RU2688547C2 - Коксование в псевдоожиженном слое с получением топливного газа - Google Patents

Коксование в псевдоожиженном слое с получением топливного газа Download PDF

Info

Publication number
RU2688547C2
RU2688547C2 RU2016149080A RU2016149080A RU2688547C2 RU 2688547 C2 RU2688547 C2 RU 2688547C2 RU 2016149080 A RU2016149080 A RU 2016149080A RU 2016149080 A RU2016149080 A RU 2016149080A RU 2688547 C2 RU2688547 C2 RU 2688547C2
Authority
RU
Russia
Prior art keywords
coking
gasifier
reactor
coke
solid particles
Prior art date
Application number
RU2016149080A
Other languages
English (en)
Other versions
RU2016149080A3 (ru
RU2016149080A (ru
Inventor
Суриянараянан РАДЖАГОПАЛАН
Глен И. ФИЛЛИПС
Мохсен Н. ХАРАНДИ
Original Assignee
ЭкссонМобил Рисерч энд Энджиниринг Компани
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ЭкссонМобил Рисерч энд Энджиниринг Компани filed Critical ЭкссонМобил Рисерч энд Энджиниринг Компани
Publication of RU2016149080A publication Critical patent/RU2016149080A/ru
Publication of RU2016149080A3 publication Critical patent/RU2016149080A3/ru
Application granted granted Critical
Publication of RU2688547C2 publication Critical patent/RU2688547C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B55/00Coking mineral oils, bitumen, tar, and the like or mixtures thereof with solid carbonaceous material
    • C10B55/02Coking mineral oils, bitumen, tar, and the like or mixtures thereof with solid carbonaceous material with solid materials
    • C10B55/04Coking mineral oils, bitumen, tar, and the like or mixtures thereof with solid carbonaceous material with solid materials with moving solid materials
    • C10B55/08Coking mineral oils, bitumen, tar, and the like or mixtures thereof with solid carbonaceous material with solid materials with moving solid materials in dispersed form
    • C10B55/10Coking mineral oils, bitumen, tar, and the like or mixtures thereof with solid carbonaceous material with solid materials with moving solid materials in dispersed form according to the "fluidised bed" technique
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/02Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal by distillation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G9/00Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G9/005Coking (in order to produce liquid products mainly)
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G9/00Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G9/28Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid material
    • C10G9/32Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid material according to the "fluidised-bed" technique
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0943Coke
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0956Air or oxygen enriched air
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0959Oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0973Water
    • C10J2300/0976Water as steam

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Dispersion Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

Изобретение относится к способу коксования в псевдоожиженном слое. Способ коксования для преобразования тяжелого углеводородного сырья в продукты с более низкой температурой кипения на установке коксования в псевдоожиженном слое, включающей реактор коксования в псевдоожиженном слое и газификатор; способ включает: (i) введение тяжелого углеводородного сырья в зону коксования реактора коксования в псевдоожиженном слое, содержащего псевдоожиженный слой твердых частиц, поддерживаемый при температуре коксования, с получением парофазного продукта, включающего жидкие при нормальных условиях углеводороды, тогда как кокс осаждается на твердых частицах; (ii) пропускание твердых частиц с осажденным на них коксом непосредственно, без промежуточной реакционной емкости, в газификатор; (iii) обеспечение контакта твердых частиц с осажденным на них коксом в газификаторе с паром и кислородсодержащим газом в атмосфере с ограниченным количеством кислорода при повышенной температуре для нагрева твердых частиц и образования продукта - топливного газа, включающего монооксид углерода и водород; (iv) отделение частично газифицированных частиц кокса посредством сепаратора внутри газификатора; (v) рециркуляцию нагретых и частично газифицированных твердых частиц непосредственно, без промежуточной реакционной емкости, из газификатора в зону коксования для подачи тепла в зону коксования. Заявлена также установка коксования в псевдоожиженном слое для преобразования тяжелого углеводородного сырья в продукты с более низкой температурой кипения и для получения продукта - топливного газа в установке коксования в псевдоожиженном слое. Повышается эффективность процесса коксования. 2 н. и 7 з.п. ф-лы, 3 ил.

Description

Область техники
Настоящее изобретение относится к способу коксования в псевдоожиженном слое, в котором тяжелое нефтяное сырье подвергают термическому крекингу (коксованию) в ректоре с псевдоожиженном слоем, причем продукт коксования преобразуют посредством газификации с получением топливного газа.
Уровень техники
Тяжелые нефтяные масла и получаемые из них остаточные фракции характеризуются сочетанием свойств, которое включает высокую начальную температуру кипения, высокую молекулярную массу и низкое содержание водорода относительно более низкокипящих фракций, таких как лигроин, газолин и дистилляты; часто эти тяжелые масла и высококипящие фракции характеризуются высокой плотностью (низкой плотностью в градусах Американского нефтяного института (АНИ)), высокой вязкостью, высоким содержанием кокса, высоким содержанием азота, высоким содержанием серы и высоким содержанием металлов.
Технологии облагораживания тяжелого нефтяного сырья в широком смысле можно разделить на способы извлечения углерода и присоединения водорода. Извлечение углерода приводит к перераспределению водорода среди различных компонентов, в результате чего получают фракции с повышенным атомным отношением Н/С и продукты, включающие фракции с более низким атомным отношением Н/С и твердые коксоподобные материалы. Напротив, способы присоединения водорода, включают взаимодействие тяжелой сырой нефти с внешним источником водорода и приводят к общему увеличению отношения Н/С.
Способы извлечения углерода обычно проводят при средних и высоких температурах и низких давлениях, и они имеют более низкий выход жидкого продукта для транспортного топлива, чем способы присоединения водорода, так как большую часть сырья удаляют в виде твердого кокса; также образуются легкие газы в качестве побочных продуктов в ходе реакции термического крекинга, и они, имея высокое отношение Н/С, как правило, снижают количество более ценных жидких продуктов. Жидкости, как правило, имеют низкое качество, и их обычно требуется подвергать гидроочистке, чтобы сделать пригодными в качестве сырья для каталитических процессов с получением транспортного топлива.
Способы термического крекинга включают такие как висбрекинг, который проводят при относительно мягких условиях, и они главным образом предназначены для повышения выхода продуктов перегонки из остаточных фракций. Напротив, способы коксования осуществляют при значительно более жестких режимах работы, и они дают значительное количество кокса в качестве побочного продукта; количество кокса обычно составляет порядка одной трети массы подаваемого материала. Основные способы коксования, используемые в настоящее время, представляют собой замедленное коксование, коксование в псевдоожиженном слое и его вариант - флексикокинг (Flexicoking™). Настоящее изобретение относится к флексикокингу.
Коксование в псевдоожиженном слое представляет собой способ переработки нефти, при котором тяжелые нефтепродукты, обычно неперегоняемый остаток (кубовые остатки) от разделения на фракции тяжелой нефти превращают в более легкие, более полезные продукты путем термического разложения при повышенных реакционных температурах, обычно приблизительно от 480 до 590°С, (от 900 до 1100°F) и, в большинстве случаев, приблизительно от 500 до 550°С (от 930 до 1020°F). Тяжелые нефтепродукты, которые можно обрабатывать посредством коксования в псевдоожиженном слое, включают тяжелые остатки атмосферной перегонки, остатки вакуумной перегонки нефти, ароматические экстракты, асфальтовые вещества и битумы из нефтеносных песков, асфальтовых ям и асфальтовых озер Канады (Атабаска, Альта), Тринидада, Южной Калифорнии (Ла Бреа (Лос-Анджелес)), Маккиттрик (Бейкерсфилд, Калифорния), Карпинтерия (Санта-Барбара Каунти, штат Калифорния), озера Бермудес (Венесуэла) и аналогичные отложения, такие как встречающиеся в Техасе, Перу, Иране, России и Польше.
Способ осуществляют в установке с большим реактором, содержащим частицы горячего кокса, которые поддерживают в псевдоожиженном состоянии при заданной температуре реакции с помощью пара, вводимого в нижней части емкости, при среднем направлении перемещения частиц кокса вниз через слой. Подаваемый тяжелый нефтяной материал нагревают до температуры позволяющей перекачивание, обычно приблизительно от 350 до 400°С (от 660 до 750°F), смешивают с распыляющим паром и подают через подающие форсунки, расположенные на нескольких последовательных уровнях в реакторе. Пар вводят в зону отпарки на дне реактора и пропускают вверх через частицы кокса, опускающиеся через плотную фазу псевдоожиженного слоя в основной части реактора над зоной отпарки. Часть подаваемой жидкости покрывает частицы кокса в псевдоожиженном слое и впоследствии подвергается крекингу с образованием слоев твердого кокса и более легких продуктов, которые выделяются в виде газа или паров жидкости. Давление реактора является относительно низким, чтобы способствовать испарению углеводородов, которые проходят вверх из плотной фазы в разбавленную фазу псевдоожиженного слоя в зоне коксования и в циклоны сверху зоны коксования, в которых большинство захваченных твердых частиц отделяют от газовой фазы посредством центробежной силы в одном или более циклонах и возвращают в плотный псевдоожиженный слой под действием силы тяжести через опускные трубы циклонов. Смесь пара и паров углеводородов из реактора впоследствии выпускают из выпускных отверстий для газа циклона в зону мокрой очистки в камере, расположенной над зоной коксования и отделенной от нее перегородкой. Эта смесь быстро охлаждается в зоне мокрой очистки посредством контакта с жидкостью, опускающейся по отбойным тарелкам. Циркуляционный контур обеспечивает циркуляцию конденсированной жидкости к внешнему холодильнику и обратно к верхнему ряду отбойных тарелок зоны мокрой очистки, чтобы обеспечить охлаждение для быстрого охлаждения и конденсации наиболее тяжелой фракции жидкого продукта. Эту тяжелую фракцию обычно рециркулируют до ее исчезновения посредством подачи обратно в зону коксования в реакторе.
Частицы кокса, образующиеся в зоне коксования, проходят вниз в реакторе и выходят из нижней части реакционной емкости через зону отпарки, где их подвергают воздействию пара для удаления поглощенных углеводородов. Твердый кокс из реактора, в основном состоящий из углерода с небольшим количеством водорода, серы, азота и следами ванадия, никеля, железа и других элементов, поступивших из подаваемого потока, проходит через зону отпарки и выходит из реакционной емкости в горелку или нагреватель, где его частично сжигают в псевдоожиженном слое с помощью воздуха, чтобы повысить его температуру от приблизительно 480 до 700°С (приблизительно от 900° до 1300°F) для поставки тепла, требуемого для эндотермической реакции коксования, после чего часть частиц горячего кокса рециркулируют в реакционную зону с псевдоожиженным слоем для передачи тепла в реактор и в качестве зародышей для образования кокса. Остаток извлекают в виде продукта коксования. Чистый выход кокса составляет только приблизительно 65 процентов от величины, получаемой при замедленном коксовании.
Способ флексикокинга (Flexicoking™), также разработанный Exxon Research and Engineering Company фактически является вариантом способа коксования в псевдоожиженном слое, который осуществляют на установке, включающей реактор и нагреватель, но также включающей газификатор для газификации продукта коксования посредством взаимодействия со смесью воздух/пар с получением топливного газа с низкой теплотой сгорания. Поток кокса пропускают из нагревателя в газификатор, в котором весь, за исключением небольшой доли, кокс газифицируют с получением газа с низкой теплотой сгорания ~ 127кДж (~ 120 БТЕ/стандартный кубический фут) посредством добавления пара и воздуха в псевдоожиженный слой в среде с недостатком кислорода с получением топливного газа, включающего монооксид углерода и водород. Полученный топливный газ, содержащий захваченные частицы кокса, из газификатора возвращают в нагреватель для обеспечения большей части тепла, требующегося для термического крекинга в ректоре, при этом оставшуюся часть тепла, потребляемого реактором, поставляют посредством сжигания в нагревателе. Небольшое количество чистого кокса (приблизительно 1 процент от подаваемого материала) извлекают из нагревателя для очистки системы от металлов и золы. Выход жидкого продукта и свойства сравнимы с параметрами, которые получают при коксовании в псевдоожиженном слое. Полученный топливный газ (флексигаз) отводят из нагревателя с последующим разделением во внутренних циклонах, с помощью которых возвращают частицы кокса через опускные трубы циклонов.
Способ флексикокинга описан в патентах Exxon Research and Engineering Company, включая, например, US 3661543 (Saxton), US 3759676 (Lahn), US 3816084 (Moser), US 3702516 (Luckenbach), US 4269696 (Metrailer). В US 4213848 (Saxton) описан вариант, в котором потребность в тепле зоны коксования реактора удовлетворяют посредством введения потока жидких углеводородов из колонны фракционирования продуктов в реактор, вместо потока частиц горячего кокса из нагревателя. В US 5472596 (Kerby) описан другой вариант, в котором используют поток легких парафинов, введенных в возвратный трубопровод для горячего кокса, чтобы получить олефины. В более ранних документах предложены установки с многоярусной конфигурацией, но позднее созданные установки имеют конфигурацию с расположением в один ряд.
В то время как конфигурация установки с использованием отдельного реактора, нагревателя и газификатора продемонстрировала свои возможности и потенциал на ряде действующих установок, обеспечивая привлекательную доходность капитала, конечно было бы желательно снизить капитальные затраты, чтобы повысить доход.
Краткое описание изобретения
В настоящее время нами разработана новая форма установки флексикокинга, которая сохраняет возможность преобразования подаваемых тяжелых нефтяных потоков в жидкие углеводородные продукты с более низкой температурой кипения лишь с минимальным выходом кокса, но которую можно соорудить с более низкими капитальными затратами. В настоящем изобретении нагреватель традиционной трехсекционной установки (реактор, нагреватель, газификатор) исключен, и холодный кокс из реактора подают непосредственно в газификатор, который модифицирован посредством установки внутреннего или внешнего циклонов для отделения частиц кокса от полученного газа, который извлекают из газификатора через выходы для газа циклонов. Горячий кокс из газификатора подают непосредственно в зону коксования реактора, чтобы подвести тепло для поддержания эндотермических реакций крекинга и обеспечить затравочные кристаллы для образования кокса в реакторе. Кокс извлекают из газификатора для удаления избыточного кокса и для очистки системы от металлов и золы.
В соответствии с настоящим изобретением, способ коксования для преобразования тяжелого углеводородного сырья в продукты с более низкой температурой кипения, осуществляемый на установке коксования в псевдоожиженном слое, включающей реактор коксования в псевдоожиженном слое и реактор газификации (газификатор), включает: (i) введение тяжелого углеводородного сырья в зону коксования реактора коксования в псевдоожиженном слое, содержащего псевдоожиженный слой твердых частиц, поддерживаемый при температуре коксования, с получением парофазного продукта, включающего жидкие при нормальных условиях углеводороды, тогда как кокс осаждается на твердых частицах; (ii) пропускание твердых частиц с осажденным на них коксом в газификатор; (iii) обеспечение контакта твердых частиц с осажденным на них коксом в газификаторе с паром и кислородсодержащим газом, обычно воздухом или обогащенным кислородом воздухом, в атмосфере с ограниченным количеством кислорода при повышенной температуре для нагрева твердых частиц и образования продукта - топливного газа, включающего монооксид углерода и водород, (iv) рециркуляцию нагретых твердых частиц из газификатора в зону коксования для подачи тепла в зону коксования.
Твердые частицы обычно состоят только из кокса и по этой причине их далее называют частицами кокса, хотя можно использовать другие твердые частицы в качестве циркулирующей теплопередающей среды, чтобы осаждать на них в реакторе кокс и удалять в ходе реакции газификации в отдельном газификаторе. Тепло, требующееся для поддержания реакции крекинга, обеспечивают посредством экзотермических реакций, протекающих в газификаторе, и это тепло передают в реактор при транспортировке частично газифицированных частиц из газификатора в реактор. В настоящем изобретении частицы кокса подают непосредственно в газификатор из реактора коксования, и это означает, что их перемещают в газификатор без пропускания через промежуточный нагреватель и что их рециркулируют непосредственно из газификатора в реактор коксования опять-таки без пропускания через нагреватель.
Модифицированная установка коксования в соответствии с настоящим изобретением включает: (i) реактор коксования в псевдоожиженном слое со входом для тяжелого углеводородного сырья, выходом для крекированных паров углеводородов в верхней части реактора, входом в нижней части реактора для псевдоожижающего газа, входом для нагретых твердых частиц и выходом в нижней части реактора для твердых частиц с осажденным на них коксом, (ii) газификатор со входом для пара и кислородсодержащего газа в нижней части, входом для твердых частиц с осажденным на них коксом (например, в боковой части емкости на границе раздела плотного слоя и разбавленной фазы), выходом для топливного газа в верхней части и выходом для твердых частиц, нагретых в газификаторе (например, в другом месте боковой части емкости на границе раздела плотного слоя и разбавленной фазы), (iii) трубопровод для пропускания твердых частиц с осажденным на них коксом от выхода для твердых частиц непосредственно ко входу для твердых частиц газификатора, (iv) трубопровод для пропускания твердых частиц, нагретых в газификаторе, из выхода для твердых частиц газификатора ко входу для твердых частиц реактора для рециркуляции нагретых твердых частиц из газификатора в реактор, чтобы обеспечить тепло для зоны коксования реактора.
Краткое описание чертежей
На прилагаемых чертежах:
на Фиг. 1А представлена упрощенная схема установки флексикокинга с тремя емкостями, расположенными в ряд, включающей реактор, нагреватель и газификатор;
на Фиг. 1В представлена упрощенная схема установки флексикокинга с двумя емкостями, расположенными в ряд, включающей реактор и газификатор;
на Фиг. 2 представлена упрощенная схема установки флексикокинга с расположенными в ряд емкостями, включающей реактор, непосредственно соединенный с газификатором, с сепаратором твердых частиц, расположенным снаружи газификатора.
Подробное описание изобретения
В данном описании термин «флексикокинг» (товарный знак ExxonMobil Research and Engineering Company) используют для обозначения способа коксования в псевдоожиженном слое, в котором тяжелое нефтяное сырье подвергают термическому крекингу в псевдоожиженном слое нагретых твердых частиц с получением углеводородов с низкой молекулярной массой и температурой кипения наряду с коксом в качестве побочного продукта, который осаждается на твердые частицы в псевдоожиженном слое; кокс затем преобразуют в топливный газ посредством приведения в контакт при повышенной температуре с паром и кислородсодержащим газом в реакторе газификации (газификаторе).
На Фиг. 1А представлена установка флексикокинга с характерными для нее тремя реакционными емкостями: реактором, нагревателем и газификатором, расположенными в ряд; хотя наземная площадь при расположении в ряд больше, чем наземная площадь многоярусных установок, представленных в US 3661543 и US 3816084, эта компоновка меньше подвержена сбоям и потенциальным отказам оборудования, как отмечено в US 3759676, и в настоящее время она стала общепринятой.
Установка включает секцию реактора 10 с зоной коксования и соединенными с ней зонами отпарки и мокрой очистки (не показаны особо, поскольку являются традиционными), секцию нагревателя 11 и секцию газификатора 12. Соотношение зоны коксования, зоны мокрой очистки и зоны отпарки в секции реактора показано, например, в US 5472596, на который сделана ссылка для описания установки флексикокинга и ее секции реактора. Тяжелое нефтяное сырье вводят в установку по трубопроводу 13, а крекированный углеводородный продукт выводят через трубопровод 14. Псевдоожижающий пар и пар для отпарки подают через трубопровод 15. Холодный кокс извлекают из зоны отпарки в основании реактора 10 через трубопровод 16 и перемещают к нагревателю 11. Термин «холодный» применительно к температуре извлекаемого кокса, конечно, является относительным, поскольку она значительно выше окружающей среды при рабочей температуре зоны отпарки. Циркуляцию горячего кокса от нагревателя 11 к реактору 10 обеспечивают через трубопровод 17. Кокс от нагревателя 11 перемещают в газификатор 12 через трубопровод 21, а циркуляцию горячих, частично газифицированных частиц кокса из газификатора обратно к нагревателю обеспечивают через трубопровод 22. Избыточный кокс отводят из нагревателя 11 посредством трубопровода 23. Газификатор 12 обеспечивают подачей пара и воздуха через трубопровод 24, а горячий топливный газ извлекают из газификатора в нагреватель через трубопровод 25. Низкокалорийный топливный газ извлекают из установки посредством трубопровода 26 на нагревателе; коксовую мелочь извлекают из топливного газа в циклонной системе 27 нагревателя, включающей последовательно соединенные первичный и вторичный циклоны с опускными трубами, которые позволяют возвращать отделенную мелочь в псевдоожиженный слой в нагревателе.
На Фиг. 1В показана модифицированная установка, в основном состоящая из реактора 30, который сконструирован и работает таким же образом, как реактор 10, в который через трубопровод 33 подают псевдоожижающий/отпаривающий пар и через трубопровод 34 извлекают крекированные углеводородные продукты. Холодный кокс перемещают непосредственно из реактора 30 в газификатор 31 через трубопровод 35, а горячие, частично газифицированные частицы кокса перемещают непосредственно из газификатора 31 в реактор 30 через трубопровод 36 для обеспечения тепла, необходимого для реакций крекинга в зоне коксования реактора. Пар и воздух подают в газификатор из трубопровода 37, и низкокалорийный топливный газ направляют из газификатора через трубопровод 38; коксовую мелочь извлекают из топливного газа в газификаторе в циклонной системе 39, включающей последовательно соединенные первичный и вторичный циклоны с опускными трубами, по которым возвращают отделенную мелочь в псевдоожиженный слой в газификаторе. Кокс может быть удален из газификатора через линию СР.
Во многих отношениях установка флексикокинга по настоящему изобретению имеет сходство с известным типом установки флексикокинга с тремя емкостями, и рабочие параметры подобны во многих отношениях.
В частности, реактор эксплуатируют в соответствии с параметрами, необходимыми для требуемых процессов коксования. Таким образом, тяжелый нефтяной подаваемый материал обычно представляет собой тяжелую (высококипящую), освобожденную от легких фракций сырую нефть; кубовые остатки атмосферной перегонки нефти; кубовые остатки вакуумной перегонки нефти или остаточные фракции; пек; асфальт; битум; другие остаточные фракции тяжелых углеводородов; нефть из нефтеносных песков; нефть битуминозных сланцев или даже угольную пульпу или продукт ожижения угля, такой как кубовые остатки ожижения угля. Такой подаваемый материал обычно имеет содержание кокса по Конрадсону (ASTM D189-165) по меньшей мере 5 масс. %, обычно приблизительно от 5 до 50 масс. %. Предпочтительно подаваемый поток представляет собой остаток вакуумной перегонки нефти.
Типичный исходный нефтяной материал, подходящий для реализации настоящего изобретения, имеет состав и свойства в указанных ниже диапазонах.
Содержание кокса по Конрадсону от 5 до 40 масс. %
Плотность нефти в градусах АНИ от -10 до 35°
Температура кипения от 340°С+ до 650°С+
Сера от 1,5 до 8 масс. %
Водород от 9 до 11 масс. %
Азот от 0,2 до 2 масс. %
Углерод от 80 до 86 масс. %
Металлы от 1 до 2000 массовых частей на млн.
Тяжелый нефтяной подаваемый материал, предварительно нагретый до температуры, при которой он является текучим и поддается перекачке насосом, вводят в реактор коксования в верхней части реакционной емкости через распылительные форсунки, которые выполнены так, что распыляют подаваемый материал в слой псевдоожиженных частиц кокса в емкости. Температура зоны коксования реактора обычно составляет приблизительно от 450 до 650°С, и давление поддерживают на относительно низком уровне, обычно приблизительно от 120 до 400 кПа изб. (приблизительно от 17 до 58 фут/кв. дюйм изб.), и как правило, приблизительно от 200 до 350 кПа изб. (приблизительно от 29 до 51 фут/кв. дюйм изб.), чтобы способствовать быстрой сушке частиц кокса, предотвращая образование липких, вязких отложений углеводородов с высокой молекулярной массой на частицах, которые могут привести к загрязнению реактора. Легкие углеводородные продукты реакций коксования (термического крекинга) выпаривают, смешивают с псевдоожижающим паром и подают вверх через плотную фазу псевдоожиженного слоя в зону разбавленной фазы над плотным псевдоожиженным слоем частиц кокса. Эта смесь испаренных углеводородных продуктов, образованная в ходе реакции коксования, протекает вверх через разбавленную фазу вместе с паром, с приведенной скоростью приблизительно от 1 до 2 м/с (приблизительно от 3 до 6 фут/с), захватывая часть мелких твердых частиц кокса, которые отделяют от паровой фазы крекинга в циклонах реактора, как описано выше. Крекированные пары углеводородов выводят из циклонов в зону мокрой очистки реактора и затем на фракционирование и извлечение продукта.
По мере протекания процесса крекинга в реакторе, частицы кокса поступают вниз через зону коксования, через зону отпарки, в которой поглощенные углеводороды отпаривают восходящим потоком псевдоожижающего газа (пара). Затем их выводят из реактора коксования и подают в реактор газификации (газификатор), который содержит псевдоожиженный слой твердых частиц и который работает при более высокой температуре, чем температура зоны коксования реактора. В газификаторе частицы кокса превращают посредством реакции при повышенной температуре с паром и кислородсодержащим газом в низкокалорийный топливный газ, содержащий монооксид углерода и водород.
Зону газификации обычно поддерживают при высокой температуре приблизительно от 850 до 1000°С (от 1560 до 1830°F) и давлении от приблизительно 0 до приблизительно 1000 кПа изб. (от 0 до 150 фут/кв. дюйм изб.), предпочтительно приблизительно от 200 до 400 кПа изб. (от 30 до 60 фут/кв. дюйм изб.). Пар и кислородсодержащий газ, такой как воздух, технический кислород или воздух, смешанный с кислородом, подают в газификатор для проведения реакции с твердыми частицами, включающими кокс, осажденный на них в зоне коксования. В зоне газификации в результате реакции между коксом и паром и кислородсодержащим газом получают водород и топливный газ, содержащий монооксид углерода и частично газифицированный остаточный коксовый продукт, и условия в газификаторе выбирают соответствующим образом. Расходы пара и воздуха зависят от расхода, при котором холодный кокс поступает из реактора, и в меньшей степени от состава кокса, который, в свою очередь, меняется в зависимости от состава тяжелого нефтяного подаваемого материала и степени жесткости условий крекинга в реакторе, которые выбирают в соответствии с подаваемым материалом и требуемым диапазоном жидких продуктов. Топливный газ, полученный из газификатора, может содержать захваченные твердые частицы кокса, и их извлекают с помощью циклонов или других способов отделения в секции газификатора установки; циклоны могут быть внутренними циклонами в основной емкости газификатора или внешними в отдельной, меньшей емкости, как описано ниже. Продукт - топливный газ извлекают сверху из циклонов газификатора. Полученные частично газифицированные частицы извлекают из газификатора и вводят непосредственно в зону коксования реактора коксования на уровне разбавленной фазы над расположенной ниже плотной фазой.
В настоящем изобретении холодный кокс из реактора перемещают непосредственно в газификатор; такое перемещение почти во всех случаях является безусловно непосредственным, когда один конец трубопровода соединен с выходом для кокса из реактора, а его другой конец соединен с входом для кокса газификатора, без промежуточной реакционной емкости, т.е. нагревателя. Однако, не следует исключать присутствие устройств, отличных нагревателя, например, входы для транспортирующего газа и т.д. Подобным образом, хотя горячие, частично газифицированные частицы кокса из газификатора, возвращают непосредственно из газификатора в реактор, это означает только что между ними отсутствует нагреватель, присутствующий в традиционной установке флексикокинга с тремя емкостями, но другие устройства могут присутствовать между газификатором и реактором, например входы и выходы для транспортирующего газа. В устройстве с двумя емкостями, показанном на Фиг. 1В, частично газифицированную коксовую мелочь отделяют от топливного газа с помощью циклонов внутри газификатора, и горячие частицы кокса перемещают из газификатора напрямую в реактор. На Фиг. 2 показана установка с секцией газификатора, в которой циклоны для отделения коксовой мелочи от топливного газа, установлены в небольшой отдельной емкости, расположенной снаружи основной емкости газификатора. В данном устройстве, включающем реактор 40, основную емкость газификатора 41 и сепаратор 42, тяжелый нефтяной подаваемый материал вводят в реактор 40 через трубопровод 43, а псевдоожижающий/отпаривающий газ через трубопровод 44; крекированные углеводородные продукты извлекают через трубопровод 45. Холодный, подвергнутый отпарке кокс направляют непосредственно из реактора 40 в газификатор 41 с помощью трубопровода 46, а горячий кокс возвращают в реактор по трубопроводу 47. Пар и воздух подают через трубопровод 48. В данном случае, топливный газ, полученный в газификаторе, не извлекают непосредственно из газификатора, как на Фиг. 1В, а вместо этого поток газа, содержащий коксовую мелочь, направляют в емкость сепаратора 42 через трубопровод 49, который соединен с выходом для газа основной емкости газификатора 41. Мелочь отделяют от потока газа в циклонной системе 50, включающей соединенные последовательно первичные и вторичные циклоны с опускными трубами, через которые возвращают отделенную мелочь в емкость сепаратора. Затем отделенную мелочь возвращают в основную емкость газификатора через возвратный трубопровод 51 и продукт - топливный газ выводят с помощью трубопровода 52. Кокс извлекают из сепаратора через трубопровод 53.
В качестве альтернативы применения циклонов для отделения коксовой мелочи от топливного газа фильтры на основе пористых спеченных металлов/керамических материалов/газовые фильтры дают преимущества в условиях высоких температур основной емкости газификатора или соседней емкости сепаратора. Фильтры на основе спеченных металлов работают при температурах вплоть до приблизительно 900°С (1650°F), тогда как керамические фильтры можно использовать вплоть до приблизительно 980°С (1800°F). Хотя необходимо осуществлять техническое обслуживание для удаления мелочи из фильтров с применением подходящего газа для обратной продувки со сбором мелочи, такие системы хорошо зарекомендовали себя, имеются в продаже и могут быть приспособлены для применения в установках по настоящему изобретению. В этих фильтрах фильтрующие элементы из спеченного металла или керамики с достаточно мелкими порами и имеющие размер, соответствующий расходу газа, удерживают твердые частицы кокса на фильтрующей поверхности. Кек из твердых частиц сдвигают при заданном перепаде давления (функция толщины кека и коэффициент сжатия), инициируя обратный поток газа, и сдвинутые твердые частицы удаляют из фильтрующей системы. Их возвращают непосредственно в газификатор для повторного использования или удаляют из системы и направляют в блок хранения или сбора.
Фильтрующие системы газ/твердое вещество с обратным потоком газа устраняют необходимость очищать топливный газ для удаления твердых частиц, поскольку их эффективность обычно составляет 99,99% относительно удаления твердых частиц. Единственным дополнительным требованием для использования такой методики разделения является наличие обратного потока газа высокого давления приблизительно (1,8-2,0) х (преобладающее рабочее давление), но поскольку устройства работают при относительно низком давлении, обеспечение соответствующего обратного потока не является значительной проблемой; например, азот высокого давления обычно подходит для применения в качестве обратного газа с фильтрами в секции газификатора, и он полностью совместим с основной рабочей средой и рабочими условиями. Сжатый топливный газ из установки или сжатый СО2 являются альтернативными источниками газа для обратного потока.
Однако при высоких нагрузках циклоны имеют преимущества небольших капиталовложений и лишь небольшого перепада давления для удаления наиболее крупных частиц. По этой причине может потребоваться использование циклонов (с первичной/вторичной ступенями циклонов) для начального отделения с последующими фильтрами, для замены ступени разделения, включающей третичный циклон/скруббер Вентури.

Claims (13)

1. Способ коксования для преобразования тяжелого углеводородного сырья в продукты с более низкой температурой кипения на установке коксования в псевдоожиженном слое, включающей реактор коксования в псевдоожиженном слое и газификатор; способ включает: (i) введение тяжелого углеводородного сырья в зону коксования реактора коксования в псевдоожиженном слое, содержащего псевдоожиженный слой твердых частиц, поддерживаемый при температуре коксования, с получением парофазного продукта, включающего жидкие при нормальных условиях углеводороды, тогда как кокс осаждается на твердых частицах; (ii) пропускание твердых частиц с осажденным на них коксом непосредственно, без промежуточной реакционной емкости, в газификатор; (iii) обеспечение контакта твердых частиц с осажденным на них коксом в газификаторе с паром и кислородсодержащим газом в атмосфере с ограниченным количеством кислорода при повышенной температуре для нагрева твердых частиц и образования продукта - топливного газа, включающего монооксид углерода и водород; (iv) отделение частично газифицированных частиц кокса посредством сепаратора внутри газификатора; (v) рециркуляцию нагретых и частично газифицированных твердых частиц непосредственно, без промежуточной реакционной емкости, из газификатора в зону коксования для подачи тепла в зону коксования.
2. Способ по п.1, в котором кислородсодержащий газ включает воздух или обогащенный кислородом воздух.
3. Способ по п.1, в котором из газификатора извлекают низкокалорийный топливный газ.
4. Способ по п.1, в котором стадию (i) проводят при температуре от 450 до 650°С под давлением от 120 до 400 кПа (избыт.).
5. Способ по п.1, в котором стадию (iii) проводят при температуре от 850 до 1000°С под давлением от 0 до 1000 кПа (избыт.).
6. Установка коксования в псевдоожиженном слое для преобразования тяжелого углеводородного сырья в продукты с более низкой температурой кипения и для получения продукта - топливного газа в установке коксования в псевдоожиженном слое, состоящей из секции реактора коксования в псевдоожиженном слое и секции газификатора, включающая:
(i) секцию реактора коксования в псевдоожиженном слое с входом для тяжелого углеводородного сырья, выходом для крекированных паров углеводородов в верхней части реактора, входом в нижней части реактора для псевдоожижающего газа, входом для нагретых твердых частиц и выходом в нижней части реактора для твердых частиц с осажденным на них коксом,
(ii) секцию газификатора с входом для пара и кислородсодержащего газа в нижней части, входом для твердых частиц с осажденным на них коксом, выходом для топливного газа в верхней части и выходом для твердых частиц, нагретых в газификаторе, где секция газификатора включает емкость газификатора, в которой твердые частицы с осажденным на них коксом вступают в контакт с паром и кислородсодержащим газом и внутренний сепаратор в емкости газификатора, в котором нагретые газифицированные твердые частицы отделяют от топливного газа;
(iii) трубопровод для пропускания твердых частиц с осажденным на них коксом от выхода для твердых частиц непосредственно, без промежуточной реакционной емкости, к входу для твердых частиц секции газификатора,
(iv) трубопровод для пропускания твердых частиц, нагретых в секции газификатора, непосредственно, без промежуточной реакционной емкости, от выхода для твердых частиц секции газификатора к входу твердых частиц секции реактора для рециркуляции нагретых и частично газифицированных твердых частиц из секции газификатора в секцию реактора для подачи тепла в зону коксования реактора.
7. Установка коксования в псевдоожиженном слое по п.6, в которой сепаратор включает циклоны.
8. Установка коксования в псевдоожиженном слое по п.6, в которой сепаратор включает фильтры газ/твердое вещество.
9. Установка коксования в псевдоожиженном слое по п.8, в которой фильтры газ/твердое вещество включают фильтры на основе пористых керамических материалов, фильтры на основе спеченных металлов или их сочетания.
RU2016149080A 2014-06-20 2015-06-03 Коксование в псевдоожиженном слое с получением топливного газа RU2688547C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201462014762P 2014-06-20 2014-06-20
US62/014,762 2014-06-20
PCT/US2015/033885 WO2015195326A1 (en) 2014-06-20 2015-06-03 Fluidized bed coking with fuel gas production

Publications (3)

Publication Number Publication Date
RU2016149080A RU2016149080A (ru) 2018-07-23
RU2016149080A3 RU2016149080A3 (ru) 2018-12-10
RU2688547C2 true RU2688547C2 (ru) 2019-05-21

Family

ID=54869078

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016149080A RU2688547C2 (ru) 2014-06-20 2015-06-03 Коксование в псевдоожиженном слое с получением топливного газа

Country Status (5)

Country Link
US (1) US20150368572A1 (ru)
CN (1) CN106459790A (ru)
MX (1) MX2016013839A (ru)
RU (1) RU2688547C2 (ru)
WO (1) WO2015195326A1 (ru)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017052860A1 (en) 2015-09-25 2017-03-30 Exxonmobil Chemical Patents Inc. Hydrocarbon dehydrocyclization
US10626338B2 (en) 2016-12-15 2020-04-21 Exxonmobil Research And Engineering Company Efficient process for converting heavy oil to gasoline
US20190352572A1 (en) * 2018-05-16 2019-11-21 Exxonmobil Research And Engineering Company Fluidized coking with reduced coking via light hydrocarbon addition
WO2020041001A1 (en) 2018-08-22 2020-02-27 Exxonmobil Research And Engineering Company Waste upgrading and related systems
SI3725864T1 (sl) * 2019-04-16 2022-09-30 Siotuu Gmbh Postopek za izdelavo lesnega oglja
US20220372375A1 (en) * 2019-11-05 2022-11-24 Exxonmobil Chemical Patents Inc. Co-processing of waste plastic in cokers

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2527575A (en) * 1945-12-04 1950-10-31 Standard Oil Dev Co Method for handling fuels
US4137053A (en) * 1977-06-30 1979-01-30 Chevron Research Company Gasification process
US20080290000A1 (en) * 2007-05-22 2008-11-27 Towler Gavin P Coking Apparatus and Process for Oil-Containing Solids
US20130154278A1 (en) * 2011-12-15 2013-06-20 Kellogg Brown & Root Llc Systems And Methods For Gasifying A Hydrocarbon Feedstock

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3661543A (en) 1969-11-26 1972-05-09 Exxon Research Engineering Co Fluid coking process incorporating gasification of product ore
GB1280375A (en) * 1970-01-27 1972-07-05 Exxon Research Engineering Co Conversion of heavy hydrocarbon feedstocks
US3702516A (en) 1970-03-09 1972-11-14 Exxon Research Engineering Co Gaseous products of gasifier used to convey coke to heater
US3816084A (en) 1970-04-16 1974-06-11 Exxon Research Engineering Co Cokeless coker with recycle of coke from gasifier to heater
US3759676A (en) 1971-01-22 1973-09-18 Exxon Research Engineering Co Integrated fluid coking gasification process
JPS5139644B2 (ru) * 1972-11-30 1976-10-29
US4213848A (en) 1978-07-27 1980-07-22 Exxon Research & Engineering Co. Fluid coking and gasification process
US4269696A (en) 1979-11-08 1981-05-26 Exxon Research & Engineering Company Fluid coking and gasification process with the addition of cracking catalysts
JPH0662958B2 (ja) * 1985-02-28 1994-08-17 富士スタンダ−ドリサ−チ株式会社 重質油の熱分解法
US5472596A (en) 1994-02-10 1995-12-05 Exxon Research And Engineering Company Integrated fluid coking paraffin dehydrogenation process
US8114176B2 (en) * 2005-10-12 2012-02-14 Great Point Energy, Inc. Catalytic steam gasification of petroleum coke to methane
US20090165361A1 (en) * 2007-12-28 2009-07-02 Greatpoint Energy, Inc. Carbonaceous Fuels and Processes for Making and Using Them
CN101959996B (zh) * 2008-02-29 2013-10-30 格雷特波因特能源公司 用于气化作用的颗粒状组合物及其制备和连续转化
CN103224808B (zh) * 2013-01-10 2015-04-22 上海河图工程股份有限公司 一种劣质重油流化转化工艺

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2527575A (en) * 1945-12-04 1950-10-31 Standard Oil Dev Co Method for handling fuels
US4137053A (en) * 1977-06-30 1979-01-30 Chevron Research Company Gasification process
US20080290000A1 (en) * 2007-05-22 2008-11-27 Towler Gavin P Coking Apparatus and Process for Oil-Containing Solids
US7744753B2 (en) * 2007-05-22 2010-06-29 Uop Llc Coking apparatus and process for oil-containing solids
US20130154278A1 (en) * 2011-12-15 2013-06-20 Kellogg Brown & Root Llc Systems And Methods For Gasifying A Hydrocarbon Feedstock

Also Published As

Publication number Publication date
US20150368572A1 (en) 2015-12-24
RU2016149080A3 (ru) 2018-12-10
MX2016013839A (es) 2017-03-09
WO2015195326A1 (en) 2015-12-23
CN106459790A (zh) 2017-02-22
RU2016149080A (ru) 2018-07-23

Similar Documents

Publication Publication Date Title
RU2688547C2 (ru) Коксование в псевдоожиженном слое с получением топливного газа
US6709573B2 (en) Process for the recovery of hydrocarbon fractions from hydrocarbonaceous solids
JP2008266592A (ja) 重炭化水素供給材料からの減少した残油および残留物のない産物を産生する方法およびシステム
US20170233667A1 (en) Fluidized bed coking with fuel gas production
US20220372375A1 (en) Co-processing of waste plastic in cokers
US10407631B2 (en) Gasification with enriched oxygen for production of synthesis gas
WO2019099247A1 (en) Gasification with enriched oxygen for production of synthesis gas
US4421629A (en) Delayed coking and dedusting process
US20060076275A1 (en) Process for the recovery of hydrocarbon fractions from hydrocarbonaceous solids
US11597882B2 (en) Co-processing of biomass oil in coker
RU2664803C2 (ru) Способ коксования в псевдоожиженном слое с разделенными зоной коксования и отпарной зоной
US4552725A (en) Apparatus for co-processing of oil and coal
US4390409A (en) Co-processing of residual oil and coal
US11014810B1 (en) Carbon capture, waste upgrade, and chemicals production using improved flexicoking
RU2701860C1 (ru) Способ пиролиза жидких и газообразных углеводородов и устройство для его осуществления
US20190112537A1 (en) Fluidized bed coking with fuel gas production
US20200063038A1 (en) Waste upgrading and related systems
US20190352571A1 (en) Fluidized coking with catalytic gasification
US20190352572A1 (en) Fluidized coking with reduced coking via light hydrocarbon addition
JP6558826B2 (ja) ガス化システムおよび方法
US10703984B2 (en) Fluidized coking with oxygen-containing stripping gas
CA2849003C (en) Cascading processor