RU2686406C1 - Приемник лазерного излучения - Google Patents
Приемник лазерного излучения Download PDFInfo
- Publication number
- RU2686406C1 RU2686406C1 RU2018134214A RU2018134214A RU2686406C1 RU 2686406 C1 RU2686406 C1 RU 2686406C1 RU 2018134214 A RU2018134214 A RU 2018134214A RU 2018134214 A RU2018134214 A RU 2018134214A RU 2686406 C1 RU2686406 C1 RU 2686406C1
- Authority
- RU
- Russia
- Prior art keywords
- shutter
- bimorph element
- photosensitive element
- receiver
- bimorph
- Prior art date
Links
- 230000005855 radiation Effects 0.000 title claims abstract description 19
- 230000003287 optical effect Effects 0.000 claims abstract description 26
- 230000035945 sensitivity Effects 0.000 claims abstract description 7
- 239000011521 glass Substances 0.000 claims description 3
- 238000002834 transmittance Methods 0.000 claims description 3
- 239000000919 ceramic Substances 0.000 claims description 2
- 230000000694 effects Effects 0.000 abstract 1
- 239000000126 substance Substances 0.000 abstract 1
- 239000000463 material Substances 0.000 description 3
- 229910001120 nichrome Inorganic materials 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000005297 pyrex Substances 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J1/00—Photometry, e.g. photographic exposure meter
- G01J1/02—Details
- G01J1/04—Optical or mechanical part supplementary adjustable parts
- G01J1/0407—Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings
- G01J1/0418—Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings using attenuators
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
- G02B26/02—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the intensity of light
- G02B26/023—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the intensity of light comprising movable attenuating elements, e.g. neutral density filters
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0232—Optical elements or arrangements associated with the device
- H01L31/02325—Optical elements or arrangements associated with the device the optical elements not being integrated nor being directly associated with the device
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Mechanical Light Control Or Optical Switches (AREA)
Abstract
Изобретение относится к области приема оптического излучения и касается приемника лазерного излучения. Приемник включает в себя фоточувствительный элемент, схему обработки сигнала и оптический затвор, установленный перед фоточувствительным элементом. Оптический затвор выполнен в виде шторки с двумя рабочими положениями. В состав устройства введен привод шторки, состоящий из источника тока и биморфного элемента в виде плоской пружины. Один из слоев биморфного элемента выполнен токопроводящим, противоположные концы которого через ключ соединены с выходом источника тока. Второй слой имеет более низкую токопроводность по сравнению с первым слоем. Шторка закреплена с боковой стороны биморфного элемента таким образом, чтобы в первом рабочем положении при отключенном источнике тока шторка перекрывала апертуру фоточувствительного элемента, а при деформации биморфного элемента под действием протекающего тока открывала фоточувствительный элемент, перемещаясь в поперечном к биморфному элементу направлении. Технический результат заключается в обеспечении работоспособности устройства в условиях активного и пассивного лазерного противодействия при минимальных габаритах и максимальной чувствительности при малом уровне сигналов. 6 з.п. ф-лы, 3 ил.
Description
Изобретение относится к технике приема импульсного оптического излучения, преимущественно к приемникам импульсных лазерных дальномеров и других светолокационных устройств.
Известны приемники лазерного излучения [1] для систем импульсной лазерной локации, предназначенные для преобразования в электрические сигналы отраженных удаленными объектами зондирующих импульсов лазерного излучения и временной привязки электрических импульсов для определения их задержки τ относительно момента излучения лазерного зондирующего импульса. По этой задержке судят о дальности R до отражающего объекта по формуле R=сτ/2, где с - скорость света. Подобным образом построены оптические приемники [2-3], содержащие фоточувствительный элемент и схему обработки сигнала. Указанные устройства имеют ограниченный динамический диапазон, препятствующий применению таких приемников в измерителях дальности и другой аппаратуре с повышенными требованиями к точности. Существует ряд технических решений, имеющих целью расширение динамического диапазона и повышение точности временной фиксации принятых сигналов [4-5]. Однако эти решения не обеспечивают работоспособность ФПУ, если энергия входного излучения превышает уровень лучевой прочностифоточувствительного элемента.
Наиболее близким по технической сущности к предлагаемому изобретению является оптический приемник, содержащий фоточувствительный элемент, схему обработки сигнала, светоделитель, фотодатчик, устройство задержки и оптический затвор, установленный перед фоточувствительным элементом [6]. В данном приемнике оптический затвор не открывается, если сигнал с фотодатчика превышает пороговое значение, соответствующее уровню входного излучения, превышающего порог лучевой прочности фоточувствительного элемента. В противном случае затвор открывается, и входное излучение поступает на фоточувствительный элемент. Время задержки сигнала в линии задержки должно превышать время реакции затвора на управляющий импульс от фотодатчика. Таким образом, обеспечивается функционирование устройства не только в рабочем динамическом диапазоне отраженных сигналов, но и за его пределами - в условиях активного или пассивного противодействия.
Недостаток приемника [6] - потери излучения в светоделителе, устройстве задержки и оптическом затворе, а также ограничения по быстродействию затвора, вынуждающие увеличивать задержку сигнала в устройстве задержки. Это, в свою очередь, приводит к потерям в приемном тракте, искажению формы принимаемого сигнала, увеличению габаритов устройства, особенно за счет светоделителя, устройства задержки и оптического затвора.
Задачей изобретения является обеспечение работоспособности устройства в условиях активного и пассивного лазерного противодействия при минимальных габаритах и максимальной чувствительности приемника лазерного излучения для слабых входных сигналов.
Эта задача решается за счет того, что в известном приемнике лазерного излучения, содержащем фоточувствительный элемент, схему обработки сигнала и оптический затвор, установленный перед фоточувствительным элементом, оптический затвор выполнен в виде шторки с двумя рабочими положениями, а в состав устройства введен привод шторки, состоящий из источника тока и биморфного элемента в виде плоской пружины, один из слоев биморфного элемента выполнен токопроводящим, противоположные концы которого через ключ соединены с выходом источника тока, а второй слой имеет более низкую токопроводность по сравнению с первым слоем, причем, шторка закреплена с боковой стороны биморфного элемента таким образом, чтобы в первом рабочем положении при отключенном источнике тока шторка перекрывала апертуру фоточувствительного элемента, а при деформации биморфного элемента под действием протекающего тока открывала фоточувствительный элемент, перемещаясь в поперечном к биморфному элементу направлении на расстояние
где r1 и r2 - радиусы дуги, образуемой биморфным элементом в первом и втором рабочих положениях; L - длина биморфного элемента; dфчэ - диаметр рабочей площадки фоточувствительного элемента; а - расстояние от шторки до поверхности фоточувствительного элемента; α - угол зрения фоточувствительного элемента; Δ - погрешность фиксации поперечного положения шторки при отсутствии управляющего сигнала на входе привода; b - толщина оправы шторки.
Биморфный элемент может быть выполнен в виде консоли, один из концов которого закреплен на корпусе приемника лазерного излучения, а второй с закрепленной на нем шторкой имел возможность перемещения перед фоточувствительным элементом.
Биморфный элемент может быть выполнен в виде балки, опертой на два конца, а шторка закреплена в средней точке биморфного элемента.
Конец биморфного элемента может быть связан с корпусом через качающееся коромысло.
Второй слой биморфного элемента может иметь более высокую теплоемкость и более низкий коэффициент температурного расширения по сравнению с первым слоем.
Биморфный элемент может быть выполнен в виде металлостеклянной или металлокерамической ленты.
Шторка может быть выполнена полупрозрачной с коэффициентом пропускания τ, отвечающим условию где Eфпу - энергетическая чувствительность оптического приемника; Ец - энергия сигнала, отраженного от ретрорефлектора, установленного на максимальной заданной дальности до цели; Emax - максимальная энергия сигнала, отраженного ретрорефлектором; Епду - предельно допустимый уровень энергии сигнала, поступающего на фоточувствительный элемент оптического приемника.
На чертеже фиг. 1 представлена функциональная схема приемника. Фиг. 2 иллюстрирует варианты взаимного положения шторки, и биморфного элемента - в виде консоли (фиг. 2а), в виде балки, опертой на два конца (фиг. 2б) и в виде балки, связанной с опорой через коромысло (фиг. 2в). Фиг. 3 поясняет расчетные соотношения.
Приемник лазерного излучения (фиг. 1) состоит из фоточувствительного элемента 1 (например, фотодиода) и схемы обработки сигнала 2, включающей предусилитель 3, усилитель 4 и формирователь выходного сигнала 5, выход которого является выходом устройства. Перед фоточувствительным элементом расположена полупрозрачная шторка 6 с приводом 7, управляемым с выхода логического модуля 8, один из входов которого связан с выходом фотоприемного устройства, а второй является его управляющим входом. Оптический приемник размещен в герметичном корпусе 9 с оптическим окном 10, через которое принимаемое излучение поступает на фоточувствительный элемент 1. Привод шторки (фиг. 2) состоит из биморфного элемента 11 и источника тока 12, через ключ 13 подключенного к токопроводящему слою биморфного элемента. Биморфный элемент 11 представляет собой изогнутую плоскую пружину в виде композиции двух слоев - токопроводящего слоя 15 толщиной h1 и второго слоя 16 толщиной h2 (фиг. 3).
Ход шторки ΔС между ее двумя фиксированными положениями (фиг. 2) определяется из условия полностью закрытого и полностью открытого фоточувствительного элемента в двух рабочих положениях шторки.
Устройство работает следующим образом.
В исходном состоянии полупрозрачная шторка 6 с коэффициентом пропускания τ находится перед рабочей площадкой фоточувствительного элемента 1, ослабляя поступающие на нее сигналы в 1/τ раз. Если в поле зрения фоточувствительного элемента находится источник излучения, создающий на фоточувствительном элементе 1 засветку, превышающую порог чувствительности схемы обработки сигнала 2, то ключ 13 остается в разомкнутом состоянии, шторка остается в исходном положении, и оптический приемник работает в защищенном режиме.
При отсутствии сигнала на выходе устройства и на входе логического модуля 8 последний подает сигнал на замыкание ключа 13, и источник тока 12 подключается к токопроводящему слою биморфного элемента 11. Под действием протекающего тока этот слой нагревается и его исходная длина L увеличивается на величину ΔL=αLΔТ, где α - коэффициент температурного расширения, ΔТ - приращение температуры. В результате биморфный элемент изгибается. Под действием силы, создаваемой биморфным элементом, шторка перемещается на расстояние ΔС (фиг. 2).
При нагревании токопроводящего слоя протекающим через него током кривизна k биморфного элемента, то есть величина, обратная радиусу изгиба стержня, изменяется согласно зависимости [7]
где:
ε=(α1-α2)ΔТ;
E1 и Е2 - модули упругости материалов первого и второго слоев;
h1 и h2 - толщины слоев биморфного элемента (фиг. 3);
α1 и α2 - коэффициенты теплового расширения материалов слоев;
ΔТ - разность температур до и после нагревания биморфного элемента.
При быстром нагревании токопроводящего слоя импульсным током второй слой за время импульса не успевает прогреться, и кривизна биморфного элемента еще более увеличивается по сравнению с величиной, получаемой из выражения (1).
Стрелка дуги, образующейся при деформации биморфного элемента (фиг. 3), определяется по формуле
где
r=1/k;
θ=kL.
Пример 1.
Биморфный элемент представляет собой металлостеклянную ленту (пирекс + нихром) длиной L=20 мм с характеристиками.
Ход шторки ΔС=v1-v2, где v1 - стрелка биморфного элемента при начальной температуре Т0, a v2 - при рабочей температуре Т0+ΔТ.
Результаты расчетов для перепада температур ΔТ=200° при разной начальной кривизне биморфного элемента.
Если шторка выполнена полупрозрачной, в ее исходном положении оптический приемник может принимать сигналы, превышающие уровень номинальной чувствительности ФПУ в 1/τ раз и более без ущерба для фоточувствительного элемента.
Из обозначений на фиг. 1 видно, что для перекрытия шторкой рабочей площадки фоточувствительного элемента должно выполняться условие где dшт - рабочий диаметр полупрозрачного участка шторки; dфчэ - диаметр рабочей площадки фоточувствительного элемента; а - расстояние от шторки до поверхности фоточувствительного элемента; α - угол зрения фоточувствительного элемента; Δ - погрешность фиксации исходного положения шторки. В величину Δ входят как погрешности юстировки, так и температурный уход в диапазоне окружающих температур.
Рабочее смещение шторки ΔС должно быть не менее ΔС=dшт с учетом толщины ее оправы.
Пример 2.
Масса шторки m~0,1 г; С учетом оправы и биморфного элемента m~0,2 г=2⋅10-4 кг.
Сила воздействия биморфного элемента на шторку F=0.45 Н.
Ускорение а=F/m=0.45/2⋅10-4~2000 м/с2.
Смещение S=0,3 мм=3⋅10-4 м.
Пример 3.
Токопроводящий слой (нихром) длиной 20 мм сечением 0,1×0,4 мм. Коэффициент температурного расширения α=18⋅10-6 1/град; плотность ρT=7,94 г/см3; теплоемкость β=0,57 Дж/кгК.
Объем токопроводящего слоя VT=8⋅10-4 см3. Его масса m=ρTVT=6,4⋅10-6 кг.
Энергия для нагрева токопроводящего слоя на 200° ET=βmΔТ=0,57⋅6,4⋅10-6⋅200=0,00073 Дж=0,73 мДж.
Характеристики источника питания.
Потребляемая токопроводящим слоем мощность
PT=ET/t, где t - длительность импульса.
Для рассматриваемого примера
PT=ET/t=0,73 мДж/0,5 мс~1,5 Вт.
Сопротивление токопроводящего слоя
RT=ρRLT/ST~10-6⋅2⋅10-2/(0,1⋅0,4)⋅10-6=0,5 Ом,
где ρR~1 мкОм⋅м - удельное сопротивление нихрома, LT=0,02 м - длина токопроводящего слоя; ST - площадь поперечного сечения нити.
Мощность, выделяемая в проводнике сопротивлением RT
PT=IT 2⋅RT, откуда потребляемый ток
IT=(PT/RT)0,5=(1,5/0,5)0,5=1,73 А.
Напряжение источника
UT=PT/IT=1,5/1,73~0,87 В.
Коэффициент ослабления шторки τ определяется ожидаемым уровнем лазерной засветки от внешнего источника, представляющего опасность для фоточувствительного элемента в заданных условиях эксплуатации приемника импульсных оптических сигналов в составе аппаратуры, для которой предназначен данный приемник. При этом шторка может иметь вид прозрачной плоскопараллельной пластины с полупрозрачным покрытием, нанесенным, например, путем металлизации. Толщина этого покрытия определяет величину τ при сохранении габаритно-присоединительных параметров.
Описанное техническое решение обеспечивает безопасное применение приемника лазерного излучения в составе любой аппаратуры и в любых условиях эксплуатации. При этом габариты и масса шторки с приводом, а также объем логического модуля позволяют встраивать эти узлы в существующие миниатюрные приемники без изменения их типоразмеров. Размещение элементов защиты приемника в составе его герметизированного корпуса обеспечивает их надежность, долговечность и максимальный ресурс работы.
Таким образом, предлагаемое техническое решение обеспечивает работоспособность устройства в условиях активного и пассивного лазерного противодействия при минимальных габаритах и максимальной чувствительности приемника импульсных оптических сигналов при малом уровне сигналов.
Источники информации
1. В.А. Волохатюк и др. "Вопросы оптической локации". - М.: Советское радио, М., 1971. - c. 213.
2. В.Г. Вильнер и др. Анализ входной цепи фотоприемного устройства с лавинным фотодиодом и противошумовой коррекцией. «Оптико-механическая промышленность». №9, 1981 г. - с. 593.
3. В.А. Афанасьев и др. Порог чувствительности приемника импульсного оптического излучения с большим входным импедансом. Электронная техника. Серия 11. «Лазерная техника и оптоэлектроника». 1988, в. 3. - с. 78-83.
4. В.Г. Вильнер и др. Приемник импульсных оптических сигналов. Патент РФ №2506547.
5. П.М. Боровков и др. Особенности схемотехники импульсных пороговых ФПУ с малым временем восстановления чувствительности после воздействия импульса перегрузки. «Прикладная физика», №1, 2015 г. - с. 61-65.
6. Radiation receiver with active optical protection system. US patent No 6,548,807 - прототип.
7. Clyne T.W. Residual stresses in surface coatings and their effects on interfacial debonding. «Key Engineering Materials» (Switzerland). Vol. 116-117, 1996, pp. 307-330.
Claims (9)
1. Приемник лазерного излучения, содержащий фоточувствительный элемент, схему обработки сигнала и оптический затвор, установленный перед фоточувствительным элементом, отличающийся тем, что оптический затвор выполнен в виде шторки с двумя рабочими положениями, а в состав устройства введен привод шторки, состоящий из источника тока и биморфного элемента в виде плоской пружины, один из слоев биморфного элемента выполнен токопроводящим, противоположные концы которого через ключ соединены с выходом источника тока, а второй слой имеет более низкую токопроводность по сравнению с первым слоем, причем шторка закреплена с боковой стороны биморфного элемента таким образом, чтобы в первом рабочем положении при отключенном источнике тока шторка перекрывала апертуру фоточувствительного элемента, а при деформации биморфного элемента под действием протекающего тока открывала фоточувствительный элемент, перемещаясь в поперечном к биморфному элементу направлении на расстояние
где r1 и r2 - радиусы дуги, образуемой биморфным элементом в первом и втором рабочих положениях; L - длина биморфного элемента; dфчэ - диаметр рабочей площадки фоточувствительного элемента; а - расстояние от шторки до поверхности фоточувствительного элемента; α - угол зрения фоточувствительного элемента; Δ - погрешность фиксации поперечного положения шторки при отсутствии управляющего сигнала на входе привода; b - толщина оправы шторки.
2. Приемник по п. 1, отличающийся тем, что биморфный элемент выполнен в виде консоли, один из концов которого закреплен на корпусе приемника лазерного излучения, а второй с закрепленной на нем шторкой имеет возможность перемещения перед фоточувствительным элементом.
3. Приемник по п. 1, отличающийся тем, что биморфный элемент выполнен в виде балки, опертой на два конца, а шторка закреплена в средней точке биморфного элемента.
4. Приемник по п. 1, отличающийся тем, что конец биморфного элемента связан с корпусом через качающееся коромысло.
5. Приемник по п. 1, отличающийся тем, что второй слой биморфного элемента имеет более высокую теплоемкость и более низкий коэффициент температурного расширения по сравнению с первым слоем.
6. Приемник по п. 1, отличающийся тем, что биморфный элемент выполнен в виде металлостеклянной или металлокерамической ленты.
7. Приемник по п. 1, отличающийся тем, что шторка выполнена полупрозрачной с коэффициентом пропускания τ, отвечающим условию где Ефпу - энергетическая чувствительность оптического приемника; Eц - энергия сигнала, отраженного от ретрорефлектора, установленного на максимальной заданной дальности до цели; Emax - максимальная энергия сигнала, отраженного ретрорефлектором; Епду - предельно допустимый уровень энергии сигнала, поступающего на фоточувствительный элемент оптического приемника.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2018134214A RU2686406C1 (ru) | 2018-09-28 | 2018-09-28 | Приемник лазерного излучения |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2018134214A RU2686406C1 (ru) | 2018-09-28 | 2018-09-28 | Приемник лазерного излучения |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2686406C1 true RU2686406C1 (ru) | 2019-04-25 |
Family
ID=66314598
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2018134214A RU2686406C1 (ru) | 2018-09-28 | 2018-09-28 | Приемник лазерного излучения |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2686406C1 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2762977C1 (ru) * | 2021-04-02 | 2021-12-24 | Акционерное общество "Научно-исследовательский институт "Полюс" им. М.Ф. Стельмаха" | Приемник импульсных лазерных сигналов |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60144629A (ja) * | 1984-01-18 | 1985-07-31 | Sanyo Electric Co Ltd | 赤外線検知装置 |
RU2065582C1 (ru) * | 1992-09-28 | 1996-08-20 | Научно-исследовательский институт физической оптики и оптики лазеров, информационных оптических систем - головной институт Всероссийского научного центра "ГОИ им.С.И.Вавилова" | Устройство для контроля качества световых пучков |
WO2001061291A1 (en) * | 2000-02-15 | 2001-08-23 | Varian Australia Pty Ltd | Optical shutter for spectroscopy instrument |
US6548807B2 (en) * | 2000-12-21 | 2003-04-15 | Zeiss Optronik Gmbh | Radiation receiver with active optical protection system |
-
2018
- 2018-09-28 RU RU2018134214A patent/RU2686406C1/ru active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60144629A (ja) * | 1984-01-18 | 1985-07-31 | Sanyo Electric Co Ltd | 赤外線検知装置 |
RU2065582C1 (ru) * | 1992-09-28 | 1996-08-20 | Научно-исследовательский институт физической оптики и оптики лазеров, информационных оптических систем - головной институт Всероссийского научного центра "ГОИ им.С.И.Вавилова" | Устройство для контроля качества световых пучков |
WO2001061291A1 (en) * | 2000-02-15 | 2001-08-23 | Varian Australia Pty Ltd | Optical shutter for spectroscopy instrument |
US6548807B2 (en) * | 2000-12-21 | 2003-04-15 | Zeiss Optronik Gmbh | Radiation receiver with active optical protection system |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2762977C1 (ru) * | 2021-04-02 | 2021-12-24 | Акционерное общество "Научно-исследовательский институт "Полюс" им. М.Ф. Стельмаха" | Приемник импульсных лазерных сигналов |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6548807B2 (en) | Radiation receiver with active optical protection system | |
RU2686406C1 (ru) | Приемник лазерного излучения | |
EP1634102A1 (en) | Integrated optical communication and range finding system and applications thereof | |
US4353259A (en) | Fiber optic acceleration sensor | |
RU2655003C1 (ru) | Лазерный дальномер | |
RU2686386C1 (ru) | Оптический приемник | |
US10175167B2 (en) | Optical sensor for detecting accumulation of a material | |
CN102636151A (zh) | 激光测距仪及其测距方法 | |
EP3550324B1 (en) | Optical displacement detector with adjustable pattern direction | |
RU2690718C1 (ru) | Приемник оптического излучения | |
US5812251A (en) | Electro-optic strain gages and transducer | |
EP3390964A1 (en) | Surveying instrument with optical stage compensating for temperature variations | |
RU2692830C1 (ru) | Приемник лазерных импульсов | |
RU2655006C1 (ru) | Приемник импульсных лазерных сигналов | |
CN113748584A (zh) | 用于无线电源的安全壳体 | |
RU2688906C1 (ru) | Приемник оптических импульсов | |
RU2688904C1 (ru) | Приемник оптических сигналов | |
RU2688947C1 (ru) | Фотоприемное устройство с затвором | |
RU2694463C1 (ru) | Импульсное фотоприемное устройство | |
RU2688907C1 (ru) | Фотоприемное устройство | |
KR100835924B1 (ko) | 구조물의 평면을 모니터링하기 위한 마이크로파 렉테나기반의 센서 어레이 | |
CN2558976Y (zh) | 强度调制型光传感温度监测装置 | |
CN110274699A (zh) | 一种激光照射指示器综合性能检测设备 | |
JP2018072097A (ja) | 測定装置および測定方法 | |
CN113474617B (zh) | 位置检测器、门打开检测装置及相关方法 |