RU2687423C1 - Способ получения порошка на основе карбида титана - Google Patents
Способ получения порошка на основе карбида титана Download PDFInfo
- Publication number
- RU2687423C1 RU2687423C1 RU2018130646A RU2018130646A RU2687423C1 RU 2687423 C1 RU2687423 C1 RU 2687423C1 RU 2018130646 A RU2018130646 A RU 2018130646A RU 2018130646 A RU2018130646 A RU 2018130646A RU 2687423 C1 RU2687423 C1 RU 2687423C1
- Authority
- RU
- Russia
- Prior art keywords
- arc discharge
- cathode
- anode
- titanium carbide
- titanium
- Prior art date
Links
- 239000000843 powder Substances 0.000 title claims abstract description 35
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 title claims abstract description 21
- 238000000034 method Methods 0.000 title claims abstract description 13
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 31
- 238000010891 electric arc Methods 0.000 claims abstract description 26
- 239000010936 titanium Substances 0.000 claims abstract description 24
- 239000000203 mixture Substances 0.000 claims abstract description 17
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 16
- 229910002804 graphite Inorganic materials 0.000 claims abstract description 16
- 239000010439 graphite Substances 0.000 claims abstract description 16
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 16
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 15
- 239000007787 solid Substances 0.000 claims abstract description 4
- 239000011521 glass Substances 0.000 claims description 4
- 230000001681 protective effect Effects 0.000 abstract description 3
- 230000000694 effects Effects 0.000 abstract 1
- 239000000126 substance Substances 0.000 abstract 1
- 238000002441 X-ray diffraction Methods 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/90—Carbides
- C01B32/914—Carbides of single elements
- C01B32/921—Titanium carbide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/14—Making metallic powder or suspensions thereof using physical processes using electric discharge
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/16—Making metallic powder or suspensions thereof using chemical processes
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G23/00—Compounds of titanium
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
Изобретение может быть использовано в неорганической химии. Способ получения порошка на основе карбида титана включает генерацию дугового разряда постоянного тока в газообразной среде между цилиндрическими графитовыми анодом и катодом. Порошковую смесь углерода и титана, взятую в атомарном соотношении Ti:C, равном 1:(1-3), помещают в полость катода, выполненного в виде вертикально расположенного стакана. Дуговой разряд поджигают в воздушной среде соприкосновением анода, выполненного в виде сплошного стержня, с порошковой смесью, расположенной на дне катода, при силе тока от 80 А до 200 А. Затем анод отводят вертикально вверх, образуя разрядный промежуток от 0,1 до 0,8 мм и поддерживая дуговой разряд в течение 2-20 с. Изобретение позволяет получить порошок на основе карбида титана в плазме дугового разряда постоянного тока, инициированного в воздушной атмосфере без создания разреженной защитной атмосферы. 4 ил., 1 табл., 3 пр.
Description
Изобретение относится к неорганической химии, а именно к получению соединений с углеродом и может быть использовано для получения порошка на основе карбида титана.
Известен способ получения порошка на основе карбида титана [J. Yu et al. / Journal of Alloys and Compounds, 2017, vol. 693. - Р. 500-509], при котором анод и катод размещают в герметичной камере, которую вакуумируют и заполняют газом, состоящим из Ar, H2, CH4 в различных сочетаниях при давлении 0,01-0,03 МПа. Между титановым анодом и графитовым катодом поджигают дуговой разряд постоянного тока. Силу тока поддерживают на уровне 60 А.
Обязательным условием реализации известного метода является создание газовой среды, состоящей из Ar, H2, CH4, вакуумирования камеры, в которой поджигают дуговой разряд.
Известен, принятый за прототип, способ получения порошка на основе карбида титана [Y. Saito et. l. / Journal of Crystal Growth, 1997, vol. 172. - Р. 163-170], заключающийся в генерации дугового разряда постоянного тока между графитовым катодом и полым графитовым анодом, заполненным смесью оксида титана и графита (углерода) в массовом соотношении 1:1. При этом анод и катод располагают внутри герметичной камеры, которую предварительно заполняют газообразным He при давлении 100 Торр или 600 Торр. Величину разрядного промежутка устанавливают в пределах 1-2 мм посредством винта, перемещающего анод соосно с катодом. Ток устанавливают на уровне 70 А.
Для реализации такого способа требуется создание инертной атмосферы из газообразного Не при пониженном относительно атмосферного давлении в объеме герметичной камеры.
Предлагаемый способ позволяет получить порошок на основе карбида титана в открытой воздушной среде.
Способ получения порошка на основе карбида титана, также как в прототипе, включает генерацию дугового разряда постоянного тока в газообразной среде между цилиндрическими графитовыми анодом и катодом.
Согласно изобретению порошковую смесь углерода и титана в атомарном соотношении Ti:C=1:(1-3) помещают в полость катода, выполненного в виде вертикально расположенного стакана. Дуговой разряд поджигают в воздушной среде соприкосновением анода в виде сплошного стержня с порошковой смесью при силе тока от 80 А до 200 А. Затем анод отводят вертикально вверх, образуя разрядный промежуток величиной 0,1-0,8 мм и поддерживают дуговой разряд в течение 2-20 с.
При возникновении дугового разряда постоянного тока температура в зоне формирования дугового разряда поднимается до нескольких тысяч градусов, а после отключения источника постоянного тока температура снижается до комнатной, в результате чего возникают условия для синтеза карбида титана. В полости катода при горении дугового разряда генерируется газообразный оксид углерода СО, который предотвращает окисление получаемого порошка на основе карбида титана кислородом атмосферного воздуха.
По сравнению с прототипом для осуществления способа не требуется формирование защитной газовой разряженной атмосферы, так как анод и катод расположены в открытой воздушной среде, а защитная атмосфера (СО) генерируется самопроизвольно в процессе горения дугового разряда в полости графитового катода, выполненного в виде вертикально расположенного стакана.
Время поддержания дугового разряда ограничивается величиной 20 с, так как за это время графитовые анод и катод нагреваются до температур, при которых происходит возгорание и последующее разрушение. При времени поддержания дугового разряда менее 2 доля образовавшегося карбида титана мала. При силе тока более 200 А происходит значительная эрозия анода, вследствие чего разряд гаснет, и ток прерывается. При величине силы тока ниже 80 А не удается поддерживать стабильное горение дугового разряда без прерывания тока. При величине разрядного промежутка более 0,8 мм не обеспечивается стабильное горение дугового разряда без прерывания тока. При величине разрядного промежутка менее 0,1 мм дуговой разряд не зажигается, и ток протекает через электроды и образовавшиеся при касании анода и порошковой смеси углерода и титана токопроводящие омические каналы. При соотношении Ti:C больше 1:1 при горении дугового разряда образуется расплавленный металл (титан), который при остывании не позволяет образоваться порошковому продукту. При соотношении Ti:C меньше 1:3 при анализе картины рентгеновской дифракции полученного порошка доля карбида титана мала.
На фиг. 1 представлена схема устройства для получения порошка на основе карбида титана.
На фиг. 2-4 представлены рентгеновские дифрактограммы, полученных порошков на основе карбида титана при различных исходных условиях.
В таблице 1 представлены исходные условия для получения порошка на основе карбида титана и результаты его анализа методом рентгеновской дифрактометрии.
Предложенный способ был реализован с помощью устройства для получения порошка на основе карбида титана, которое содержит графитовый цилиндрический катод 1 (фиг. 1) в виде вертикально расположенного стакана с внешним диаметром 30 мм, высотой 30 мм, к стенке которого прикреплен диэлектрический держатель 2. В резьбовое отверстие диэлектрического держателя 2 вставлен винт 3, соединенный c одним концом графитового цилиндрического анода 4 в виде сплошного стержня с диаметром 8 мм. Свободный конец анода 4 расположен соосно катоду 1 с возможностью продольного перемещения в его полости для соприкосновения с порошковой смесью углерода и титана 5, помещенной на дне катода 1. Анод 4 и катод 1 подключены к источнику постоянного тока 6 (ИПТ).
Порошковую смесь углерода и титана, состоящую из титана (гексагональной структуры) с чистотой 99% и углерода (графитовой структуры) с чистотой 99%, смешали в атомном соотношении Ti:C=1:1 с суммарной массой 5 г. Полученную смесь вместе с тремя пластиковыми шарами с диаметром 7 мм поместили в пластиковую колбу объемом 20 мл для перемешивания в целях равномерного распределения углерода и титана в смеси. Пластиковую колбу вращали в течение 10 минут со сменой направления вращения каждую минуту при частоте 90 об/мин в приводе шаровой мельницы. Из полученной смеси была отвешена при помощи электронных весов навеска массой по 0,5 грамм, которую поместили на дно катода 1. При включении источника постоянного тока 6 (ИПТ) между порошковой смесью углерода и титана 5 на дне графитового катода 1, и графитовым анодом 4 возникла разность потенциалов. Вращением винта 3 перемещали анод 4 внутри полости катода 1 соосно ему до соприкосновения с порошковой смесью углерода и титана 5. Дуговой разряд подожгли кратковременным соприкосновением анода 4 с порошковой смесью углерода и титана 5 при силе тока I=150 А. Затем при помощи винта 3 отвели анод 4 вертикально вверх соосно катоду, образуя разрядный промежуток L=0,5 мм. В процессе горения дугового разряда смесь углерода и титана, а также анод и катод нагреваются. После горения дугового разряда в течение t=10 секунд, источник постоянного тока 6 (ИПТ) отключили. После остывания анода 4 и катода 1 собрали осевший на поверхности полости катода 1 полученный порошок. В результате был получен порошок темно серого цвета. Анализ полученного порошка проводился на рентгеновском дифрактометре Shimadzu XRD 7000s (CuKα-излучение). Сравнение полученной рентгеновской дифрактограммы, а именно, положений дифракционных максимумов с эталонами различных материалов по базе структурных данных показало (фиг. 2) наличие трех кристаллических фаз в материале: графит С, титан Ti (гексагональный) и карбид титана TiC (кубический). Количественный рентгенофазовый анализ проводился при помощи программы Powder Cell 2.2.. В результате установлено, что полученный порошок состоит из 21,6% карбида титана TiC (кубический), 2,7 титана Ti (гексагональный), 75,7% углерода С (графит).
Для других примеров исходные условия для получения порошка на основе карбида титана и результаты его анализа методом рентгеновской дифрактометрии приведены в таблице 1 и на фиг. 3-4.
СПОСОБ ПОЛУЧЕНИЯ ПОРОШКА НА ОСНОВЕ КАРБИДА ТИТАНА
Claims (1)
-
Способ получения порошка на основе карбида титана, включающий генерацию дугового разряда постоянного тока в газообразной среде между цилиндрическими графитовыми анодом и катодом, отличающийся тем, что порошковую смесь углерода и титана в атомарном соотношении Ti:C=1:(1-3) помещают в полость катода, выполненного в виде вертикально расположенного стакана, дуговой разряд поджигают в воздушной среде соприкосновением анода в виде сплошного стержня с порошковой смесью, расположенной на дне катода при силе тока от 80 А до 200 А, затем анод отводят вертикально вверх, образуя разрядный промежуток от 0,1 до 0,8 мм и поддерживая дуговой разряд в течение 2-20 с.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2018130646A RU2687423C1 (ru) | 2018-09-26 | 2018-09-26 | Способ получения порошка на основе карбида титана |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2018130646A RU2687423C1 (ru) | 2018-09-26 | 2018-09-26 | Способ получения порошка на основе карбида титана |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2687423C1 true RU2687423C1 (ru) | 2019-05-13 |
Family
ID=66578943
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2018130646A RU2687423C1 (ru) | 2018-09-26 | 2018-09-26 | Способ получения порошка на основе карбида титана |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2687423C1 (ru) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1834845A3 (en) * | 1990-06-05 | 1993-08-15 | Иhctиtуt Ctpуktуphoй Makpokиhetиkи Pah | Method of producing high-melting titanium carbide-base compounds and device for its implementation |
RU2038296C1 (ru) * | 1990-06-05 | 1995-06-27 | Институт структурной макрокинетики РАН | Способ получения карбида титана и устройство для его осуществления |
RU2066295C1 (ru) * | 1993-05-19 | 1996-09-10 | Институт структурной макрокинетики РАН | Способ получения порошкового материала на основе карбида титана |
RU2072320C1 (ru) * | 1988-11-25 | 1997-01-27 | Институт структурной макрокинетики РАН | Способ получения тугоплавкого материала |
CN105200458A (zh) * | 2015-10-27 | 2015-12-30 | 攀钢集团攀枝花钢铁研究院有限公司 | 一种制备碳化钛的方法 |
CN107381576A (zh) * | 2017-07-31 | 2017-11-24 | 安阳工学院 | 一种二维碳化钛纳米片的电化学合成方法 |
-
2018
- 2018-09-26 RU RU2018130646A patent/RU2687423C1/ru active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2072320C1 (ru) * | 1988-11-25 | 1997-01-27 | Институт структурной макрокинетики РАН | Способ получения тугоплавкого материала |
SU1834845A3 (en) * | 1990-06-05 | 1993-08-15 | Иhctиtуt Ctpуktуphoй Makpokиhetиkи Pah | Method of producing high-melting titanium carbide-base compounds and device for its implementation |
RU2038296C1 (ru) * | 1990-06-05 | 1995-06-27 | Институт структурной макрокинетики РАН | Способ получения карбида титана и устройство для его осуществления |
RU2066295C1 (ru) * | 1993-05-19 | 1996-09-10 | Институт структурной макрокинетики РАН | Способ получения порошкового материала на основе карбида титана |
CN105200458A (zh) * | 2015-10-27 | 2015-12-30 | 攀钢集团攀枝花钢铁研究院有限公司 | 一种制备碳化钛的方法 |
CN107381576A (zh) * | 2017-07-31 | 2017-11-24 | 安阳工学院 | 一种二维碳化钛纳米片的电化学合成方法 |
Non-Patent Citations (1)
Title |
---|
SAITO Y. et al., Encapsulation of carbides of chromium, molybdenum and tungsten in carbon nanocapsules by arc discharge, Journal of Crystal Growth, 1997, vol. 172, pp. 163-170. * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Pak et al. | Vacuumless synthesis of tungsten carbide in a self-shielding atmospheric plasma of DC arc discharge | |
RU2746673C1 (ru) | СПОСОБ ПОЛУЧЕНИЯ ПОРОШКА, СОДЕРЖАЩЕГО ОДНОФАЗНЫЙ ВЫСОКОЭНТРОПИЙНЫЙ КАРБИД СОСТАВА Ti-Nb-Zr-Hf-Ta-C С КУБИЧЕСКОЙ РЕШЕТКОЙ | |
KR20190032472A (ko) | 텅스텐 모노카바이드(wc) 구형 분말의 제조 | |
Elagin et al. | Aluminum nitride. Preparation methods | |
BRPI9911008B1 (pt) | processo para a produção de capacitor de pós de metal, pó de nióbio, anodo de capacitor, pó de liga para uso na fabricação de capacitores eletrolíticos, processo para a fabricação de pó de liga | |
Amirov et al. | Synthesis of carbon nanotubes by high current divergent anode-channel plasma torch | |
JPH06157016A (ja) | カーボンナノチューブの製造方法 | |
RU2687423C1 (ru) | Способ получения порошка на основе карбида титана | |
Safronov et al. | Investigation of the AC plasma torch working conditions for the plasma chemical applications | |
RU2716694C1 (ru) | Устройство для получения порошка, содержащего карбид молибдена | |
RU191334U1 (ru) | Устройство для получения порошка на основе карбида вольфрама | |
RU2686897C1 (ru) | Устройство для получения порошка на основе карбида титана | |
Chen et al. | Rapid formation of diamond-like nano-carbons in a gas bubble discharge in liquid ethanol | |
Gavrilov et al. | A self-heated hollow cathode made of compacted tin powder: The preparation method and test results | |
Pak et al. | Effect of energy on the phase composition of the product of arc discharge synthesis in the tungsten–carbon system obtained in a self-shielding autonomous gas environment | |
RU71330U1 (ru) | Устройство для получения фуллереносодержащей смеси | |
US3748106A (en) | Tantalum powder | |
GB744396A (en) | Process for the preparation of substantially pure titanium metal | |
RU2824645C1 (ru) | Способ получения порошка дисилицида молибдена | |
JP2005082442A (ja) | 炭素同素体を有する炭素の製造方法及び製造装置、炭素成形体の製造方法並びに炭素合金若しくは炭素複合材料からなる成形体の製造方法 | |
RU2796134C1 (ru) | СПОСОБ ПОЛУЧЕНИЯ ПОРОШКА НА ОСНОВЕ ОДНОФАЗНОГО ВЫСОКОЭНТРОПИЙНОГО КАРБИДА СОСТАВА Ti-Zr-Nb-Hf-Ta-C С КУБИЧЕСКОЙ РЕШЕТКОЙ | |
Huber et al. | A bench arc-furnace facility for fullerene and single-wall nanotubes synthesis | |
JPH11263610A (ja) | カーボンナノチューブの製造方法 | |
RU2802693C1 (ru) | Способ получения вольфрамо-титано-кобальтового твердого сплава из порошков, полученных электроэрозионным диспергированием отходов сплава Т5К10 в керосине | |
RU210733U1 (ru) | Устройство для получения порошка на основе карбида бора |