RU2687423C1 - Способ получения порошка на основе карбида титана - Google Patents

Способ получения порошка на основе карбида титана Download PDF

Info

Publication number
RU2687423C1
RU2687423C1 RU2018130646A RU2018130646A RU2687423C1 RU 2687423 C1 RU2687423 C1 RU 2687423C1 RU 2018130646 A RU2018130646 A RU 2018130646A RU 2018130646 A RU2018130646 A RU 2018130646A RU 2687423 C1 RU2687423 C1 RU 2687423C1
Authority
RU
Russia
Prior art keywords
arc discharge
cathode
anode
titanium carbide
titanium
Prior art date
Application number
RU2018130646A
Other languages
English (en)
Inventor
Александр Яковлевич Пак
Original Assignee
Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский политехнический университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский политехнический университет" filed Critical Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский политехнический университет"
Priority to RU2018130646A priority Critical patent/RU2687423C1/ru
Application granted granted Critical
Publication of RU2687423C1 publication Critical patent/RU2687423C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • C01B32/921Titanium carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/14Making metallic powder or suspensions thereof using physical processes using electric discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

Изобретение может быть использовано в неорганической химии. Способ получения порошка на основе карбида титана включает генерацию дугового разряда постоянного тока в газообразной среде между цилиндрическими графитовыми анодом и катодом. Порошковую смесь углерода и титана, взятую в атомарном соотношении Ti:C, равном 1:(1-3), помещают в полость катода, выполненного в виде вертикально расположенного стакана. Дуговой разряд поджигают в воздушной среде соприкосновением анода, выполненного в виде сплошного стержня, с порошковой смесью, расположенной на дне катода, при силе тока от 80 А до 200 А. Затем анод отводят вертикально вверх, образуя разрядный промежуток от 0,1 до 0,8 мм и поддерживая дуговой разряд в течение 2-20 с. Изобретение позволяет получить порошок на основе карбида титана в плазме дугового разряда постоянного тока, инициированного в воздушной атмосфере без создания разреженной защитной атмосферы. 4 ил., 1 табл., 3 пр.

Description

Изобретение относится к неорганической химии, а именно к получению соединений с углеродом и может быть использовано для получения порошка на основе карбида титана.
Известен способ получения порошка на основе карбида титана [J. Yu et al. / Journal of Alloys and Compounds, 2017, vol. 693. - Р. 500-509], при котором анод и катод размещают в герметичной камере, которую вакуумируют и заполняют газом, состоящим из Ar, H2, CH4 в различных сочетаниях при давлении 0,01-0,03 МПа. Между титановым анодом и графитовым катодом поджигают дуговой разряд постоянного тока. Силу тока поддерживают на уровне 60 А.
Обязательным условием реализации известного метода является создание газовой среды, состоящей из Ar, H2, CH4, вакуумирования камеры, в которой поджигают дуговой разряд.
Известен, принятый за прототип, способ получения порошка на основе карбида титана [Y. Saito et. l. / Journal of Crystal Growth, 1997, vol. 172. - Р. 163-170], заключающийся в генерации дугового разряда постоянного тока между графитовым катодом и полым графитовым анодом, заполненным смесью оксида титана и графита (углерода) в массовом соотношении 1:1. При этом анод и катод располагают внутри герметичной камеры, которую предварительно заполняют газообразным He при давлении 100 Торр или 600 Торр. Величину разрядного промежутка устанавливают в пределах 1-2 мм посредством винта, перемещающего анод соосно с катодом. Ток устанавливают на уровне 70 А.
Для реализации такого способа требуется создание инертной атмосферы из газообразного Не при пониженном относительно атмосферного давлении в объеме герметичной камеры.
Предлагаемый способ позволяет получить порошок на основе карбида титана в открытой воздушной среде.
Способ получения порошка на основе карбида титана, также как в прототипе, включает генерацию дугового разряда постоянного тока в газообразной среде между цилиндрическими графитовыми анодом и катодом.
Согласно изобретению порошковую смесь углерода и титана в атомарном соотношении Ti:C=1:(1-3) помещают в полость катода, выполненного в виде вертикально расположенного стакана. Дуговой разряд поджигают в воздушной среде соприкосновением анода в виде сплошного стержня с порошковой смесью при силе тока от 80 А до 200 А. Затем анод отводят вертикально вверх, образуя разрядный промежуток величиной 0,1-0,8 мм и поддерживают дуговой разряд в течение 2-20 с.
При возникновении дугового разряда постоянного тока температура в зоне формирования дугового разряда поднимается до нескольких тысяч градусов, а после отключения источника постоянного тока температура снижается до комнатной, в результате чего возникают условия для синтеза карбида титана. В полости катода при горении дугового разряда генерируется газообразный оксид углерода СО, который предотвращает окисление получаемого порошка на основе карбида титана кислородом атмосферного воздуха.
По сравнению с прототипом для осуществления способа не требуется формирование защитной газовой разряженной атмосферы, так как анод и катод расположены в открытой воздушной среде, а защитная атмосфера (СО) генерируется самопроизвольно в процессе горения дугового разряда в полости графитового катода, выполненного в виде вертикально расположенного стакана.
Время поддержания дугового разряда ограничивается величиной 20 с, так как за это время графитовые анод и катод нагреваются до температур, при которых происходит возгорание и последующее разрушение. При времени поддержания дугового разряда менее 2 доля образовавшегося карбида титана мала. При силе тока более 200 А происходит значительная эрозия анода, вследствие чего разряд гаснет, и ток прерывается. При величине силы тока ниже 80 А не удается поддерживать стабильное горение дугового разряда без прерывания тока. При величине разрядного промежутка более 0,8 мм не обеспечивается стабильное горение дугового разряда без прерывания тока. При величине разрядного промежутка менее 0,1 мм дуговой разряд не зажигается, и ток протекает через электроды и образовавшиеся при касании анода и порошковой смеси углерода и титана токопроводящие омические каналы. При соотношении Ti:C больше 1:1 при горении дугового разряда образуется расплавленный металл (титан), который при остывании не позволяет образоваться порошковому продукту. При соотношении Ti:C меньше 1:3 при анализе картины рентгеновской дифракции полученного порошка доля карбида титана мала.
На фиг. 1 представлена схема устройства для получения порошка на основе карбида титана.
На фиг. 2-4 представлены рентгеновские дифрактограммы, полученных порошков на основе карбида титана при различных исходных условиях.
В таблице 1 представлены исходные условия для получения порошка на основе карбида титана и результаты его анализа методом рентгеновской дифрактометрии.
Предложенный способ был реализован с помощью устройства для получения порошка на основе карбида титана, которое содержит графитовый цилиндрический катод 1 (фиг. 1) в виде вертикально расположенного стакана с внешним диаметром 30 мм, высотой 30 мм, к стенке которого прикреплен диэлектрический держатель 2. В резьбовое отверстие диэлектрического держателя 2 вставлен винт 3, соединенный c одним концом графитового цилиндрического анода 4 в виде сплошного стержня с диаметром 8 мм. Свободный конец анода 4 расположен соосно катоду 1 с возможностью продольного перемещения в его полости для соприкосновения с порошковой смесью углерода и титана 5, помещенной на дне катода 1. Анод 4 и катод 1 подключены к источнику постоянного тока 6 (ИПТ).
Порошковую смесь углерода и титана, состоящую из титана (гексагональной структуры) с чистотой 99% и углерода (графитовой структуры) с чистотой 99%, смешали в атомном соотношении Ti:C=1:1 с суммарной массой 5 г. Полученную смесь вместе с тремя пластиковыми шарами с диаметром 7 мм поместили в пластиковую колбу объемом 20 мл для перемешивания в целях равномерного распределения углерода и титана в смеси. Пластиковую колбу вращали в течение 10 минут со сменой направления вращения каждую минуту при частоте 90 об/мин в приводе шаровой мельницы. Из полученной смеси была отвешена при помощи электронных весов навеска массой по 0,5 грамм, которую поместили на дно катода 1. При включении источника постоянного тока 6 (ИПТ) между порошковой смесью углерода и титана 5 на дне графитового катода 1, и графитовым анодом 4 возникла разность потенциалов. Вращением винта 3 перемещали анод 4 внутри полости катода 1 соосно ему до соприкосновения с порошковой смесью углерода и титана 5. Дуговой разряд подожгли кратковременным соприкосновением анода 4 с порошковой смесью углерода и титана 5 при силе тока I=150 А. Затем при помощи винта 3 отвели анод 4 вертикально вверх соосно катоду, образуя разрядный промежуток L=0,5 мм. В процессе горения дугового разряда смесь углерода и титана, а также анод и катод нагреваются. После горения дугового разряда в течение t=10 секунд, источник постоянного тока 6 (ИПТ) отключили. После остывания анода 4 и катода 1 собрали осевший на поверхности полости катода 1 полученный порошок. В результате был получен порошок темно серого цвета. Анализ полученного порошка проводился на рентгеновском дифрактометре Shimadzu XRD 7000s (CuKα-излучение). Сравнение полученной рентгеновской дифрактограммы, а именно, положений дифракционных максимумов с эталонами различных материалов по базе структурных данных показало (фиг. 2) наличие трех кристаллических фаз в материале: графит С, титан Ti (гексагональный) и карбид титана TiC (кубический). Количественный рентгенофазовый анализ проводился при помощи программы Powder Cell 2.2.. В результате установлено, что полученный порошок состоит из 21,6% карбида титана TiC (кубический), 2,7 титана Ti (гексагональный), 75,7% углерода С (графит).
Для других примеров исходные условия для получения порошка на основе карбида титана и результаты его анализа методом рентгеновской дифрактометрии приведены в таблице 1 и на фиг. 3-4.
СПОСОБ ПОЛУЧЕНИЯ ПОРОШКА НА ОСНОВЕ КАРБИДА ТИТАНА
Figure 00000001

Claims (1)


  1. Способ получения порошка на основе карбида титана, включающий генерацию дугового разряда постоянного тока в газообразной среде между цилиндрическими графитовыми анодом и катодом, отличающийся тем, что порошковую смесь углерода и титана в атомарном соотношении Ti:C=1:(1-3) помещают в полость катода, выполненного в виде вертикально расположенного стакана, дуговой разряд поджигают в воздушной среде соприкосновением анода в виде сплошного стержня с порошковой смесью, расположенной на дне катода при силе тока от 80 А до 200 А, затем анод отводят вертикально вверх, образуя разрядный промежуток от 0,1 до 0,8 мм и поддерживая дуговой разряд в течение 2-20 с.
RU2018130646A 2018-09-26 2018-09-26 Способ получения порошка на основе карбида титана RU2687423C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018130646A RU2687423C1 (ru) 2018-09-26 2018-09-26 Способ получения порошка на основе карбида титана

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018130646A RU2687423C1 (ru) 2018-09-26 2018-09-26 Способ получения порошка на основе карбида титана

Publications (1)

Publication Number Publication Date
RU2687423C1 true RU2687423C1 (ru) 2019-05-13

Family

ID=66578943

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018130646A RU2687423C1 (ru) 2018-09-26 2018-09-26 Способ получения порошка на основе карбида титана

Country Status (1)

Country Link
RU (1) RU2687423C1 (ru)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1834845A3 (en) * 1990-06-05 1993-08-15 Иhctиtуt Ctpуktуphoй Makpokиhetиkи Pah Method of producing high-melting titanium carbide-base compounds and device for its implementation
RU2038296C1 (ru) * 1990-06-05 1995-06-27 Институт структурной макрокинетики РАН Способ получения карбида титана и устройство для его осуществления
RU2066295C1 (ru) * 1993-05-19 1996-09-10 Институт структурной макрокинетики РАН Способ получения порошкового материала на основе карбида титана
RU2072320C1 (ru) * 1988-11-25 1997-01-27 Институт структурной макрокинетики РАН Способ получения тугоплавкого материала
CN105200458A (zh) * 2015-10-27 2015-12-30 攀钢集团攀枝花钢铁研究院有限公司 一种制备碳化钛的方法
CN107381576A (zh) * 2017-07-31 2017-11-24 安阳工学院 一种二维碳化钛纳米片的电化学合成方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2072320C1 (ru) * 1988-11-25 1997-01-27 Институт структурной макрокинетики РАН Способ получения тугоплавкого материала
SU1834845A3 (en) * 1990-06-05 1993-08-15 Иhctиtуt Ctpуktуphoй Makpokиhetиkи Pah Method of producing high-melting titanium carbide-base compounds and device for its implementation
RU2038296C1 (ru) * 1990-06-05 1995-06-27 Институт структурной макрокинетики РАН Способ получения карбида титана и устройство для его осуществления
RU2066295C1 (ru) * 1993-05-19 1996-09-10 Институт структурной макрокинетики РАН Способ получения порошкового материала на основе карбида титана
CN105200458A (zh) * 2015-10-27 2015-12-30 攀钢集团攀枝花钢铁研究院有限公司 一种制备碳化钛的方法
CN107381576A (zh) * 2017-07-31 2017-11-24 安阳工学院 一种二维碳化钛纳米片的电化学合成方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAITO Y. et al., Encapsulation of carbides of chromium, molybdenum and tungsten in carbon nanocapsules by arc discharge, Journal of Crystal Growth, 1997, vol. 172, pp. 163-170. *

Similar Documents

Publication Publication Date Title
Pak et al. Vacuumless synthesis of tungsten carbide in a self-shielding atmospheric plasma of DC arc discharge
RU2746673C1 (ru) СПОСОБ ПОЛУЧЕНИЯ ПОРОШКА, СОДЕРЖАЩЕГО ОДНОФАЗНЫЙ ВЫСОКОЭНТРОПИЙНЫЙ КАРБИД СОСТАВА Ti-Nb-Zr-Hf-Ta-C С КУБИЧЕСКОЙ РЕШЕТКОЙ
KR20190032472A (ko) 텅스텐 모노카바이드(wc) 구형 분말의 제조
Elagin et al. Aluminum nitride. Preparation methods
BRPI9911008B1 (pt) processo para a produção de capacitor de pós de metal, pó de nióbio, anodo de capacitor, pó de liga para uso na fabricação de capacitores eletrolíticos, processo para a fabricação de pó de liga
Amirov et al. Synthesis of carbon nanotubes by high current divergent anode-channel plasma torch
JPH06157016A (ja) カーボンナノチューブの製造方法
RU2687423C1 (ru) Способ получения порошка на основе карбида титана
Safronov et al. Investigation of the AC plasma torch working conditions for the plasma chemical applications
RU2716694C1 (ru) Устройство для получения порошка, содержащего карбид молибдена
RU191334U1 (ru) Устройство для получения порошка на основе карбида вольфрама
RU2686897C1 (ru) Устройство для получения порошка на основе карбида титана
Chen et al. Rapid formation of diamond-like nano-carbons in a gas bubble discharge in liquid ethanol
Gavrilov et al. A self-heated hollow cathode made of compacted tin powder: The preparation method and test results
Pak et al. Effect of energy on the phase composition of the product of arc discharge synthesis in the tungsten–carbon system obtained in a self-shielding autonomous gas environment
RU71330U1 (ru) Устройство для получения фуллереносодержащей смеси
US3748106A (en) Tantalum powder
GB744396A (en) Process for the preparation of substantially pure titanium metal
RU2824645C1 (ru) Способ получения порошка дисилицида молибдена
JP2005082442A (ja) 炭素同素体を有する炭素の製造方法及び製造装置、炭素成形体の製造方法並びに炭素合金若しくは炭素複合材料からなる成形体の製造方法
RU2796134C1 (ru) СПОСОБ ПОЛУЧЕНИЯ ПОРОШКА НА ОСНОВЕ ОДНОФАЗНОГО ВЫСОКОЭНТРОПИЙНОГО КАРБИДА СОСТАВА Ti-Zr-Nb-Hf-Ta-C С КУБИЧЕСКОЙ РЕШЕТКОЙ
Huber et al. A bench arc-furnace facility for fullerene and single-wall nanotubes synthesis
JPH11263610A (ja) カーボンナノチューブの製造方法
RU2802693C1 (ru) Способ получения вольфрамо-титано-кобальтового твердого сплава из порошков, полученных электроэрозионным диспергированием отходов сплава Т5К10 в керосине
RU210733U1 (ru) Устройство для получения порошка на основе карбида бора