RU2687449C1 - Способ получения перекиси водорода - Google Patents

Способ получения перекиси водорода Download PDF

Info

Publication number
RU2687449C1
RU2687449C1 RU2018117104A RU2018117104A RU2687449C1 RU 2687449 C1 RU2687449 C1 RU 2687449C1 RU 2018117104 A RU2018117104 A RU 2018117104A RU 2018117104 A RU2018117104 A RU 2018117104A RU 2687449 C1 RU2687449 C1 RU 2687449C1
Authority
RU
Russia
Prior art keywords
ethyl
anthraquinone
hydrogenation
catalyst
palladium
Prior art date
Application number
RU2018117104A
Other languages
English (en)
Inventor
Татьяна Петровна Стеренчук
Людмила Борисовна Белых
Никита Игоревич Скрипов
Сэсэг Булатовна Санжиева
Ксения Леонидовна Гвоздовская
Федор Карлович Шмидт
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Иркутский государственный университет" (ФГБОУ ВО "ИГУ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Иркутский государственный университет" (ФГБОУ ВО "ИГУ") filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Иркутский государственный университет" (ФГБОУ ВО "ИГУ")
Priority to RU2018117104A priority Critical patent/RU2687449C1/ru
Application granted granted Critical
Publication of RU2687449C1 publication Critical patent/RU2687449C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B15/00Peroxides; Peroxyhydrates; Peroxyacids or salts thereof; Superoxides; Ozonides
    • C01B15/01Hydrogen peroxide

Abstract

Изобретение относится к области органической химии и может быть применено в производстве бумаги, синтетических моющих средств, в фармацевтической промышленности, в очистке сточных вод. Перекись водорода получают путем каталитического гидрирования 2-этил-9,10-антрахинона молекулярным водородом в присутствии палладиевого катализатора в жидкой дисперсионной среде с последующим окислением продуктов гидрирования 2-этил-9,10-антрахинона кислородом или кислородом воздуха. В качестве прекурсора используют бис(ацетилацетонат) палладия. Формирование палладиевого катализатора проводят в присутствии модификатора - белого фосфора, при следующем атомарном соотношении компонентов бис(ацетилацетонат) палладия:фосфор=1:0.3 до 1:0.7. Реакцию гидрирования 2-этил-9,10-антрахинона осуществляют при температуре 30-50°С и давлении водорода 2 атм. Обеспечивается более высокий выход перекиси водорода на единицу массы катализатора и высокая селективность по активным хинонам. 4 табл., 14 пр., 1 ил.

Description

Предлагаемое изобретение относится к области органической химии, а именно к получению перекиси водорода антрахиноновым способом в присутствии палладиевых катализаторов; и может быть применено в различных отраслях промышленности и тонкого органического синтеза, связанных с применением перекиси водорода: в производстве бумаги, синтетических моющих средств, в фармацевтической промышленности, в очистке сточных вод. Широкое использование перекиси водорода связано как с ее эффективными окислительными свойствами, так и экологической целесообразностью, т.к. продуктом окисления Н2О2 является вода [Y. Han, Z. Не, S. Wang, W. Li, J. Zhang // Catal. Sci. Technol. - 2015. - Vol. 5. - P. 2630-2639].
Известно три основных промышленных способа получения Н2О2: электрохимический, включающий электролиз серной кислоты до пероксодисерной кислоты и гидролиз ее в пероксид водорода и серную кислоту; способ жидкофазного окисления 2-пропанола кислородом воздуха и антрахиноновый способ, включающий последовательное гидрирование и окисление алкилантрахинонов (2-этил-, 2-трет-бутил-и 2-пентилантрахинонов). Разрабатываются также подходы прямого синтеза перекиси водорода из водорода и кислорода [Campos-Martin J.M., Blanco-Brieva G., Fierro J.L. G. // Angew. Chem. Int. Ed. - 2006. Vol. 45. - P. 6962-6984]. Среди перечисленных выше антрахиноновый способ обладает рядом преимуществ. В частности, он менее энергоемкий, чем известный электрохимический способ; он более безопасен, чем способ синтеза перекиси водорода из простых веществ (Н2 и О2), смесь которых взрывоопасна в диапазоне объемных концентраций водорода в кислороде от 5 до 94% [Тихонов А.С., Чепайкин А.С., Суворова И.А., Анисимова В.И. // Вестник технологического университета. 2017. Т. 20. №16. С. 42-45]. В крупнотоннажном производстве процесс является рентабельным. Мировое промышленное производство перекиси водорода антрахиноновым способом достигает 95% [Campos-Martin J.M., Blanco-Brieva G., Fierro J.L. G. // Angew. Chem. Int. Ed. - 2006. Vol. 45. - P. 6962-6984].
Основной задачей антрахинонового способа является селективное каталитическое гидрирование 2-этил-9,10-антрахинона (eAQ) в 2-этил-9,10-антрагидрохинон (eAQH2), который легко окисляется кислородом воздуха до перекиси водорода с восстановлением исходного субстрата:
Figure 00000001
Однако гидрирование алкилантрахинонов относится к сложным последовательно-параллельным процессам, в которых наряду с восстановлением карбонильной группы 2-этил-9,10-антрахинона протекают различные побочные реакции. К ним относятся, прежде всего, гидрирование ароматических колец в 2-этил-9,10-антрагидрохиноне с образованием 2-этил-5,6,7,8-тетрагидро-9,10-антрагидрохинона (H4eAQH2), 2-этил-1,2,3,4-тетрагидро-9,10-антрагидрохинона (изо-H4eAQH2) и 2-этил-1,2,3,4,5,6,7,8-октагидро-9,10-антрагидрохинона (H8eAQH2) (eAQH2→H4eAQH2 (изо-H4eAQH2)→H8eAQH2), а также гидрогенолиз связи C-O образующегося алкилантрагидрохинона до 2-этилантронов (eAN) [Drelinkiewicz A., Waksmundzka-Gora А. // J. Mol. Catal. A: Chem. 2006. V. 246. P. 167-172]. При более глубоком превращении возможен дальнейший гидрогенолиз 2-этилантронов до 2-этилантрацена и гидрирование ароматических колец 2-этил-9(10)-антронов и 2-этилантрацена.
Одной из основных задач промышленного синтеза перекиси водорода антрахиноновым способом является повышение селективности известных и разработка новых эффективных катализаторов гидрирования 2-этил-9,10-антрахинона в результате снижения вклада побочных реакций превращения активных хинонов. Желательно разработать высокоселективные катализаторы, которые гидрируют только карбонильную группу алкилантрахинонов, не ускоряя гидрогенолиз связи С-O алкилантрагидрохинонов и не затрагивая ароматическое кольцо [Campos-Martin J.M., Blanco-Brieva G., Fierro J.L. G. // Angew. Chem. Int. Ed. - 2006. Vol. 45. - P. 6962-6984]. В качестве катализаторов гидрирования алкилантрахинонов применяются, преимущественно, гетерогенные катализаторы на основе палладия или никеля. Селективность нанесенных гетерогенных палладиевых катализаторов может быть улучшена добавлением промоторов или путем модифицирования поверхности носителя.
Например, известен антрахиноновый способ синтеза Н2О2 в присутствии гетерогенного палладиевого катализатора корочкового типа - 2% Pd/Al2O3 (оксид алюминия пропитан NaH2PO4) и 1.2% Pd/Al2O3 (оксид алюминия, содержащий 10% SiO2, пропитан Na2SiO3), который предварительно модифицировали водой или водным раствором щелочи [Drelinkiewicz A., Laitinen R., Kangas R., Pursiainen J. // Appl. Catal. A: Gen. - 2005. - Vol. 284. - P. 59-67]. Реакцию гидрирования 2-этил-9,10-антрахинона проводили при 50°С и давлении водорода 5 бар в смеси ароматических углеводородов (70 об. %) и полярных растворителей (тетраалкилмочевина и алкилфосфаты) (30 об %). Предварительная обработка катализатора Pd/Al2O3 водным раствором щелочи (NaOH) оказывает промотирующее действие на активность катализатора не только в гидрировании 2-этил-9,10-антрахинона, повышая ее в 1.4 раза в сравнении с немодифицированным катализатором, но и в нежелательной побочной реакции гидрогенолиза связи С-O образующегося 2-этил-9,10-антрагидрохинона. Перевод части субстрата в антроны (неселективное гидрирование) приводит к снижению выхода перекиси водорода. Выход перекиси водорода при окислении активных хинонов не превышает 80% при 50°С и давлении водорода 5 атм. Недостатком данного катализатора является низкий выход перекиси водорода.
Известен антрахиноновый способ синтеза Н2О2 в присутствии гетерогенного катализатора гидрирования 2-этил-9,10-антрахинона Pd/PANI (PANI - полианилин), который получен восстановлением PdCl2 в водном или этанольном растворе макромолекулами полианилина [A. Drelinkiewicz, М. Hasik, М. Kloc // Catal. Lett. - 2000. -Vol. 64. - P. 41-47]. Размер частиц палладия варьируется от 60 до 600 нм в зависимости от условий приготовления катализатора (концентрация PdCl2, растворитель). Наибольший выход Н2О2 достигнут в присутствии катализатора, содержащего, в основном, частицы Pd(0) размером 60-242 нм, в то время как протекание нежелательных реакций (преимущественно гидрирование ароматических колец eAQH2) наблюдалось в присутствии катализатора, содержащего более крупные агломераты Pd(0) (вплоть до 540-600 нм). Селективность катализатора Pd/PANI по активным хинонам (2-этил-9,10-антрагидрохинон, 2-этил-5,6,7,8 - тетрагидро-9,10-антрагидрохинон) при поглощении водорода 1.2 моль /моль eAQ, соответствующей полной конверсии исходного субстрата, при проведении реакции гидрирования в среде ксилол: октанол-2 при температуре 64°С и давлении водорода 1 атм. составляет 85-89%. Недостатком данного катализатора является высокая активность в гидрировании ароматических колец 2-этил-9,10-антрагидрахинона.
Известен антрахиноновый способ синтеза Н2О2 в присутствии палладиевого катализатора 0.5% Pd/PANI(SiO2) [Drelinkiewicz A., Waksmundzka-Gora A., Sobczak J.W., Stejskal J. // Appl. Catal. A: Gen. - 2007. - Vol. 333. P. 219-228]. Гетерогенный катализатор 0.5% Pd/PANI(SiO2) состоит из палладия, нанесенного на зернистые частицы кремнезема SiO2, которые покрыты полианилином (PANI). Модифицирование носителя полимерной матрицей повышает селективность катализатора 0.5% Pd/PANI(SiO2) в гидрировании eAQ до активных хинонов (62°С; давление водорода 1 атм; растворитель: ксилол:октанол-2 (соотношение 1:1)) в сравнении с катализатором Pd/SiO2, полученным обычным методом осаждения с 58 до 68-91%. Недостатком данного катализатора является высокая активность в гидрировании ароматических колец 2-этил-9,10-антрагидрахинона. При поглощении водорода 1.2 моль⋅(моль Pd)-1 доля 2-этил-5,6,7,8-тетрагидро-9,10-антрагидрохинона достигает 15%, а доля продуктов деградации - 5-6%.
Ближайшим известным решением аналогичной задачи по технической сущности и достигаемому эффекту является получение перекиси водорода антрахиноновым способом (т.е. путем гидрирования 2-этил-9,10-антрахинона и последующего окисления образующихся активных хинонов кислородом или кислородом воздуха) в присутствии катализатора, содержащего суспензию частиц металлического катализатора, который состоит из одного или нескольких металлов платиновой группы (преимущественно, палладия, содержание которого не менее 50%) с добавлением одного или нескольких переходных металлов (Со, Ti, Zr, Al, Се, La, Mn). Концентрация второго металла варьируется в пределах 0,01-3,0 мас. % в расчете на количество металла платиновой группы [Pukkinen A., Heikkinen L., Ruska R. Hydrogenation catalyst for use in a hydrogen peroxde process, and method for the preparation thereof // Patent Finland №5,435,985; 25.07.1995 г.]. В качестве палладиевого прекурсора используют дихлорид палладия, динитрат палладия или сульфат палладия, который восстанавливают формальдегидом, муравьиной кислотой, гидразином, водородом или натрийборогидридом. Процесс проводят в автоклаве при температуре 50°С и давлении 3 бар в среде ароматических углеводородов и органических фосфатов или вторичных спиртов, моно- и диацетилбензофенона, триацетилбензола; загрузка 2-этил-9,10-антрахинона составляла 100 г/л; загрузка катализатора - 0.5 г/л. Выход перекиси водорода, отнесенный к единице массы катализатора, в результате окисления кислородом активных хинонов в зависимости от природы и массовой доли второго металла изменяется в следующих диапазонах:
1) катализатор Pd-Ti: от 7.81 г H2O2⋅(г кат.)-1 при содержании титана 4×10-5 масс. % до 26.04 г H2O2⋅(г кат.)-1 при содержании титана 8.9×10-4 масс. %;
2) катализатор Pd-Co: от 7.63 г H2O2⋅(г кат.)-1 при содержании кобальта 6.4×10-4 масс. % до 26.04 г H2O2⋅(г кат.)-1 при содержании кобальта 6.5×10-3 масс. %;
3) катализатор Pd-La: от 6.51 г Н2О2⋅(г кат.)-1 при содержании лантана 9.0×10-5 масс. % до 9.67 г H2O2⋅(г кат.)-1 при содержании лантана 4.8×10-3 масс. %.
Недостатком данных катализаторов является относительно невысокий выход перекиси водорода на единицу массы катализатора; максимальное значение выхода перекиси водорода на единицу массы катализатора (г H2O2⋅(г кат.)-1) при температуре 50°С и давлении 3 бар в среде ароматических углеводородов и органических фосфатов не превышает 26,04 г Н2О2⋅(г. катализатора)-1.
Задачей предполагаемого изобретения является разработка способа получения перекиси водорода антрахиноновым способом в присутствии палладиевого катализатора гидрирования, которые характеризуются более высоким выходом перекиси водорода на единицу массы катализатора и высокой селективностью по активным хинонам.
Поставленная задача достигается тем, что перекись водорода получают путем каталитического гидрирования 2-этил-9,10-антрахинона молекулярным водородом в присутствии палладиевого катализатора в жидкой дисперсионной среде при повышенной температуре и повышенном давлении с последующим окислением продуктов гидрирования 2-этил-9,10-антрахинона кислородом или кислородом воздуха; при этом в качестве прекурсора используют бис(ацетилацетонат) палладия, а формирование палладиевого катализатора проводят в присутствии модификатора - белого фосфора, при следующем атомарном соотношении компонентов: бис(ацетилацетонат) палладия / фосфор=1:0.3 до 1:0.7; реакцию гидрирования 2-этил-9,10-антрахинона осуществляют при температуре 30-50°С и давлении водорода 2 атм.
Предлагаемый способ позволяет получать перекись водорода с выходом до 98%.
Заявителем не выявлены источники, содержащие информацию о технических решениях, идентичных настоящему изобретению, что позволяет сделать вывод о его соответствии критерию «новизна».
Заявителем не обнаружены какие-либо источники информации, содержащие сведения о влиянии заявленных отличительных признаков на достигаемый вследствие их реализации технический результат. Это, по мнению заявителя, свидетельствует о соответствии данного технического решения критерию «изобретательский уровень».
Предлагаемый способ гидрирования 2-этил-9,10-антрахинона в присутствии палладиевого катализатора, модифицированного белым фосфором (Pd-P), заключается в следующем.
К раствору Pd(acac)2 в толуоле, помещенному в термостатируемый сосуд «утка», в токе водорода добавляют по каплям раствор фосфора в бензоле и перемешивают в течение 5 мин при комнатной температуре. Затем добавляют октанол-1, температуру поднимают до 90°С и формируют катализатор при интенсивном перемешивали реакционной смеси в водороде в течение 30-45 мин до количественного превращения Pd(acac)2. После формирования катализатора полученную суспензию или «раствор» черно-коричневого цвета охлаждают до соответствующей температуры, например, 30 или 50°С, шприцом вводят 3 мл толуольного раствора 2-этил-9,10-антрахинона и создают давление водорода 2 атм. Гидрирование проводят при интенсивном перемешивании, исключающем протекание реакции в диффузионной области. После поглощения 1 или 1.2 моль Н2⋅(моль eAQ)-1, отбирают пробы для анализа.
Выход перекиси водорода определяли методом перманганатометрии. Для этого аликвоту реакционной смеси отфильтровывают от катализатора в атмосфере аргона. Из фильтрата отбирают аликвоту (5 мл) и окисляют ее кислородом воздуха в течение 15-20 мин. Затем добавляют 30 мл воды и экстрагируют перекись водорода из органического слоя (5 мл) в воду (30 мл) при перемешивании. Количество перекиси водорода определяют титрованием аликвоты (10 мл) предварительно подкисленного водного слоя KMnC4 (0.1 N). Концентрацию KMnO4 контролируют, используя фиксанал щавелевой кислоты или оксалата аммония. Состав других продуктов превращения 2-этил-9,10-антрахинона анализируют методом ГЖХ на хроматографе «Хроматэк-Кристалл 5000», снабженном капиллярной колонкой длиной 30 м (фаза - поли(5% дифенил 95%диметилполисилфениленсилоксан) - ВРХ-5) и пламенно-ионизационным детектором (ДИП), используя температурное программирование: 160°С (3 мин); 270°С (20 мин), скорость нагрева 40°/мин. Параллельно идентификацию интермедиатов и продуктов реакции осуществляют на хромато-масс-спектрометре GCMS-QP2010 Ultra Shimadzu (капиллярная колонка GsBP⋅5MS, длина 30 м, фаза: поли(5%дифенил 95%диметилполисилфениленсилоксан). Ионизация происходила электронным ударом, энергия ионизации 70 эВ. Полученные масс-спектры сравнивают с литературными данными (библиотеки сравнения Wiley, NIST, NIST05).
При варьировании влияния соотношения отношения P/Pd на количественные характеристики Pd-P катализатора (табл. 2, примеры 4-7) или температуры (табл. 3, примеры 8-10) эксперименты по формированию катализатора и сам каталитический процесс проводят в среде толуол : октанол-1. При варьировании природы растворителя постоянным оставляют соотношение P/Pd=0.3 (табл. 4, примеры 11-14).
Оптимальные условия гидрирования 2-этил-9,10-антрахинона (eAQ) до 2-этил-9,10-антрагидрахинона (eAQH2): соотношение палладий : фосфор =1:0.3-1.0 (табл. 2); температура эксперимента 30-50°С (табл. 3); среда - арен (бензол, толуол или ксилол) : спирт (октанол-1, октанол-2) (табл. 4).
Способ гидрирования 2-этил-9,10-антрахинона в присутствии катализатора Pd-P, позволяет повысить выход перекиси водорода при поглощении 1.2 моль Н2 (моль eAQ)-1 с 61% (57.3 г Н2О2⋅(г Pd)-1) для систем циглеровского типа (Pd(acac)2 - nAlEt3) (табл. 1, примеры 2-3) или 69% (64.8 г H2O2⋅(г Pd)-1) для Pd-черни (полученной при восстановлении Pd(acac)2 водородом в отсутствии фосфора) (табл. 1, примеры 1) до 94-98% (88.3-92.1 г H2O2⋅(г Pd)-1) (табл. 2, примеры 4-7; табл. 3, примеры 8-10; табл. 4, примеры 11-14) и снизить вклад реакций гидрирования ароматических колец в 2-этил-9,10-антрагидрахиноне и гидрогенолиза связи С-O (фиг. 1). Системы циглеровского типа (Pd(acac)2 - 6AlEt3) значительно ускоряют реакцию гидрирования ароматического кольца 2-этил-9,10-антрагидрохинона. Выход продуктов гидрирования ароматического кольца (2-этил-5,6,7,8-тетрагидра-9,10-антрагидрохинона) достигает до 19%. Pd-чернь, полученная восстановлением водородом Pd(acac)2, проявляет высокую активность в побочном процессе гидрогенолиза связи С-О 2-этил-9,10-антрагидрохинона с образованием антронов. Выход антронов в присутствии Pd-черни, полученной восстановлением водородом, достигает 15.6%. Pd-P катализатор характеризуется низким выходом продуктов гидрирования ароматических колец и гидрогенолиза связи С-O в образующемся 2-этил-9,10-антрагидрахиноне. Доля указанных продуктов в процессе гидрирования 2-этил-9,10-антрахинона в присутствии Pd-P катализаторов (P/Pd=0.3) не превышает 1-2% (фиг. 1). На фиг. 1 показано влияние состава каталитической системы на выход продуктов гидрирования фенильных колец и гидрогенолиза связи С-O 2-этил-9,10-антрагидрохинона: условия гидрирования 2-этил-9,10-антрахинона: CPd=2.5 ммоль/л; [eAQ]/[Pd]=42.3; растворитель - октанол-1 : толуол (10 мл: 10 мл), Т=50°С, Р(Н2)=2 атм.
Выход перекиси водорода на грамм палладия возрастает с 64.8 г H2O2⋅(г Pd)-1 для Pd-черни до 92.1 г H2O2⋅(г Pd)-1 для Pd-P катализатора (P/Pd=0.3) (табл. 1, примеры 1, табл. 4, пример 14). Его преимуществом в сравнении с прототипом является более высокий выход перекиси водорода на единицу массы катализатора (г H2O2⋅(г Pd)-1) в мягких условиях проведения процесса (в интервале температур 30-50°С, давлении водорода 2 атм.).
Пример 1 демонстрирует свойства немодифицированного палладиевого катализатора. К раствору Pd(acac)2 (0.0152 г, 5×10-5 моль) в 7 мл толуола, помещенному в термостатируемый сосуд «утка» и перемешивали в течение 5 мин при комнатной температуре. Затем добавляли октанол-1 (10 мл), температуру поднимали до 90°С и формировали катализатор при интенсивном перемешивали реакционной смеси в водороде в течение 30-45 мин до количественного превращения Pd(acac)2. Контроль за превращением Pd(acac)2 проводили методом УФ-спектроскопии по полосе поглощения 330 нм (ε330 = 10630 л⋅см-1⋅моль-1). Полученную суспензию или «раствор» черно-коричневого цвета охлаждали до 50°С, создавали давление водорода 2 атм, шприцом вводили 3 мл толуольного раствора 2-этил-9,10-антрахинона (2.116 ммоль, 0.5 г.). Гидрирование проводили при интенсивном перемешивании, исключающем протекание реакции в диффузионной области. После поглощения 1 или 1.2 моль Н2⋅(моль eAQ)-1, отбирали пробы для анализа (табл. 1, пример 1).
Примеры 2-3 демонстрируют влияние восстановителя на свойства немодифицированного палладиевого катализатора в гидрировании 2-этил-9,10-антрахинона. Процедура проведения эксперимента:
К раствору Pd(acac)2 (0.0152 г, 5×10-5 моль) в 7 мл толуола, помещенному в термостатируемый сосуд «утка», в токе водорода прикапывали 1 мл раствора триэтилалюминия в бензоле (20×10-5÷30×10-5 моль) и перемешивали в течение 5 мин при комнатной температуре. Затем добавляли октанол-1 (10 мл), температуру поднимали до 50°С, создавали давление водорода 2 атм, шприцом вводили 3 мл толуольного раствора 2-этил-9,10-антрахинона (2.116 ммоль, 0.5 г). Гидрирование проводили при интенсивном перемешивании, исключающем протекание реакции в диффузионной области. После поглощения 1 или 1.2 моль Н2⋅(моль eAQ)-1, отбирали пробы для анализа (табл. 1, примеры 2-3).
Примеры 4-7 иллюстрируют влияние фосфорного модификатора на свойства палладиевого катализатора в гидрировании 2-этил-9,10-антрахинона. Процедура проведения эксперимента:
К раствору Pd(acac)2 (0.0152 г, 5×10-5 моль) в 7 мл толуола, помещенному в термостатируемый сосуд «утка», в токе водорода прикапывали 1 мл раствора фосфора в бензоле (1.5×10-5÷3.5×10-5 моль в расчете на атомную форму фосфора) и перемешивали в течение 5 мин при комнатной температуре. Затем добавляли октанол-1 (10 мл), температуру поднимали до 90°С и формировали катализатор при интенсивном перемешивали реакционной смеси в водороде в течение 30-45 мин до количественного превращения Pd(acac)2. Контроль за превращением Pd(acac)2 проводили методом УФ-спектроскопии по полосе поглощения 330 нм (ε330=10630 л⋅см-1⋅моль-1). Полученную суспензию или «раствор» черно-коричневого цвета охлаждали до 50°С, создавали давление водорода 2 атм, шприцом вводили 3 мл толуольного раствора 2-этил-9,10-антрахинона (2.116 ммоль, 0.5 г.). Гидрирование проводили при интенсивном перемешивании, исключающем протекание реакции в диффузионной области. После поглощения 1 или 1.2 моль Н2⋅(моль eAQ)-1, отбирали пробы для анализа (табл. 2, примеры 4-7).
Примеры 8-10 демонстрируют влияние температуры на свойства палладиевого катализатора, модифицированного фосфором, в гидрировании 2-этил-9,10-антрахинона. Эксперименты проводили при соотношении P/Pd=0.3 в среде толуол: октанол-1 Процедура проведения эксперимента аналогична примеру 3.
Примеры 11-14 иллюстрируют влияние природы растворителя на свойства палладиевого катализатора, модифицированного фосфором, в гидрировании 2-этил-9,10-антрахинона. Опыты проводили при соотношении P/Pd=0.3 и температуре 50°С. Процедура проведения эксперимента аналогична примеру 3 (табл. 4, примеры 11-14).
Figure 00000002
Примечание: a - после поглощения 1.2 моль Н2⋅(моль eAQ)-1; б - TOF1, TOF2 - частота оборотов на начальном участке и после поглощения 1 моль Н2 (моль eAQ)-1 соответственно; в - после поглощения 1 моль Н2 (моль eAQ)-1.
Figure 00000003
Figure 00000004
Примечание: a - после поглощения 1.2 моль Н2 (моль eAQ)-1; б - TOF1, TOF2 - частота оборотов на начальном участке и после поглощения 1 моль Н2 (моль eAQ)-1 соответственно.
Figure 00000005
Примечание: a - после поглощения 1.2 моль Н2 (моль eAQ)-1; б - TOF1, TOF2 - частота оборотов на начальном участке и после поглощения 1 моль Н2 (моль eAQ)-1 соответственно.
Figure 00000006
Примечание: a - после поглощения 1.2 моль Н2 (моль eAQ)-1; б - TOF1, TOF2 - частота оборотов на начальном участке и после поглощения 1 моль Н2 (моль eAQ)-1 соответственно.

Claims (1)

  1. Способ получения перекиси водорода путем каталитического гидрирования 2-этил-9,10-антрахинона молекулярным водородом в присутствии палладиевого катализатора в жидкой дисперсионной среде при повышенной температуре и повышенном давлении с последующим окислением продуктов гидрирования 2-этил-9,10-антрахинона кислородом или кислородом воздуха, отличающийся тем, что в качестве прекурсора используют бис(ацетилацетонат) палладия, формирование палладиевого катализатора проводят в присутствии модификатора - белого фосфора, при следующем атомарном соотношении компонентов бис(ацетилацетонат) палладия:фосфор от 1:0.3 до 1:0.7, а реакцию гидрирования 2-этил-9,10-антрахинона осуществляют при температуре 30-50°С и давлении водорода 2 атм.
RU2018117104A 2018-05-07 2018-05-07 Способ получения перекиси водорода RU2687449C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018117104A RU2687449C1 (ru) 2018-05-07 2018-05-07 Способ получения перекиси водорода

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018117104A RU2687449C1 (ru) 2018-05-07 2018-05-07 Способ получения перекиси водорода

Publications (1)

Publication Number Publication Date
RU2687449C1 true RU2687449C1 (ru) 2019-05-13

Family

ID=66578958

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018117104A RU2687449C1 (ru) 2018-05-07 2018-05-07 Способ получения перекиси водорода

Country Status (1)

Country Link
RU (1) RU2687449C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2778540C1 (ru) * 2020-05-28 2022-08-22 Эвоник Оперейшнс Гмбх Установка и способ получения перекиси водорода посредством антрахинонового процесса

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU421174A3 (ru) * 1970-04-18 1974-03-25 Иностранцы Гюнтер Гизельманн, Герд Шрейер , Вольфганг Вайгерт Способ получения перекиси водорода
US5435985A (en) * 1993-02-10 1995-07-25 Kemira Oy Hydrogenation catalyst for use in a hydrogen peroxide process, and method for the preparation thereof
US7070757B2 (en) * 2000-10-02 2006-07-04 Basf Aktiengesellschaft Method for producing catalysts consisting of metal of the platinum group by means of electroless deposition and the use thereof for the direct synthesis of hydrogen peroxide

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU421174A3 (ru) * 1970-04-18 1974-03-25 Иностранцы Гюнтер Гизельманн, Герд Шрейер , Вольфганг Вайгерт Способ получения перекиси водорода
US5435985A (en) * 1993-02-10 1995-07-25 Kemira Oy Hydrogenation catalyst for use in a hydrogen peroxide process, and method for the preparation thereof
US7070757B2 (en) * 2000-10-02 2006-07-04 Basf Aktiengesellschaft Method for producing catalysts consisting of metal of the platinum group by means of electroless deposition and the use thereof for the direct synthesis of hydrogen peroxide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2778540C1 (ru) * 2020-05-28 2022-08-22 Эвоник Оперейшнс Гмбх Установка и способ получения перекиси водорода посредством антрахинонового процесса

Similar Documents

Publication Publication Date Title
Lima et al. Selective photocatalytic oxidation of benzyl alcohol to benzaldehyde by using metal-loaded g-C3N4 photocatalysts
Ng et al. A wall-coated catalytic capillary microreactor for the direct formation of hydrogen peroxide
Purushothaman et al. An efficient one pot conversion of glycerol to lactic acid using bimetallic gold-platinum catalysts on a nanocrystalline CeO2 support
KR100715637B1 (ko) 케톤, 알코올 및 하이드로과산화물의 제조 방법
Das et al. Reductive deprotection of monolayer protected nanoclusters: an efficient route to supported ultrasmall au nanocatalysts for selective oxidation
Li et al. Direct synthesis of hydrogen peroxide from H2 and O2 and in situ oxidation using zeolite-supported catalysts
Denicourt-Nowicki et al. N-Donor ligands based on bipyridine and ionic liquids: an efficient partnership to stabilize rhodium colloids. Focus on oxygen-containing compounds hydrogenation
Shi et al. Immobilized PVA-stabilized gold nanoparticles on silica show an unusual selectivity in the hydrogenation of cinnamaldehyde
US20030162657A1 (en) Catalyst and process for the direct synthesis of hydrogen peroxide
Mertens et al. Au0 nanocolloids as recyclable quasihomogeneous metal catalysts in the chemoselective hydrogenation of α, β-unsaturated aldehydes and ketones to allylic alcohols
CN108654598B (zh) 用于烯烃、芳烃与氧气反应的金属纳米簇催化剂及其制备方法和应用
Gómez et al. Hydrogenation of nitrobenzene on Au/ZrO2 catalysts
Kormann et al. Gas phase catalysis by metal nanoparticles in nanoporous alumina membranes
CN109438153B (zh) 一种香茅醛选择脱羰基化反应制备2,6-二甲基-2-庚烯的方法
Li et al. In-situ probing photocatalytic CC bond cleavage in ethylene glycol under ambient conditions and the effect of metal cocatalyst
RU2687449C1 (ru) Способ получения перекиси водорода
Burato et al. Chemoselective and re-usable heterogeneous catalysts for the direct synthesis of hydrogen peroxide in the liquid phase under non-explosive conditions and in the absence of chemoselectivity enhancers
CN113387911A (zh) 光催化5-羟甲基糠醛脱氢制备2,5-呋喃二甲醛的方法
Gallezot et al. Catalytic oxidations with air for clean and selective transformations of polyols
CN101948375B (zh) 一种苯酚还原制备环己酮或环己醇的方法
Rogers et al. Acceptorless dehydrogenation of 1-phenylethanol using Pd/TiO2 catalysts prepared by sol immobilisation
Mikkola et al. Structured but not over-structured: Woven active carbon fibre matt catalyst
US6881870B2 (en) Process for producing adamantanol and adamantanone
CN106946670B (zh) 制备4-甲基-3-癸烯-5-酮的方法
Galica et al. Microwave-assisted oxidation of alcohols by hydrogen peroxide catalysed by tetrabutylammonium decatungstate