RU2688947C1 - Фотоприемное устройство с затвором - Google Patents

Фотоприемное устройство с затвором Download PDF

Info

Publication number
RU2688947C1
RU2688947C1 RU2018134224A RU2018134224A RU2688947C1 RU 2688947 C1 RU2688947 C1 RU 2688947C1 RU 2018134224 A RU2018134224 A RU 2018134224A RU 2018134224 A RU2018134224 A RU 2018134224A RU 2688947 C1 RU2688947 C1 RU 2688947C1
Authority
RU
Russia
Prior art keywords
shutter
bimorph element
photosensitive element
current source
conductive
Prior art date
Application number
RU2018134224A
Other languages
English (en)
Inventor
Валерий Григорьевич Вильнер
Михаил Михайлович Землянов
Евгений Викторович Кузнецов
Алексей Владимирович Мамин
Александр Ефремович Сафутин
Original Assignee
Акционерное общество "Научно-исследовательский институт "Полюс" им. М.Ф. Стельмаха"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "Научно-исследовательский институт "Полюс" им. М.Ф. Стельмаха" filed Critical Акционерное общество "Научно-исследовательский институт "Полюс" им. М.Ф. Стельмаха"
Priority to RU2018134224A priority Critical patent/RU2688947C1/ru
Application granted granted Critical
Publication of RU2688947C1 publication Critical patent/RU2688947C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J1/0407Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings
    • G01J1/0418Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings using attenuators
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/02Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the intensity of light
    • G02B26/023Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the intensity of light comprising movable attenuating elements, e.g. neutral density filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02325Optical elements or arrangements associated with the device the optical elements not being integrated nor being directly associated with the device

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

Изобретение относится к области приема оптического излучения и касается фотоприемного устройства с затвором. Фотоприемное устройство включает в себя фоточувствительный элемент, схему обработки сигнала и оптический затвор, установленный перед фоточувствительным элементом. Оптический затвор выполнен в виде шторки с двумя рабочими положениями. В состав устройства введен привод шторки, состоящий из источника тока и биморфного элемента, в виде скрученных волокон, одно из которых выполнено токопроводящим, противоположные концы которого через ключ соединены с выходом источника тока, а второе холодное волокно имеет более низкую токопроводность по сравнению с первым. Один конец биморфного элемента консольно закреплен на корпусе устройства, а второй свободен, причем, шторка закреплена со свободной стороны биморфного элемента таким образом, чтобы в первом рабочем положении при отключенном источнике тока шторка перекрывала апертуру фоточувствительного элемента, а при деформации биморфного элемента под действием протекающего тока открывала фоточувствительный элемент. Технический результат заключается в обеспечении работоспособности устройства в условиях активного и пассивного лазерного противодействия при минимальных габаритах и максимальной чувствительности при малом уровне сигналов. 4 з.п. ф-лы, 5 ил., 1 табл.

Description

Изобретение относится к технике приема импульсного оптического излучения, преимущественно к приемникам импульсных лазерных дальномеров и других светолокационных устройств.
Известны фотоприемные устройства(ФПУ) [1] для систем импульсной лазерной локации, предназначенные для преобразования в электрические сигналы отраженных удаленными объектами зондирующих импульсов лазерного излучения и временной привязки электрических импульсов для определения их задержки т относительно момента излучения лазерного зондирующего импульса. По этой задержке судят о дальности R до отражающего объекта по формуле R=сτ/2, где с - скорость света. Подобным образом построены фотоприемные устройства [2-3], содержащие фоточувствительный элемент и схему обработки сигнала. Указанные устройства имеют ограниченный динамический диапазон, препятствующий применению таких приемников в измерителях дальности и другой аппаратуре с повышенными требованиями к точности. Существует ряд технических решений, имеющих целью расширение динамического диапазона и повышение точности временной фиксации принятых сигналов [4-5]. Однако эти решения не обеспечивают работоспособность ФПУ, если энергия входного излучения превышает уровень лучевой прочностифоточувствительного элемента.
Наиболее близким по технической сущности к предлагаемому изобретению является фотоприемное устройство с затвором, содержащее фоточувствительный элемент, схему обработки сигнала, светоделитель, фотодатчик, устройство задержки и оптический затвор, установленный перед фоточувствительным элементом [6]. В данном приемнике оптический затвор не открывается, если сигнал с фотодатчика превышает пороговое значение, соответствующее уровню входного излучения, превышающего порог лучевой прочности фоточувствительного элемента. В противном случае затвор открывается, и входное излучение поступает на фоточувствительный элемент. Время задержки сигнала в линии задержки должно превышать время реакции затвора на управляющий импульс от фотодатчика. Таким образом, обеспечивается функционирование устройства не только в рабочем динамическом диапазоне отраженных сигналов, но и за его пределами - в условиях активного или пассивного противодействия.
Недостаток ФПУ[6] - потери излучения в светоделителе, устройстве задержки и оптическом затворе, а также ограничения по быстродействию затвора, вынуждающие увеличивать задержку сигнала в устройстве задержки. Это, в свою очередь, приводит к потерям в приемном тракте, искажению формы принимаемого сигнала, увеличению габаритов устройства, особенно за счет светоделителя, устройства задержки и оптического затвора.
Задачей изобретения является обеспечение работоспособности устройства в условиях активного и пассивного лазерного противодействия при минимальных габаритах и максимальной чувствительности приемника лазерного излучения для слабых входных сигналов.
Эта задача решается за счет того, что в известном фотоприемном устройстве с затвором, содержащем фоточувствительный элемент, схему обработки сигнала и оптический затвор, установленный перед фоточувствительным элементом, оптический затвор выполнен в виде шторки с двумя рабочими положениями, а в состав устройства введен привод шторки, состоящий из источника тока и биморфного элемента в виде скрученных волокон, одно из которых выполнено токопроводящим, противоположные концы которого через ключ соединены с выходом источника тока, а второе холодное волокно имеет более низкую токопроводность по сравнению с первым, один конец биморфного элемента консольно закреплен на корпусе устройства, а второй свободен, причем, шторка закреплена со свободной стороны биморфного элемента таким образом, чтобы в первом рабочем положении при отключенном источнике тока шторка перекрывала апертуру фоточувствительного элемента, а при деформации биморфного элемента под действием протекающего тока открывала фоточувствительный элемент.
Волокна, образующие биморфный элемент, могут быть спечены друг с другом.
Может быть введено токопроводящее волокно, симметричное первому токопроводящему волокну относительно холодного волокна, причем, концы токопроводящих волокон, примыкающие к незакрепленному концу биморфного элемента, электрически соединены между собой, а противоположные концы токопроводящих волокон через ключ связаны с источником тока.
Шторка может быть выполнена полупрозрачной с коэффициентом пропускания τ, отвечающим условию
Figure 00000001
где Eфпу - энергетическая чувствительность оптического приемника; Ец - энергия сигнала, отраженного от ретрорефлектора, установленного на максимальной заданной дальности до цели; Emax - максимальная энергия сигнала, отраженного ретрорефлектором; Eпду - предельно допустимый уровень энергии сигнала, поступающего на фоточувствительный элемент оптического приемника.
Шторка может быть закреплена на коромысле, связанном с незакрепленным торцом биморфного элемента.
На чертеже фиг. 1 представлена функциональная схема устройства. Фиг. 2 и 3 показывают конструкцию биморфного элемента в виде скрутки двух (фиг. 2а и 2б) и трех волокон (фиг. 3). Фиг. 4 иллюстрирует механизм скручивания биморфного элемента при удлинении токопроводящего волокна. На фиг. 5 а), б) и в) показаны варианты преобразования вращательной деформации биморфного элемента в сдвиг шторки.
Фотоприемное устройство (фиг. 1) состоит из фоточувствительного элемента 1 (например, фотодиода) и схемы обработки сигнала 2, включающей предусилитель 3, усилитель 4 и формирователь выходного сигнала 5, выход которого является выходом устройства. Перед фоточувствительным элементом расположена полупрозрачная шторка 6 с приводом 7, управляемым с выхода логического модуля 8, один из входов которого связан с выходом фотоприемного устройства, а другой является управляющим входом. Оптический приемник размещен в герметичном корпусе 9 с оптическим окном 10, через которое принимаемое излучение поступает на фоточувствительный элемент 1. Привод шторки (фиг. 2) состоит из биморфного элемента 11 и источника тока 12, через ключ 13 подключенного к концам токопроводящего волокна биморфного элемента. Биморфный элемент 11 представляет собой скрутку двух спеченных волокон - токопроводящего волокна 14 и «холодного» волокна 15. Один торец биморфного элемента жестко закреплен на корпусе 9, на незакрепленном торце биморфного элемента установлена шторка 6 (фиг. 2а).
На фиг 3) показан привод шторки с двумя токопроводящими волокнами, соединенными последовательно и подключенными к источнику тока с закрепленной стороны биморфного элемента. Такая конфигурация упрощает подключение источника тока, препятствует поперечным деформациям биморфного элемента в силу его симметричности и позволяет увеличить сопротивление токопроводящего волокна, что упрощает построение источника тока.
Из построения на фиг. 4 следуют основные расчетные соотношения. Показан один виток токопроводящего волокна, закрученный по винтовой линии вокруг холодного волокна диаметром 2R. Длина токопроводящего волокна в первом рабочем положении при температуре T1 связана с радиусом R и шагом h винтовой линии соотношением
Figure 00000002
Во втором рабочем положении длина токопроводящего волокна, нагретого протекающим током до температуры Т2=T1+ΔТ, равна
Figure 00000003
При том же радиусе витка его конец сместится в положение L2 (фиг. 4), а проекция - в положение L2*. При этом продольное смещение Δh конца токопроводящего волокна составит
Figure 00000004
а угол поворота вокруг продольной оси биморфного элемента составит
Figure 00000005
Ход шторки ΔС между ее двумя рабочими положениями определяется из условия полностью закрытого и полностью открытого фоточувствительного элемента в двух рабочих положениях шторки при повороте торца биморфного элемента на угол ϕ (фиг. 4).
Шторка может выдвигаться во второе рабочее положение в плоскости, перпендикулярной рабочей площадке фоточувствительного элемента и торцу биморфного элемента (фиг. 5а), параллельной рабочей площадке фоточувствительного элемента и перпендикулярной торцу биморфного элемента (фиг. 5б), а также вращением вокруг продольной оси z биморфного элемента (фиг. 5в), расположенной параллельно рабочей площадке биморфного элемента, не перекрывая ее.
Устройство работает следующим образом.
В исходном состоянии полупрозрачная шторка 6 с коэффициентом пропускания τ находится перед рабочей площадкой фоточувствительного элемента 1, ослабляя поступающие на нее сигналы в 1/τ раз. Если в поле зрения фоточувствительного элемента находится источник излучения, создающий на фоточувствительном элементе 1 засветку, превышающую порог чувствительности схемы обработки сигнала 2, то ключ 13 остается в разомкнутом состоянии, шторка остается в исходном положении, и оптический приемник работает в защищенном режиме.
При отсутствии сигнала на выходе устройства и на входе логического модуля 8 последний подает сигнал на замыкание ключа 13, и источник тока 12 подключается к токопроводящему волокну биморфного элемента 11. Под действием протекающего тока это волокно нагревается и его исходная длина L1 увеличивается на величину ΔL=αL1ΔT, где α - коэффициент температурного расширения, ΔТ - приращение температуры. В результате биморфный элемент скручивается.
Под действием силы, создаваемой биморфным элементом, шторка перемещается на расстояние ΔС (фиг. 5).
Пример 1.
Биморфный элемент представляет собой скрутку стекловолокна и нихромовой проволоки с параметрами, приведенными в таблице.
Figure 00000006
Радиус витка R=
Figure 00000007
=0,1 мм.
Шаг витка h=d=R=0,1 мм.
Длина витка в первом (холодном) положении
L1=(h2+(2πR)2)1/2=0,6362 мм.
Приращение длины витка при нагревании нихрома на ΔT=500°С
ΔL=αL1 ΔT=18⋅10-6⋅0,6362⋅500 ~ 0,0057 мм.
Продольное смещение Δh конца токопроводящего волокна Δh=
Figure 00000008
=0,0009 мм.
Угол поворота витка
Figure 00000009
Требуемый угол поворота торца биморфного элемента ϕ=90°.
Количество витков k=ϕ/ϕ1 ~ 27.
Длина токопроводящего волокна L=L1⋅k=17,2 мм.
Высота биморфного элемента Н=h⋅k=2,7 мм.
Приращение высоты биморфного элемента в горячем положении
ΔН=Δh⋅k=0,024 мм << Dфчэ=0,5 мм.
Если шторка выполнена полупрозрачной с коэффициентом пропускания τ, то в ее исходном положении оптический приемник может принимать сигналы, превышающие уровень номинальной чувствительности ФПУ в 1/τ раз и более без ущерба для фоточувствительного элемента.
Из обозначений на фиг. 1 видно, что для перекрытия шторкой рабочей площадки фоточувствительного элемента должно выполняться условие
Figure 00000010
где dшт - рабочий диаметр полупрозрачного участка шторки; dфчэ - диаметр рабочей площадки фоточувствительного элемента; а - расстояние от шторки до поверхности фоточувствительного элемента; α - угол зрения фоточувствительного элемента; Δ - погрешность фиксации исходного положения шторки. В величину Δ входят как погрешности юстировки, так и температурный уход в диапазоне окружающих температур.
Смещение шторки ΔС должно быть не менее ΔС=dшт с учетом толщины ее оправы.
Пример 2.
Токопроводящее волокно (нихром) длиной L1⋅k ~ 17 мм диаметром 0,1 мм. Коэффициент температурного расширения α=18⋅10-6 1/град; плотность ρТ=7,94 г/см3; теплоемкость β=0,57 Дж/кгК.
Объем токопроводящего волокна VT ~ 5⋅10-4 см3. Его масса m=ρTVT=4,2⋅10-3 г.
Энергия для нагрева токопроводящего слоя на 500°С
ET=βmΔТ=0,57⋅4,2⋅10-6⋅500=0,0012 Дж=1,2 мДж.
Характеристики источника питания.
Потребляемая токопроводящим слоем мощность
PT=ET/t, где t - длительность импульса.
Для t=0,5 мс
PT=ET/t=1,2 мДж/0,5 мс ~ 2,4 Вт.
Сопротивление токопроводящего слоя
RTRLT/ST ~ 10-6⋅2⋅10-2/(0,1⋅0,4)⋅10-6=0,55 Ом,
где ρR ~ 1 мкОм⋅м - удельное сопротивление нихрома, L1=0,017 м - длина токопроводящего волокна; ST - площадь поперечного сечения нихрома.
Мощность, выделяемая в проводнике сопротивлением RT
PT=IT 2⋅RT, откуда потребляемый ток
IT=(PT/RT)0,5=(2,4/0,55)0,5 ~ 2 А.
Напряжение источника
UT=PT/IT=2,4/2~1,2 В.
Коэффициент ослабления шторки τ определяется ожидаемым уровнем лазерной засветки от внешнего источника, представляющего опасность для фоточувствительного элемента в заданных условиях эксплуатации приемника импульсных оптических сигналов в составе аппаратуры, для которой предназначен данный приемник. При этом шторка может иметь вид прозрачной плоскопараллельной пластины с полупрозрачным покрытием, нанесенным, например, путем металлизации. Толщина этого покрытия определяет величину τ при сохранении габаритно-присоединительных параметров.
Описанное техническое решение обеспечивает безопасное применение фотоприемного устройства в составе любой аппаратуры и в любых условиях эксплуатации. При этом габариты и масса шторки с приводом, а также объем логического модуля позволяют встраивать эти узлы в существующие миниатюрные приемники без изменения их типоразмеров. Размещение элементов защиты приемника в составе его герметизированного корпуса обеспечивает их надежность, долговечность и максимальный ресурс работы.
Таким образом, предлагаемое техническое решение обеспечивает работоспособность устройства в условиях активного и пассивного лазерного противодействия при минимальных габаритах и максимальной чувствительности приемника импульсных оптических сигналов при малом уровне сигналов.
Источники информации
1. В.А. Волохатюк и др. "Вопросы оптической локации". - М.: Советское радио, М., 1971. - с. 213.
2. В.Г. Вильнер и др. Анализ входной цепи фотоприемного устройства с лавинным фотодиодом и противошумовой коррекцией. «Оптико-механическая промышленность». №9, 1981 г. - с. 593.
3. В.А. Афанасьев и др. Порог чувствительности приемника импульсного оптического излучения с большим входным импедансом. Электронная техника. Серия 11. «Лазерная техника и оптоэлектроника». 1988, в. 3. - с. 78-83.
4. В.Г. Вильнер и др. Приемник импульсных оптических сигналов. Патент РФ №2 506 547.
5. П.М. Боровков и др. Особенности схемотехники импульсных пороговых ФПУ с малым временем восстановления чувствительности после воздействия импульса перегрузки. «Прикладная физика», №1, 2015 г. - с. 61-65.
6. Radiation receiver with active optical protection system. US patent No 6,548,807 - прототип.

Claims (5)

1. Фотоприемное устройство с затвором, содержащее фоточувствительный элемент, схему обработки сигнала и оптический затвор, установленный перед фоточувствительным элементом, отличающееся тем, что оптический затвор выполнен в виде шторки с двумя рабочими положениями, а в состав устройства введен привод шторки, состоящий из источника тока и биморфного элемента в виде скрученных волокон, одно из которых выполнено токопроводящим, противоположные концы которого через ключ соединены с выходом источника тока, а второе холодное волокно имеет более низкую токопроводность по сравнению с первым, один конец биморфного элемента консольно закреплен на корпусе устройства, а второй свободен, причем, шторка закреплена со свободной стороны биморфного элемента таким образом, чтобы в первом рабочем положении при отключенном источнике тока шторка перекрывала апертуру фоточувствительного элемента, а при деформации биморфного элемента под действием протекающего тока открывала фоточувствительный элемент.
2. Устройство по п. 1, отличающееся тем, что волокна, образующие биморфный элемент, могут быть спечены друг с другом.
3. Устройство по п. 1, отличающееся тем, что введено токопроводящее волокно, симметричное первому токопроводящему волокну относительно холодного волокна, причем, концы токопроводящих волокон, примыкающие к незакрепленному концу биморфного элемента, электрически соединены между собой, а противоположные концы токопроводящих волокон через ключ связаны с источником тока.
4. Устройство по п. 1, отличающееся тем, что шторка выполнена полупрозрачной с коэффициентом пропускания τ, отвечающим условию
Figure 00000011
где Eфпу - энергетическая чувствительность оптического приемника; Ец - энергия сигнала, отраженного от ретрорефлектора, установленного на максимальной заданной дальности до цели; Емax - максимальная энергия сигнала, отраженного ретрорефлектором; Епду - предельно допустимый уровень энергии сигнала, поступающего на фоточувствительный элемент оптического приемника.
5. Устройство по п. 1, отличающееся тем, что шторка закреплена на коромысле, связанном с незакрепленным торцом биморфного элемента.
RU2018134224A 2018-09-28 2018-09-28 Фотоприемное устройство с затвором RU2688947C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018134224A RU2688947C1 (ru) 2018-09-28 2018-09-28 Фотоприемное устройство с затвором

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018134224A RU2688947C1 (ru) 2018-09-28 2018-09-28 Фотоприемное устройство с затвором

Publications (1)

Publication Number Publication Date
RU2688947C1 true RU2688947C1 (ru) 2019-05-23

Family

ID=66637084

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018134224A RU2688947C1 (ru) 2018-09-28 2018-09-28 Фотоприемное устройство с затвором

Country Status (1)

Country Link
RU (1) RU2688947C1 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5241235A (en) * 1991-05-31 1993-08-31 Rockwell International Corporation Twisting actuators
WO2001061291A1 (en) * 2000-02-15 2001-08-23 Varian Australia Pty Ltd Optical shutter for spectroscopy instrument
US6548807B2 (en) * 2000-12-21 2003-04-15 Zeiss Optronik Gmbh Radiation receiver with active optical protection system
US6999221B1 (en) * 2003-11-17 2006-02-14 Alabama A&M University Bimorphic polymeric photomechanical actuator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5241235A (en) * 1991-05-31 1993-08-31 Rockwell International Corporation Twisting actuators
WO2001061291A1 (en) * 2000-02-15 2001-08-23 Varian Australia Pty Ltd Optical shutter for spectroscopy instrument
US6548807B2 (en) * 2000-12-21 2003-04-15 Zeiss Optronik Gmbh Radiation receiver with active optical protection system
US6999221B1 (en) * 2003-11-17 2006-02-14 Alabama A&M University Bimorphic polymeric photomechanical actuator

Similar Documents

Publication Publication Date Title
US4859054A (en) Proximity fuze
US6548807B2 (en) Radiation receiver with active optical protection system
JPH0280929A (ja) ルミネセンス材料を用いた高温度測定用の光学システム
US9612330B2 (en) Proximity sensor including a photon emitter, a photon receiver and an opaque structure
RU2655003C1 (ru) Лазерный дальномер
RU2688947C1 (ru) Фотоприемное устройство с затвором
CN113748584A (zh) 用于无线电源的安全壳体
US4928006A (en) Fluid coupled fiber optic sensor
RU2686386C1 (ru) Оптический приемник
EP0298091A1 (en) Optical sensors and optical fibre networks for such sensors
RU2690718C1 (ru) Приемник оптического излучения
RU2686406C1 (ru) Приемник лазерного излучения
CA2028352A1 (en) High temperature sensor
RU2655006C1 (ru) Приемник импульсных лазерных сигналов
US3498717A (en) Laser range detector system
RU2688906C1 (ru) Приемник оптических импульсов
RU2692830C1 (ru) Приемник лазерных импульсов
US4839515A (en) Fiber optic transducer with fiber-to-fiber edge coupling
RU2688904C1 (ru) Приемник оптических сигналов
RU2694463C1 (ru) Импульсное фотоприемное устройство
CN110274699A (zh) 一种激光照射指示器综合性能检测设备
RU2688907C1 (ru) Фотоприемное устройство
CN2558976Y (zh) 强度调制型光传感温度监测装置
KR101935016B1 (ko) 다중 내부 반사를 이용한 광학적 가스 센서
US4852452A (en) Defense to laser light irradiation