RU2688114C1 - Станок для обработки циклоидального профиля зуба прямо- и косозубых цилиндрических циклоидальных зубчатых колес - Google Patents

Станок для обработки циклоидального профиля зуба прямо- и косозубых цилиндрических циклоидальных зубчатых колес Download PDF

Info

Publication number
RU2688114C1
RU2688114C1 RU2018132203A RU2018132203A RU2688114C1 RU 2688114 C1 RU2688114 C1 RU 2688114C1 RU 2018132203 A RU2018132203 A RU 2018132203A RU 2018132203 A RU2018132203 A RU 2018132203A RU 2688114 C1 RU2688114 C1 RU 2688114C1
Authority
RU
Russia
Prior art keywords
cycloidal
machine
differential
tooth
helical
Prior art date
Application number
RU2018132203A
Other languages
English (en)
Inventor
Дмитрий Александрович Синицын
Алексей Иванович Сирицын
Владимир Анатольевич Хандогин
Original Assignee
Дмитрий Александрович Синицын
Алексей Иванович Сирицын
Владимир Анатольевич Хандогин
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Дмитрий Александрович Синицын, Алексей Иванович Сирицын, Владимир Анатольевич Хандогин filed Critical Дмитрий Александрович Синицын
Priority to RU2018132203A priority Critical patent/RU2688114C1/ru
Application granted granted Critical
Publication of RU2688114C1 publication Critical patent/RU2688114C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23FMAKING GEARS OR TOOTHED RACKS
    • B23F5/00Making straight gear teeth involving moving a tool relatively to a workpiece with a rolling-off or an enveloping motion with respect to the gear teeth to be made
    • B23F5/12Making straight gear teeth involving moving a tool relatively to a workpiece with a rolling-off or an enveloping motion with respect to the gear teeth to be made by planing or slotting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23FMAKING GEARS OR TOOTHED RACKS
    • B23F9/00Making gears having teeth curved in their longitudinal direction
    • B23F9/04Making gears having teeth curved in their longitudinal direction by planing or slotting with reciprocating cutting tools
    • B23F9/06Making gears having teeth curved in their longitudinal direction by planing or slotting with reciprocating cutting tools having a shape similar to a spur-wheel or part thereof

Abstract

Изобретение относится к области станкостроения, в частности к обработке цилиндрических зубчатых колес с циклоидальным профилем зуба, например сателлитов с прямым и косым зубом планетарно-цевочных приводов с внецетроидным зацеплением. Станок снабжен дифференциальной кинематической цепью, состоящей из растрового датчика углового перемещения, установленного на конце винта ШВП, органа настройки дифференциальной цепи, дифференциального механизма, присоединенного к кинематической цепи деления обката. В результате обеспечивается возможность обработки циклоидного профиля зуба косозубых цилиндрических циклоидальных зубчатых колес за счет дополнительного движения к основному движению эксцентриковой втулке, на которой расположена заготовка циклоидного профиля зуба косозубых цилиндрических циклоидальных зубчатых колес. 3 ил.

Description

Использование - область станкостроения, в частности обработка цилиндрических зубчатых колес с циклоидальным профилем зуба, например сателлитов с прямым и косым зубом планетарно-цевочных приводов с внецетроидным зацеплением.
Известен станок для чистовой обработки циклоидального профиля цилиндрической зубчатого колеса по патенту №1783696 А1.
Недостатком указанного станка является отсутствие возможности нарезания косозубого с циклоидной формой зубьев цилиндрического циклоидального колеса с углом β град. наклона зуба.
Это обусловлено тем, что в указанном изобретении не предусмотрено возможности сообщения эксцентриковой втулке, на которой расположены нарезаемые циклоидальные зубчатые колеса, дополнительного движения для получения косозубого профиля циклоидальных зубчатых колес.
Цель изобретения - сообщение дополнительного движения эксцентриковой втулке при обработке любого косозубого циклоидального зубчатого колеса с углом наклона β градусов с возможностью компенсации рассогласований угловых шагов нарезаемого циклоидального колеса и цевочного колеса, образованным измерительным щупом и инструментом (фрезой или шлифовальным кругом).
Поставленная цель достигается тем, что в станке для обработки циклоидального профиля прямо- и косозубых цилиндрических зубчатых колес, на станке которого размещен корпус механизма обката с элементами кинематической цепи, несущий шпиндель на эксцентриковой части которого размещена эксцентриковая втулка, а инструментальная головка, несущая инструмент (фреза, шлифовальный круг), установленный на стойке станка, при этом станок содержит средство контроля текущих параметров, связанные с системой программного управления, а ось измерительного щупа установлена параллельно оси шпинделя механизма обката и совместно с инструментом образуют цевочное колесо, конечное звено кинематической цепи механизма обката содержит разноходовую червячную пару с возможностью осевого перемещения червяка по заданной программе, средства программного управления содержат датчик линейного перемещения, расположенный на измерительном щупе, и датчик угловых перемещений, один из которых расположен на эксцентриковой втулке шпинделя, а другой - на противоположном его конце, при этом средство контроля с измерительным щупом содержит жестко связанную с инструментальной головкой телескопическую штангу, установленную с возможностью перемещения вдоль оси шпинделя механизма обката и по круговым направляющим, выполненным в его корпусе, с дифференциальной кинематической цепью, состоящей из растрового датчика, углового перемещения, установленного на конце винта ШВП, органа настройки дифференциальной цепи (гитары дифференциала)
Figure 00000001
, дифференциального механизма (суммирующего механизма СМ), присоединенного к кинематической цепи деления обката с органом настройки
Figure 00000002
, где
Figure 00000003
- шаг винта ШВП, m, z - модуль и число зубьев нарезаемого циклоидального колеса,
Figure 00000004
- передаточное отношение дифференциала,
Figure 00000005
- суммарное передаточное отношение звеньев дифференциальной кинематической цепи станка.
Такое конструктивное решение по станку позволит путем непрерывного управления корректирующими радиальными перемещениями инструмента и угловыми перемещениями обрабатываемого косозубого циклоидального цилиндрического зубчатого колеса в процессе нарезания обеспечить требуемую точность обработки и направление зуба.
На фиг. 1 показана проекция станка; на фиг. 2 - фрагмент вида сбоку; на фиг. 3 - разрез А-А на фиг. 2.
Нарезаемое циклоидальное колесо 1 установлено на эксцентриковой втулке 2 шпинделя 3, вращающейся вокруг его эксцентриковой конусной части с эксцентриситетом е.
Движение на нарезаемое колесо 1 относительно вращающегося инструмента (фреза, шлифовальный круг) 4 передается от двигателя 5 через червячную передачу 6, на валу червяка которой установлен датчик поворота 7, червячную передачу 8, горизонтально расположенный орган настройки (гитара деления-обката) 9 (
Figure 00000006
), червяк 10, червячное колесо 11, свободно вращающееся относительно шпинделя 3 и жестко связанное с планшайбой 12, передающей движение через отверстие и входящие в них пальцы 13, жестко закрепленные во втулке 2. Червяк 10 разноходовый установлен с возможностью осевого перемещения по заданной программе от двигателя 14 посредством шарико-винтовой передачи 15.
Фиксированная осевая подача нарезаемого колеса 1 относительно инструмента 4 в режиме многопроходной «маятниковой обработки» осуществляется от двигателя 16 по сигналу датчика 7, отмечаемого один оборот втулки 2, посредством шариковинтовой передачи ШВП 42, на винте которой размещен растровый датчик углового перемещения дифференциальной кинематической цепи 39. На шпинделе 3 и втулке 2 установлены растровые датчики 17 и 18 компьютера 19, из которого измеренная кинематическая погрешность кинематической цепи обката и дифференциальной цепи поступает на анализатор 20.
Дополнительное (суммарное) вращательное движение эксцентриковой втулке 2 при обработке косозубого зубчатого колеса с циклоидным профилем сообщает дифференциальная кинематическая цепь, состоящая из растрового датчика углового перемещения 39, установленного на конце винта ШВП 42, органа настройки дифференциальной цепи (гитары дифференциала) с передаточным отношением
Figure 00000007
, дифференциального механизма (суммирующего механизма СМ) 41, присоединенного к кинематической цепи деления обката с органом настройки с передаточным отношением
Figure 00000008
9, где
Figure 00000009
=
Figure 00000010
Figure 00000011
- шаг винта ШВП 42, m, z - модуль и число зубьев нарезаемого косозубого циклоидального колеса 1,
Figure 00000012
- передаточное отношение дифференциального механизма 41,
Figure 00000013
- суммарное передаточное отношение звеньев дифференциальной кинематической цепи станка.
Анализатор 20 выделяет низкочастотные компоненты и посылает их на цифроаналоговый преобразователь 21. Последний преобразует цифровую величину гармонических составляющих кинематической погрешности деления обката и дифференциальной цепи в аналоговый сигнал, поступающий в функциональный преобразователь 22, который преобразует угловые величины сигнала в линейные, изменяет фазу сигнала на противоположную и посылает сигнал в блок усиления и управления 23.
Подача
Figure 00000014
инструмента 4 на вращение осуществляется от двигателя 24 посредством ШВП 25. Измерительный щуп 26 (А-А) введен в беззазорное зацепление с предварительно нарезанным колесом 1. Инструмент 4 и щуп 26 имеют в осевой плоскости профиль, очерченный радиусом полуокружности, равным радиусу r цевки, и образует цевочное колесо с радиусом R, из центра катящейся окружности. Щуп 26 (А-А) размещен в плоскости, отстоящей от плоскости, проходящей через вершину полуокружности инструмента 4 и нижнюю точку зуба нарезаемого колеса 1 на угол γ1=к γ2 zc/ zk, где k - коэффициент, равный количеству цевок, расположенных от инструмента; γ2 - угол, равный угловому шагу цевочного колеса; zc и zk - число зубьев соответственно нарезаемого и цевочного колеса.
Беззазорное зацепление щупа 26 колеса 1 обеспечивается пружиной сжатия 27 (А-А), которая упирается в кронштейн 28, снабженный секторным центрирующим выступом 29, взаимодействующим с круговыми направляющими в виде секторного паза 30, выполненного в корпусе 31 механизма обката по радиусу R, из центра катящейся окружности цевочного колеса.
Щуп 26 закреплен на штанге 32 с возможностью перемещения вдоль оси шпинделя 3 механизма обката и осевого перемещения щупа к центру нарезаемого колеса 1 по направляющим кронштейна 28 телескопической штанги 33, которая жестко связана с корпусом 34 инструментальной головки.
На штанге 32 измерительного щупа 26 размещен датчик 35 его линейного перемещения, посылающий сигналы на измеритель 36 межцентрового расстояния и его самописец, а также сравнивающее и преобразующее устройство 37, в котором сигналы от задатчика 36 управляющей программы ЧПУ теоретического циклоидного профиля зуба и его направления под углом β и датчика 35 непрерывно (online) сравниваются, разностный сигнал инвертируется и подается в блок усиления и управления 23.
Станок работает следующим образом. Предварительно нарезанное, например фрезой, косозубое зубчатое колесо 1 с циклоидным профилем зуба после термообработки устанавливается, выверяется относительно, например, шлифовального круга по радиусному профилю зуба и закрепляется на эксцентриковой втулке 2. Вводится в беззазорное зацепление с колесом 1 измерительный щуп 26 и обеспечивается его жесткое крепление посредством телескопической штанги 33 к корпусу 34 инструментальной головки с возможностью его перемещения вдоль оси шпинделя 3 механизма обката по направляющим кронштейна 28.
Размещение щупа 26 на угол γ1 осуществляется путем перемещения кронштейна 28 по круговым направляющим 30, выполненным в корпусе 31 механизма обката. Телескопическая штанга 33, органы настройки 9 (
Figure 00000008
), 40 (
Figure 00000015
), суммирующий механизм (см) (дифференциал) 41 и круговые направляющие 30 обеспечивают настройку станка на нарезание циклоидальных цилиндрических прямо и косозубых зубчатых колес различного типоразмера.
Двигателем 16 стол станка с механизмом обката, дифференциальной цепи и нарезаемыми колесами 1 перемещается и инструмент, например, шлифовальный круг 4 врезается на фиксированную величину подачи Sp, например, на 1,5 мм. Затем двигателем 5 сообщают движение механизму цепи деления-обката и с включением дифференциальной цепи стол получает дополнительное движение к основному в соответствии с настройкой органа настройки дифференциальной цепи (гитары дифференциала) 40 с передаточным отношением
Figure 00000016
на требуемый угол наклона β циклоидального зуба.
Одновременно ведут измерение линейного перемещения измерительного щупа 26 и кинематической погрешности цепи механизма обката станка. Посредством датчика 35 линейные измерения щупа 26 преобразуют в сигналы, которые параллельно фиксируют измерителем и самописцем 36 как межцентровое расстояние и направляют их в сравнивающее и преобразующее устройство 37, в котором сигналы сравниваются с сигналами от задатчика 38 управляющей программы (УП) ЧПУ теоретического циклоидального профиля зуба. Разностный сигнал инвертируется в устройстве 37 и подается в блок 23, где усиливается и задерживается на время поворота нарезаемых колес 1 на угол γ1.
Одновременно сигналы с растровых датчиков 17, 18 и 39 углового перемещения подают на компьютер 19, измеряющий текущее значение кинематической погрешности кинематической цепи механизма обката станка. Анализатором 20 выделяют низкочастотные компоненты кинематической погрешности, которые посредством цифроаналогового преобразователя преобразуются в аналоговый сигнал. Последний преобразуется в функциональном преобразователе 22 из угловых величин сигнала в линейные, инвертируется и подается в блок 23, где усиливается и задерживается на время поворота нарезаемых колес1 на угол γ1. При вращении нарезаемых колес 1 по часовой стрелке (по стрелке Б) за один оборот эксцентриковой втулки 2 по мере перемещения измеряемых участков профиля циклоидального зуба под инструмент (например, шлифовальный круг) 4 блок управления 23 непрерывно выдает корректирующие сигналы на двигатели 24, 14 и 16. Посредством шариковинтовых передач 25, 15 и ШВП 42 соответственно получат корректирующие радиальные перемещения инструмент 4 и осевые перемещения червяк 10 и бабка механизма обката 31, тем самым повышая точность обработки прямо и косозубых циклоидных колес за счет компенсации рассогласований угловых шагов нарезаемого колеса и цевочного колеса, образованного измерительным щупом 26 и инструментом (фрезой или шлифовальным кругом) 4.
После завершения одного оборота нарезаемых колес 1 датчик поворота 7 выдает сигнал на включение двигателя 16, который перемещает стол станка с нарезаемыми колесами 1 на следующую фиксированную величину подачи и процесс обката при нарезании прямо и косозубых колес повторяется.

Claims (1)

  1. Станок для обработки циклоидного профиля зуба прямо- и косозубых цилиндрических циклоидальных зубчатых колес, содержащий стол, на котором размещен корпус механизма обката с элементами кинематической цепи, несущий шпиндель, на эксцентриковой части которого размещена эксцентриковая втулка, и инструментальную головку, несущую инструмент, установленный на стойке станка, при этом станок содержит средства контроля текущих параметров, связанные с системой программного управления, а ось измерительного щупа установлена параллельно оси шпинделя механизма обката и совместно с инструментом образуют цевочное колесо, причем конечное звено кинематической цепи механизма обката содержит разноходовую червячную пару с возможностью осевого перемещения червяка по заданной программе, при этом средства программного управления содержат датчик линейного перемещения, расположенный на измерительном щупе, и датчики угловых перемещений, один из которых расположен на эксцентриковой втулке шпинделя, а другой - на противоположном его конце, при этом средство контроля с измерительным щупом содержит жестко связанную с инструментальной головкой телескопическую штангу, установленную с возможностью перемещения вдоль оси шпинделя механизма обката и по круговым направляющим, выполненным в его корпусе, отличающийся тем, что он выполнен с возможностью сообщения эксцентриковой втулке дополнительного движения к основному движению при обработке любого косозубого с циклоидной формой зубьев цилиндрического циклоидального колеса с углом наклона зуба β и снабжен дифференциальной кинематической цепью, состоящей из растрового датчика углового перемещения, установленного на конце винта шариковинтовой передачи (ШВП), органа настройки дифференциальной цепи с передаточным отношением
    Figure 00000017
    , дифференциального механизма, присоединенного к кинематической цепи деления обката с органом настройки
    Figure 00000018
    , где
    Figure 00000019
    - шаг винта ШВП, m, z - модуль и число зубьев нарезаемого косозубого циклоидального колеса,
    Figure 00000020
    - передаточное отношение дифференциала,
    Figure 00000021
    - суммарное передаточное отношение постоянных звеньев дифференциальной кинематической цепи станка.
RU2018132203A 2018-09-10 2018-09-10 Станок для обработки циклоидального профиля зуба прямо- и косозубых цилиндрических циклоидальных зубчатых колес RU2688114C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018132203A RU2688114C1 (ru) 2018-09-10 2018-09-10 Станок для обработки циклоидального профиля зуба прямо- и косозубых цилиндрических циклоидальных зубчатых колес

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018132203A RU2688114C1 (ru) 2018-09-10 2018-09-10 Станок для обработки циклоидального профиля зуба прямо- и косозубых цилиндрических циклоидальных зубчатых колес

Publications (1)

Publication Number Publication Date
RU2688114C1 true RU2688114C1 (ru) 2019-05-17

Family

ID=66578799

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018132203A RU2688114C1 (ru) 2018-09-10 2018-09-10 Станок для обработки циклоидального профиля зуба прямо- и косозубых цилиндрических циклоидальных зубчатых колес

Country Status (1)

Country Link
RU (1) RU2688114C1 (ru)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU829280A1 (ru) * 1978-05-15 1981-05-15 Radzevich Stepan P Черв чный обкатник
SU1187706A3 (ru) * 1979-03-29 1985-10-23 Карл Хурт Машинен-Унд Цанрадфабрик Гмб Унд Ко (Фирма) Станок дл чистовой обработки профилей зубьев цилиндрических зубчатых колес
RU2076023C1 (ru) * 1994-01-31 1997-03-27 Производственное объединение "Коломенский завод тяжелого станкостроения" Станок для обработки зубчатых колес
RU2088386C1 (ru) * 1993-07-14 1997-08-27 Саратовский государственный технический университет Способ обработки зубьев конических колес на станке для обработки цилиндрических колес методом обкатки
RU2123410C1 (ru) * 1998-03-12 1998-12-20 Тульский государственный университет Способ обработки зубчатых колес с криволинейными зубьями
WO2010144929A1 (de) * 2009-06-19 2010-12-23 Wfl Millturn Technologies Gmbh & Co. Kg Verfahren und werkzeugvorrichtung zum profilfräsen

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU829280A1 (ru) * 1978-05-15 1981-05-15 Radzevich Stepan P Черв чный обкатник
SU1187706A3 (ru) * 1979-03-29 1985-10-23 Карл Хурт Машинен-Унд Цанрадфабрик Гмб Унд Ко (Фирма) Станок дл чистовой обработки профилей зубьев цилиндрических зубчатых колес
RU2088386C1 (ru) * 1993-07-14 1997-08-27 Саратовский государственный технический университет Способ обработки зубьев конических колес на станке для обработки цилиндрических колес методом обкатки
RU2076023C1 (ru) * 1994-01-31 1997-03-27 Производственное объединение "Коломенский завод тяжелого станкостроения" Станок для обработки зубчатых колес
RU2123410C1 (ru) * 1998-03-12 1998-12-20 Тульский государственный университет Способ обработки зубчатых колес с криволинейными зубьями
WO2010144929A1 (de) * 2009-06-19 2010-12-23 Wfl Millturn Technologies Gmbh & Co. Kg Verfahren und werkzeugvorrichtung zum profilfräsen

Similar Documents

Publication Publication Date Title
CN102162717B (zh) 滚珠螺母螺旋内滚道综合误差自动检测装置及其方法
US4865497A (en) Method for machining the flanks of gears by skiving and apparatus for implementing such method
SU1025340A3 (ru) Способ контрол профил зубьев зубчатого колеса и устройство дл его осуществлени
US8925380B2 (en) Method and apparatus for determining quality of a gearing system
RU2688114C1 (ru) Станок для обработки циклоидального профиля зуба прямо- и косозубых цилиндрических циклоидальных зубчатых колес
CN201575903U (zh) 面齿轮误差的单面啮合滚动点扫描测量装置
US3039032A (en) Error compensator for a position transducer
US4708544A (en) Machine tool controller
EP0380479A1 (en) Multiturn absolute encoder
US4555871A (en) Method and apparatus for eliminating undulation errors on gear-tooth flanks in production gear-fabricating machines
US5482415A (en) Spindle head of metal-working machine
CN106289113B (zh) 一种通用弧面凸轮机构辅助装配装置
CN107750195B (zh) 用于长形产品的剥皮机
EP0077097A1 (en) Apparatus for manufacturing toothed wheels by rolling-spark cutting
Jenkins et al. Considerations in the design of goniometers for use in X-ray powder diffractometers
US3641708A (en) Apparatus for finishing globoid worms
EP0174916B1 (en) An arrangement in an industrial robot
CN113172479B (zh) 一种自适应机器人螺旋铣孔孔径误差的补偿装置及方法
US2860451A (en) Gear generating machines
SU1713763A1 (ru) Способ компенсации погрешностей цилиндрической зубчатой передачи
US2491403A (en) Indicator and control means for lead screw correction
SU1182219A1 (ru) Устройство для преобразования винтового движения во вращательное
JP4429944B2 (ja) 鼓形ウォーム用転造ダイスの製造方法、及び鼓形ウォーム用転造ダイスの製造装置
SU353127A1 (ru) ПРИБОР ДЛЯ КОНТРОЛЯ ПРОДОЛЬНОЙ линии ЗУБЦАКОЛЕСА
JP2012006121A (ja) 5面加工用インデックス装置

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20200911