RU2686386C1 - Оптический приемник - Google Patents

Оптический приемник Download PDF

Info

Publication number
RU2686386C1
RU2686386C1 RU2018134215A RU2018134215A RU2686386C1 RU 2686386 C1 RU2686386 C1 RU 2686386C1 RU 2018134215 A RU2018134215 A RU 2018134215A RU 2018134215 A RU2018134215 A RU 2018134215A RU 2686386 C1 RU2686386 C1 RU 2686386C1
Authority
RU
Russia
Prior art keywords
shutter
photosensitive element
bimorph element
layer
optical
Prior art date
Application number
RU2018134215A
Other languages
English (en)
Inventor
Наталья Болеславовна Антонова
Валерий Григорьевич Вильнер
Михаил Михайлович Землянов
Евгений Викторович Кузнецов
Алексей Владимирович Мамин
Екатерина Васильевна Романова
Александр Ефремович Сафутин
Original Assignee
Акционерное общество "Научно-исследовательский институт "Полюс" им. М.Ф. Стельмаха"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "Научно-исследовательский институт "Полюс" им. М.Ф. Стельмаха" filed Critical Акционерное общество "Научно-исследовательский институт "Полюс" им. М.Ф. Стельмаха"
Priority to RU2018134215A priority Critical patent/RU2686386C1/ru
Application granted granted Critical
Publication of RU2686386C1 publication Critical patent/RU2686386C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J1/0407Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings
    • G01J1/0418Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings using attenuators
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/02Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the intensity of light
    • G02B26/023Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the intensity of light comprising movable attenuating elements, e.g. neutral density filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02325Optical elements or arrangements associated with the device the optical elements not being integrated nor being directly associated with the device

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

Изобретение относится к области приема оптического излучения и касается оптического приемника. Приемник включает в себя фоточувствительный элемент, схему обработки сигнала и оптический затвор, установленный перед фоточувствительным элементом. Оптический затвор выполнен в виде шторки с двумя рабочими положениями. В состав устройства введен привод шторки, состоящий из источника тока и биморфного элемента в виде дугообразной двухслойной плоской пружины. Один из слоев биморфного элемента выполнен токопроводящим, противоположные концы которого через ключ соединены с выходом источника тока. Второй слой имеет более низкую токопроводность по сравнению с первым слоем. Один из концов биморфного элемента закреплен на корпусе оптического приемника, а на другом незакрепленном конце установлена шторка, при изменении кривизны биморфного элемента перемещающаяся вдоль хорды образуемой им дуги так, чтобы в одном рабочем положении шторка экранировала фоточувствительный элемент, а во втором рабочем положении находилась вне его поля зрения. Технический результат заключается в обеспечении работоспособности устройства в условиях активного и пассивного лазерного противодействия при минимальных габаритах и максимальной чувствительности при малом уровне сигналов. 7 з.п. ф-лы, 2 ил., 2 табл.

Description

Изобретение относится к технике приема импульсного оптического излучения, преимущественно к приемникам импульсных лазерных дальномеров и других светолокационных устройств.
Известны оптические приемники [1] для систем импульсной лазерной локации, предназначенные для преобразования в электрические сигналы отраженных удаленными объектами зондирующих импульсов лазерного излучения и временной привязки электрических импульсов для определения их задержки τ относительно момента излучения лазерного зондирующего импульса. По этой задержке судят о дальности R до отражающего объекта по формуле R=сτ/2, где с - скорость света. Подобным образом построены оптические приемники [2-3], содержащие фоточувствительный элемент и схему обработки сигнала. Указанные устройства имеют ограниченный динамический диапазон, препятствующий применению таких приемников в измерителях дальности и другой аппаратуре с повышенными требованиями к точности. Существует ряд технических решений, имеющих целью расширение динамического диапазона и повышение точности временной фиксации принятых сигналов [4-5]. Однако эти решения не обеспечивают работоспособность ФПУ, если энергия входного излучения превышает уровень лучевой прочности фоточувствительного элемента.
Наиболее близким по технической сущности к предлагаемому изобретению является оптический приемник, содержащий фоточувствительный элемент, схему обработки сигнала, светоделитель, фотодатчик, устройство задержки и оптический затвор, установленный перед фоточувствительным элементом [6]. В данном приемнике оптический затвор не открывается, если сигнал с фотодатчика превышает пороговое значение, соответствующее уровню входного излучения, превышающего порог лучевой прочности фоточувствительного элемента. В противном случае затвор открывается, и входное излучение поступает на фоточувствительный элемент. Время задержки сигнала в линии задержки должно превышать время реакции затвора на управляющий импульс от фотодатчика. Таким образом, обеспечивается функционирование устройства не только в рабочем динамическом диапазоне отраженных сигналов, но и за его пределами - в условиях активного или пассивного противодействия.
Недостаток приемника [6] - потери излучения в светоделителе, устройстве задержки и оптическом затворе, а также ограничения по быстродействию затвора, вынуждающие увеличивать задержку сигнала в устройстве задержки. Это, в свою очередь, приводит к потерям в приемном тракте, искажению формы принимаемого сигнала, увеличению габаритов устройства, особенно за счет светоделителя, устройства задержки и оптического затвора.
Задачей изобретения является обеспечение работоспособности устройства в условиях активного и пассивного лазерного противодействия при минимальных габаритах и максимальной чувствительности фотоприемного устройства для слабых входных сигналов.
Эта задача решается за счет того, что в известном оптическом приемнике, содержащем фоточувствительный элемент, схему обработки сигнала и оптический затвор, установленный перед фоточувствительным элементом, оптический затвор выполнен в виде шторки с двумя рабочими положениями, а в состав устройства введен привод шторки, состоящий из источника тока и биморфного элемента в виде дугообразной двухслойной плоской пружины, один из слоев биморфного элемента выполнен токопроводящим, противоположные концы которого через ключ соединены с выходом источника тока, а второй слой имеет более низкую токопроводность по сравнению с первым слоем, причем, один из концов биморфного элемента закреплен на корпусе оптического приемника, а на другом незакрепленном конце установлена шторка, при изменении кривизны биморфного элемента перемещающаяся вдоль хорды образуемой им дуги так, чтобы в одном рабочем положении шторка экранировала фоточувствительный элемент, а во втором рабочем положении находилась вне его поля зрения.
Биморфный элемент может быть выполнен в виде тяги, кривизна которой увеличивается при подключении к источнику электропитания.
Биморфный элемент может быть выполнен в виде толкателя, кривизна которого уменьшается при подключении к источнику электропитания.
Второй слой биморфного элемента может иметь более высокую теплоемкость и более низкий коэффициент температурного расширения по сравнению с первым слоем.
Биморфный элемент может быть выполнен в виде металлостеклянной или металлокерамической ленты.
Шторка может быть выполнена полупрозрачной с коэффициентом пропускания τ, отвечающим условию
Figure 00000001
где Ефпу - энергетическая чувствительность оптического приемника; Ец - энергия сигнала, отраженного от ретрорефлектора, установленного на максимальной заданной дальности до цели; Emax - максимальная энергия сигнала, отраженного ретрорефлектором; Епду - предельно допустимый уровень энергии сигнала, поступающего на фоточувствительный элемент оптического приемника.
Рабочий диаметр шторки
Figure 00000002
где dфчэ - диаметр рабочей площадки фоточувствительного элемента; а - расстояние от шторки до поверхности фоточувствительного элемента; α - угол зрения фоточувствительного элемента; Δ - погрешность фиксации поперечного положения шторки при отсутствии управляющего сигнала на входе привода.
Рабочий ход шторки в направлении хорды дуги, образуемой биморфным элементом, при подключении источника тока ΔС≥dшт с учетом толщины ее оправы.
На фиг. 1 представлена функциональная схема фотоприемного устройства. Фиг. 2 иллюстрирует варианты взаимного положения шторки и биморфного элемента.
Оптический приемник (фиг. 1) состоит из фоточувствительного элемента 1 (например, фотодиода) и схемы обработки сигнала 2, включающей предусилитель 3, усилитель 4 и формирователь выходного сигнала 5, выход которого является выходом устройства. Перед фоточувствительным элементом расположена полупрозрачная шторка 6 с приводом 7, управляемым с выхода логического модуля 8, один из входов которого связан с выходом фотоприемного устройства, а второй является его управляющим входом. Оптический приемник размещен в герметичном корпусе 9 с оптическим окном 10, через которое принимаемое излучение поступает на фоточувствительный элемент 1. Привод шторки (фиг. 2) состоит из биморфного элемента 11 и источника тока 12, через ключ 13 подключенного к токопроводящему слою биморфного элемента.
Ход шторки между ее двумя фиксированными положениями (фиг. 2) определяется из условия полностью закрытого и полностью открытого фоточувствительного элемента в двух рабочих положениях шторки.
Устройство работает следующим образом.
В исходном состоянии полупрозрачная шторка 6 с коэффициентом пропускания τ находится перед рабочей площадкой фоточувствительного элемента 1, ослабляя поступающие на нее сигналы в 1/τ раз. Если в поле зрения фоточувствительного элемента 1 находится источник излучения, создающий на фоточувствительном элементе засветку, превышающую порог чувствительности, то ключ 13 остается в разомкнутом состоянии, шторка остается в исходном положении, и оптический приемник работает в защищенном режиме.
При отсутствии сигнала на выходе устройства и на входе логического модуля 8 последний подает сигнал на замыкание ключа 13, и источник тока 12 подключается к токопроводящему слою биморфного элемента 11. Под действием протекающего тока этот слой нагревается и его исходная длина L увеличивается на величину ΔL=αLΔT, где α - коэффициент температурного расширения, ΔТ - приращение температуры. В результате биморфный элемент изгибается (фиг. 2а) или распрямляется (фиг. 2б). Под действием силы, создаваемой биморфным элементом, шторка перемещается на расстояние ΔС в направлении хорды, соединяющей концы биморфного элемента (фиг. 2). В зависимости от ориентации токопроводящего слоя биморфный элемент или притягивает шторку к себе (фиг. 2а) или отталкивает ее от себя (фиг. 2б). На фиг. 2 токопроводящий слой изображен черным, а второй слой биморфного элемента - белым.
При нагревании токопроводящего слоя протекающим через него током кривизна k биморфного элемента, то есть величина, обратная радиусу изгиба стержня, изменяется согласно зависимости [3]
Figure 00000003
где:
ε=(α12)ΔT;
E1 и Е2 - модуль упругости материалов 1 и 2;
h1 и h2 - толщина материалов 1 и 2;
α1 и α2 - коэффициент теплового расширения материалов 1 и 2;
ΔТ - разность температур до и после нагревания гибкого стержня.
При быстром нагревании токопроводящего слоя импульсным током второй слой за время импульса не успевает прогреться, и кривизна биморфного элемента еще более увеличивается по сравнению с величиной, получаемой из выражения (1).
Если биморфный элемент имеет некоторую начальную кривизну k0, его продольное смещение ΔС увеличивается, как следует из (1).
Пример 1.
Figure 00000004
Figure 00000005
Figure 00000006
Если шторка выполнена полупрозрачной, в ее исходном положении оптический приемник может принимать сигналы, превышающие уровень номинальной чувствительности ФПУ в 1/τ раз и более без ущерба для фоточувствительного элемента.
Из обозначений на фиг. 1 видно, что для перекрытия шторкой рабочей площадки фоточувствительного элемента должно выполняться условие
Figure 00000007
где dшт - рабочий диаметр полупрозрачного участка шторки; dфчэ - диаметр рабочей площадки фоточувствительного элемента; а - расстояние от шторки до поверхности фоточувствительного элемента; α - угол зрения фоточувствительного элемента; Δ - погрешность фиксации исходного положения шторки В величину Δ входят как погрешности юстировки, так и температурный уход в диапазоне окружающих температур.
Рабочее смещение шторки ΔС должно быть не менее ΔС=dшт с учетом толщины ее оправы.
Пример 2.
Масса шторки m~0,1 г; С учетом оправы и биморфного элемента m~0,2 г = 2⋅10-4 кг.
Сила воздействия биморфного элемента на шторку F=0.45 Н.
Ускорение а=F/m=0.45/2⋅10-4~2000 м/с2.
Смещение S=0,3 мм = 3⋅10-4 м.
Время выведения шторки
Figure 00000008
Токопроводящий слой (нихром) длиной 20 мм сечением 0,1×0,4 мм. коэффициент температурного расширения α=18⋅10-6 1/град; плотность ρT=7,94 г/см3; теплоемкость β=0,57 Дж/кгК.
Объем токопроводящего слоя VT=8⋅10-4 см3. Его масса m=ρTVT=6,4⋅10-6 кг.
Энергия для нагрева токопроводящего слоя на 200° ET=βmΔТ=0,57⋅6,4⋅10-6⋅200=0,00073 Дж=0,73 мДж.
Характеристики источника питания.
Потребляемая токопроводящим слоем мощность
PT=ET/t, где t - длительность импульса.
Для рассматриваемого примера
PT=ET/t=0,73 мДж/0,5 мс ~ 1,5 Вт.
Сопротивление токопроводящего слоя
RTRLT/ST ~ 10-6⋅2⋅10-2/(0,1⋅0,4)⋅10-6=0,5 Ом,
где ρR ~ 1 мкОм⋅м - удельное сопротивление нихрома, LT=0,02 м - длина токопроводящего слоя; ST - поперечное сечение нити.
Мощность, выделяемая в проводнике сопротивлением RT
PT=IT 2⋅RT, откуда потребляемый ток
IT=(PT/RT)0,5=(1,5/0,5)0,5=1,73 А.
Напряжение источника
UT=PT/IT=1,5/1,73 ~ 0,87 В.
Коэффициент ослабления шторки τ определяется ожидаемым уровнем лазерной засветки от внешнего источника, представляющего опасность для фоточувствительного элемента в заданных условиях эксплуатации приемника импульсных оптических сигналов в составе аппаратуры, для которой предназначен данный приемник. При этом шторка может иметь вид прозрачной плоскопараллельной пластины с полупрозрачным покрытием, нанесенным, например, путем металлизации. Толщина этого покрытия определяет величину τ при сохранении габаритно-присоединительных параметров.
Описанное техническое решение обеспечивает безопасное применение оптического приемника в составе любой аппаратуры и в любых условиях эксплуатации. При этом габариты и масса шторки с приводом, а также объем логического модуля позволяют встраивать эти узлы в существующие миниатюрные приемники без изменения их типоразмеров. Размещение элементов защиты приемника в составе его герметизированного корпуса обеспечивает их надежность, долговечность и максимальный ресурс работы.
Таким образом, предлагаемое техническое решение обеспечивает работоспособность устройства в условиях активного и пассивного лазерного противодействия при минимальных габаритах и максимальной чувствительности приемника импульсных оптических сигналов при малом уровне сигналов.
Источники информации
1. В.А. Волохатюк и др. "Вопросы оптической локации". - М.: Советское радио, М., 1971. - с. 213.
2. В.Г. Вильнер и др. Анализ входной цепи фотоприемного устройства с лавинным фотодиодом и противошумовой коррекцией. «Оптико-механическая промышленность». №9, 1981 г. - с. 593.
3. В.А. Афанасьев и др. Порог чувствительности приемника импульсного оптического излучения с большим входным импедансом. Электронная техника. Серия 11. «Лазерная техника и оптоэлектроника». 1988, в. 3. - с. 78-83.
4. В.Г. Вильнер и др. Приемник импульсных оптических сигналов. Патент РФ №2 506 547.
5. П.М. Боровков и др. Особенности схемотехники импульсных пороговых ФПУ с малым временем восстановления чувствительности после воздействия импульса перегрузки. «Прикладная физика», №1, 2015 г. - с. 61-65.
6. Radiation receiver with active optical protection system. US patent No 6,548,807 - прототип.
7. Clyne T.W. «Residual stresses in surface coatings and their effects on interfacial debonding.» Key Engineering Materials (Switzerland). Vol. 116-117, pp. 307-330. 1996.

Claims (8)

1. Оптический приемник, содержащий фоточувствительный элемент, схему обработки сигнала и оптический затвор, установленный перед фоточувствительным элементом, отличающийся тем, что оптический затвор выполнен в виде шторки с двумя рабочими положениями, а в состав устройства введен привод шторки, состоящий из источника тока и биморфного элемента в виде дугообразной двухслойной плоской пружины, один из слоев биморфного элемента выполнен токопроводящим, противоположные концы которого через ключ соединены с выходом источника тока, а второй слой имеет более низкую токопроводность по сравнению с первым слоем, причем, один из концов биморфного элемента закреплен на корпусе оптического приемника, а на другом незакрепленном конце установлена шторка, при изменении кривизны биморфного элемента перемещающаяся вдоль хорды образуемой им дуги так, чтобы в одном рабочем положении шторка экранировала фоточувствительный элемент, а во втором рабочем положении находилась вне его поля зрения.
2. Устройство по п. 1, отличающееся тем, что биморфный элемент выполнен в виде тяги, кривизна которой увеличивается при подключении к источнику тока.
3. Устройство по п. 1, отличающееся тем, что биморфный элемент выполнен в виде толкателя, кривизна которого уменьшается при подключении к источнику тока.
4. Устройство по п. 1, отличающееся тем, что второй слой биморфного элемента имеет более высокую теплоемкость и более низкий коэффициент температурного расширения по сравнению с первым слоем.
5. Устройство по п. 1, отличающееся тем, что биморфный элемент выполнен в виде металлостеклянной или металлокерамической ленты.
6. Устройство по п. 1, отличающееся тем, что шторка выполнена полупрозрачной с коэффициентом пропускания τ, отвечающим условию
Figure 00000009
где Ефпу - энергетическая чувствительность оптического приемника; Ец - энергия сигнала, отраженного от ретрорефлектора, установленного на максимальной заданной дальности до цели; Emax - максимальная энергия сигнала, отраженного ретрорефлектором; Епду - предельно допустимый уровень энергии сигнала, поступающего на фоточувствительный элемент оптического приемника.
7. Устройство по п. 1, отличающееся тем, что рабочий диаметр шторки
Figure 00000010
где dфчэ - диаметр рабочей площадки фоточувствительного элемента; а - расстояние от шторки до поверхности фоточувствительного элемента; α - угол зрения фоточувствительного элемента; Δ - погрешность фиксации поперечного положения шторки при отсутствии управляющего сигнала на входе привода.
8. Устройство по п. 1, отличающееся тем, что рабочий ход шторки в направлении хорды дуги, образуемой биморфным элементом, при подключении источника тока ΔС≥dшт c учетом толщины ее оправы.
RU2018134215A 2018-09-28 2018-09-28 Оптический приемник RU2686386C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018134215A RU2686386C1 (ru) 2018-09-28 2018-09-28 Оптический приемник

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018134215A RU2686386C1 (ru) 2018-09-28 2018-09-28 Оптический приемник

Publications (1)

Publication Number Publication Date
RU2686386C1 true RU2686386C1 (ru) 2019-04-25

Family

ID=66314588

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018134215A RU2686386C1 (ru) 2018-09-28 2018-09-28 Оптический приемник

Country Status (1)

Country Link
RU (1) RU2686386C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2755601C1 (ru) * 2020-11-26 2021-09-17 Акционерное общество "Научно-исследовательский институт "Полюс" им. М.Ф. Стельмаха" Способ обнаружения оптических сигналов

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60144629A (ja) * 1984-01-18 1985-07-31 Sanyo Electric Co Ltd 赤外線検知装置
RU2065582C1 (ru) * 1992-09-28 1996-08-20 Научно-исследовательский институт физической оптики и оптики лазеров, информационных оптических систем - головной институт Всероссийского научного центра "ГОИ им.С.И.Вавилова" Устройство для контроля качества световых пучков
WO2001061291A1 (en) * 2000-02-15 2001-08-23 Varian Australia Pty Ltd Optical shutter for spectroscopy instrument
US6548807B2 (en) * 2000-12-21 2003-04-15 Zeiss Optronik Gmbh Radiation receiver with active optical protection system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60144629A (ja) * 1984-01-18 1985-07-31 Sanyo Electric Co Ltd 赤外線検知装置
RU2065582C1 (ru) * 1992-09-28 1996-08-20 Научно-исследовательский институт физической оптики и оптики лазеров, информационных оптических систем - головной институт Всероссийского научного центра "ГОИ им.С.И.Вавилова" Устройство для контроля качества световых пучков
WO2001061291A1 (en) * 2000-02-15 2001-08-23 Varian Australia Pty Ltd Optical shutter for spectroscopy instrument
US6548807B2 (en) * 2000-12-21 2003-04-15 Zeiss Optronik Gmbh Radiation receiver with active optical protection system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2755601C1 (ru) * 2020-11-26 2021-09-17 Акционерное общество "Научно-исследовательский институт "Полюс" им. М.Ф. Стельмаха" Способ обнаружения оптических сигналов

Similar Documents

Publication Publication Date Title
US4859054A (en) Proximity fuze
US6548807B2 (en) Radiation receiver with active optical protection system
RU2686386C1 (ru) Оптический приемник
EP1634102A1 (en) Integrated optical communication and range finding system and applications thereof
JPH0280929A (ja) ルミネセンス材料を用いた高温度測定用の光学システム
RU2686406C1 (ru) Приемник лазерного излучения
JP2005091286A (ja) レーザ測距装置
CN108594257A (zh) 基于多普勒效应的测速传感器及其标定方法与测量方法
RU2690718C1 (ru) Приемник оптического излучения
Degnan et al. SLR2000: eye-safe and autonomous single-photoelectron satellite laser ranging at kilohertz rates
RU2655006C1 (ru) Приемник импульсных лазерных сигналов
RU2692830C1 (ru) Приемник лазерных импульсов
US3498717A (en) Laser range detector system
RU2688906C1 (ru) Приемник оптических импульсов
RU2688904C1 (ru) Приемник оптических сигналов
RU2688947C1 (ru) Фотоприемное устройство с затвором
RU2694463C1 (ru) Импульсное фотоприемное устройство
EP3390964A1 (en) Surveying instrument with optical stage compensating for temperature variations
RU2688907C1 (ru) Фотоприемное устройство
CN2558976Y (zh) 强度调制型光传感温度监测装置
US4852452A (en) Defense to laser light irradiation
US6369386B1 (en) IR sensor with reflective calibration
US3091694A (en) Method and apparatus for measurement of temperature
US3002093A (en) Infrared navigation system
US6041150A (en) Multipass cavity sensor for measuring a tissue-equivalent radiation dose