устройство работает следующим образом.
Устройство для измерения пропускания ультрафиолетового излучения в водных средах посредством фланца 1 крепят герметично на фланце любой емкости (на чертежах не показана), содержащей источник ультрафиолетового излучения в обрабатываемой водной среде, например, в фотохимический реактор с ультрафиолетовой лампой с кварцевым чехлом, при этом датчики УФ-излучения 2 и 3 и ультразвуковой излучатель 14 с изгибным волноводом 16 расположены непосредственно в обрабатываемой среде фотохимического реактора. Датчики УФ-излучения 2 и 3, имея различную длину, располагаются на различных расстояниях от источника ультрафиолетового излучения, а линзы из кварцевого стекла 6 и 7 диафрагмируют таким образом, чтобы поля зрения обоих фотоэлементов 8 и 9 были одинаковыми. Питание УФ-датчиков 2 и 3, а также ультразвукового излучателя 14 производят от блока 17 считывания и обработки сигналов УФ-датчиков и питания УФ-датчиков и ультразвукового излучателя через контакты питания УФ-датчиков 10, 11 и контакты питания ультразвукового излучателя 15 соответственно, а через контакты для вывода сигналов УФ-датчиков 12 и 13 на блок 17 подают сигналы от УФ-датчиков 2 и 3. На блок 17 поступают на обработку два сигнала.
Коэффициент пропускания УФ-излучения τ для слоя жидкости толщиной S определяют по формуле:
Figure 00000001
где I0 - интенсивность излучения до прохождения слоя жидкости, а I - после.
Диафрагмирование линз УФ-датчиков существенно повышает точность и достоверность измерений пропускания ультрафиолетового излучения поскольку исключает паразитную боковую засветку фотоэлементов, вносящую неопределенность толщины слоя жидкости s, это особенно важно при использовании устройства в многоламповых установках обеззараживания воды.
Тогда для каждого из УФ-датчиков:
Figure 00000002
где s1, s2 - соответственно толщина слоя жидкости перед первым 2 и вторым 3 УФ-датчиками, и I1, I2 - интенсивности излучения для соответствующих датчиков.
Таким образом, получаем соотношение:
Figure 00000003
Подставляем значения толщин слоев жидкостей перед УФ-датчиками,
s1=1 см s2=2 см:
Figure 00000004
Отсюда получаем значение коэффициента пропускания:
Figure 00000005
Поскольку используют УФ-датчики 2 и 3 с одинаковыми по характеристикам фотоэлементами 8 и 9 соответственно, только расположенные на разном расстоянии от УФ-источника, правомерно использовать электрические выходные сигналы УФ-датчиков, пропорциональные интенсивностям УФ-излучения, например - выходные напряжения U1 и U2, соответственно:
Figure 00000006
Для очистки и предотвращения загрязнения кварцевого чехла источника УФ-излучения и кварцевых окон УФ-датчиков используют ультразвуковой излучатель. Ультразвуковое излучение при воздействии на обеззараживаемую воду вызывает в ней кавитацию, благодаря чему ультразвуковые колебания препятствуют биообрастанию, соляризации кварцевого чехла источника УФ-излучения, окон УФ-датчиков и внутренней поверхности корпуса фотохимического реактора, что снимает необходимость использования каких либо дополнительных систем очистки. Вместо механического приспособления для очистки кварцевого чехла источника УФ-излучения и стекол датчиков используют ультразвуковой излучатель, погруженный в обрабатываемую среду и предназначенный для кавитационной очистки и поддержания в чистоте кварцевого чехла источника УФ-излучения и кварцевых окон датчиков УФ-излучения. Этим обеспечиваются непрерывность, а также повышение достоверности определения пропускания ультрафиолетового излучения устройством
Таким образом, предложенное устройство позволяет повысить достоверность измерений пропускания ультрафиолетового излучения в процессе обеззараживания водных сред при одновременном упрощении его конструкции.

Claims (3)

1. Устройство для определения пропускания ультрафиолетового излучения в водных средах, характеризующееся тем, что содержит фланец, на котором герметично установлены два разной длины датчика ультрафиолетового излучения, каждый из которых состоит из корпуса, диафрагмированной линзы из кварцевого стекла и фотоэлемента ультрафиолетового светового спектра с контактами для подключения питания и вывода сигнала, и ультразвуковой излучатель с контактами питания, снабженный на конце изгибным волноводом, датчики ультрафиолетового излучения и ультразвуковой излучатель электрически соединены с блоком считывания и обработки сигналов датчиков ультрафиолетового излучения и питания датчиков ультрафиолетового излучения и ультразвукового излучателя, при этом в обоих датчиках ультрафиолетового излучения используют фотоэлементы с одинаковыми характеристиками.
2. Устройство по п. 1, отличающееся тем, что расстояние между датчиками ультрафиолетового излучения составляет 5-10 мм.
3. Устройство по п. 1, отличающееся тем, что в качестве изгибного волновода используют стержень или пластину.
RU2018140537A 2018-11-16 2018-11-16 Устройство для определения пропускания ультрафиолетового излучения в водных средах RU2690323C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018140537A RU2690323C1 (ru) 2018-11-16 2018-11-16 Устройство для определения пропускания ультрафиолетового излучения в водных средах

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018140537A RU2690323C1 (ru) 2018-11-16 2018-11-16 Устройство для определения пропускания ультрафиолетового излучения в водных средах

Publications (1)

Publication Number Publication Date
RU2690323C1 true RU2690323C1 (ru) 2019-05-31

Family

ID=67037325

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018140537A RU2690323C1 (ru) 2018-11-16 2018-11-16 Устройство для определения пропускания ультрафиолетового излучения в водных средах

Country Status (1)

Country Link
RU (1) RU2690323C1 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993022671A1 (en) * 1992-04-29 1993-11-11 Clarin Moestue A method and device for the detection of the discharge of hydrocarbons in liquid form, in water, on the ground or in the subsurface
US6313468B1 (en) * 1998-03-05 2001-11-06 Wedeco Ag Water Technology Device for the continuous determination of the UV-transmission through flowing or running media
RU2308022C2 (ru) * 2005-11-21 2007-10-10 Закрытое Акционерное Общество Научно-Производственное Объединение "Лаборатория Импульсной Техники" Зао Нпо "Лит" Устройство для определения пропускания ультрафиолетового излучения в жидких средах
RU157015U1 (ru) * 2015-06-01 2015-11-20 Общество с ограниченной ответственностью "Производственно-технологический центр "УралАлмазИнвест" Измеритель оптической плотности проточной жидкости

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993022671A1 (en) * 1992-04-29 1993-11-11 Clarin Moestue A method and device for the detection of the discharge of hydrocarbons in liquid form, in water, on the ground or in the subsurface
US6313468B1 (en) * 1998-03-05 2001-11-06 Wedeco Ag Water Technology Device for the continuous determination of the UV-transmission through flowing or running media
RU2308022C2 (ru) * 2005-11-21 2007-10-10 Закрытое Акционерное Общество Научно-Производственное Объединение "Лаборатория Импульсной Техники" Зао Нпо "Лит" Устройство для определения пропускания ультрафиолетового излучения в жидких средах
RU157015U1 (ru) * 2015-06-01 2015-11-20 Общество с ограниченной ответственностью "Производственно-технологический центр "УралАлмазИнвест" Измеритель оптической плотности проточной жидкости

Similar Documents

Publication Publication Date Title
US4293225A (en) Underwater fluorometer measuring system
CN102445437B (zh) 一种浊度测量方法及装置
US5453832A (en) Turbidity measurement
US9797844B2 (en) Chemical indicator element systems for aquatic environment water parameter testing
US7659980B1 (en) Nephelometric turbidity sensor device
AU2014281415C1 (en) Aquatic environment water parameter testing systems and methods
KR20050002822A (ko) 액체 분석 방법 및 분석 장치
US4622465A (en) Arrangement for determining the presence of specific substances in a liquid
EP1051599B1 (en) A device for intensity measurement of uv light from a lamp and a uv-treatment plant equipped with such a device
CN100494921C (zh) 光辐射传感器系统以及用于测量流体的辐射透射率的方法
CN102359816A (zh) 光辐射传感器系统
GB2335033A (en) Continuous determination of the UV transmission of flowing media
US9797834B2 (en) Arrangement for optically measuring one or more physical, chemical and/or biological, process variables of a medium
RU2690323C1 (ru) Устройство для определения пропускания ультрафиолетового излучения в водных средах
JP2002174596A (ja) 水質汚染度測定装置
JP2000121548A (ja) 水質計測器
GB2355524A (en) Device for measuring colour and turbidity in a liquid sample
RU2308022C2 (ru) Устройство для определения пропускания ультрафиолетового излучения в жидких средах
EP1240483B1 (en) Optical radiation sensor system
JP2022054835A (ja) 吸光度測定装置
CN102809426A (zh) 一种紫外消毒器在线监测系统
US6762403B2 (en) Actinometric monitor for measuring irradiance in ultraviolet light reactors
RU2172484C2 (ru) Устройство для контроля параметров процесса дезинфекции жидкости уф излучением
KR200339565Y1 (ko) 두 개의 광원을 이용한 탁도측정기
CN107108275B (zh) 测定水的uv透射率的方法