RU2686355C1 - Способ определения состава смешанного хладагента для установки сжижения природного газа - Google Patents
Способ определения состава смешанного хладагента для установки сжижения природного газа Download PDFInfo
- Publication number
- RU2686355C1 RU2686355C1 RU2018121938A RU2018121938A RU2686355C1 RU 2686355 C1 RU2686355 C1 RU 2686355C1 RU 2018121938 A RU2018121938 A RU 2018121938A RU 2018121938 A RU2018121938 A RU 2018121938A RU 2686355 C1 RU2686355 C1 RU 2686355C1
- Authority
- RU
- Russia
- Prior art keywords
- refrigerant
- natural gas
- composition
- mixed refrigerant
- determining
- Prior art date
Links
- 239000003507 refrigerant Substances 0.000 title claims abstract description 164
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 title claims abstract description 87
- 239000000203 mixture Substances 0.000 title claims abstract description 86
- 239000003345 natural gas Substances 0.000 title claims abstract description 39
- 238000000034 method Methods 0.000 title claims abstract description 24
- 238000004088 simulation Methods 0.000 claims abstract description 49
- 239000003949 liquefied natural gas Substances 0.000 claims abstract description 40
- 238000012546 transfer Methods 0.000 claims abstract description 10
- 238000004364 calculation method Methods 0.000 claims abstract description 9
- 238000001816 cooling Methods 0.000 claims description 67
- 239000002994 raw material Substances 0.000 claims description 15
- 238000004519 manufacturing process Methods 0.000 claims description 11
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 9
- 230000008859 change Effects 0.000 claims description 9
- 229910052757 nitrogen Inorganic materials 0.000 claims description 5
- 229930195733 hydrocarbon Natural products 0.000 claims description 3
- 150000002430 hydrocarbons Chemical class 0.000 claims description 3
- 125000004432 carbon atom Chemical group C* 0.000 claims description 2
- 230000008569 process Effects 0.000 abstract description 5
- 230000000694 effects Effects 0.000 abstract description 3
- 239000002826 coolant Substances 0.000 abstract 3
- 239000000126 substance Substances 0.000 abstract 1
- 239000007788 liquid Substances 0.000 description 25
- 239000007789 gas Substances 0.000 description 23
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 5
- 230000006835 compression Effects 0.000 description 5
- 238000007906 compression Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 239000000446 fuel Substances 0.000 description 4
- 239000001294 propane Substances 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 238000011144 upstream manufacturing Methods 0.000 description 4
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000004821 distillation Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000002262 irrigation Effects 0.000 description 3
- 238000003973 irrigation Methods 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 238000004781 supercooling Methods 0.000 description 3
- 102100026681 Chromobox protein homolog 8 Human genes 0.000 description 2
- 102000003688 G-Protein-Coupled Receptors Human genes 0.000 description 2
- 108090000045 G-Protein-Coupled Receptors Proteins 0.000 description 2
- 101000910841 Homo sapiens Chromobox protein homolog 8 Proteins 0.000 description 2
- 101000797296 Lytechinus pictus Actin, cytoskeletal 3 Proteins 0.000 description 2
- 101001051031 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) Mitochondrial pyruvate carrier 3 Proteins 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000004508 fractional distillation Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/0002—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
- F25J1/0022—Hydrocarbons, e.g. natural gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0032—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
- F25J1/0042—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by liquid expansion with extraction of work
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0047—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
- F25J1/0052—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0047—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
- F25J1/0052—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
- F25J1/0055—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream originating from an incorporated cascade
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0047—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
- F25J1/0052—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
- F25J1/0057—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream after expansion of the liquid refrigerant stream with extraction of work
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/006—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
- F25J1/008—Hydrocarbons
- F25J1/0087—Propane; Propylene
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0211—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
- F25J1/0214—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle
- F25J1/0215—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle with one SCR cycle
- F25J1/0216—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle with one SCR cycle using a C3 pre-cooling cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0228—Coupling of the liquefaction unit to other units or processes, so-called integrated processes
- F25J1/0235—Heat exchange integration
- F25J1/0237—Heat exchange integration integrating refrigeration provided for liquefaction and purification/treatment of the gas to be liquefied, e.g. heavy hydrocarbon removal from natural gas
- F25J1/0239—Purification or treatment step being integrated between two refrigeration cycles of a refrigeration cascade, i.e. first cycle providing feed gas cooling and second cycle providing overhead gas cooling
- F25J1/0241—Purification or treatment step being integrated between two refrigeration cycles of a refrigeration cascade, i.e. first cycle providing feed gas cooling and second cycle providing overhead gas cooling wherein the overhead cooling comprises providing reflux for a fractionation step
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0244—Operation; Control and regulation; Instrumentation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0244—Operation; Control and regulation; Instrumentation
- F25J1/0245—Different modes, i.e. 'runs', of operation; Process control
- F25J1/0249—Controlling refrigerant inventory, i.e. composition or quantity
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0279—Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
- F25J1/0281—Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc. characterised by the type of prime driver, e.g. hot gas expander
- F25J1/0283—Gas turbine as the prime mechanical driver
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0279—Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
- F25J1/0292—Refrigerant compression by cold or cryogenic suction of the refrigerant gas
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Separation By Low-Temperature Treatments (AREA)
Abstract
Предложен способ определения состава смешанного хладагента. При создании модели создается имитационная модель на основе рабочих параметров, полученных от устройства для сжижения природного газа, с определением условий подачи природного газа для получения сжиженного природного газа, охлажденного до заданной температуры, из устройства для сжижения природного газа. При расчете значения UA, получаемого путем умножения общего коэффициента теплопередачи криогенного теплообменника на площадь теплопередачи, значение UA криогенного теплообменника рассчитывается путем выполнения имитационной модели. При предварительном расчете общая потребляемая мощность рассчитывается путем выполнения имитационной модели для множества случаев смешанного хладагента с различным составом компонентов хладагента в новых условиях подачи природного газа. При определении состава состав смешанного хладагента в случае смешанного хладагента, в котором общая потребляемая мощность на единицу сжиженного природного газа становится наименьшей, устанавливают как состав смешанного хладагента в новых условиях подачи. Техническим результатом является уменьшение энергопотребления. 2 з.п. ф-лы, 3 ил., 2 табл.
Description
Область техники
[0001] Настоящее изобретение относится к технологии сжижения природного газа с применением смешанного хладагента, полученного путем смешивания множества охлаждающих компонентов.
Уровень техники
[0002] В устройстве для сжижения природного газа (далее «установка сжижения ПГ») осуществляют охлаждение подаваемого природного газа (ПГ) в нескольких последовательно соединенных теплообменниках для получения сжиженного природного газа (СПГ). В основном устройстве сжижения ПГ после предварительного охлаждения ПГ за счет применения хладагента предварительного охлаждения, такого как пропан, происходит сжижение и переохлаждение предварительно охлажденного ПГ в результате применения смешанного хладагента (СХ), полученного путем смешивания различных компонентов хладагента, таких как азот, метан, этан и пропан.
[0003] Установка сжижения ПГ предпочтительно сконструирована таким образом, что эффективное получение СПГ возможно после определения предварительных условий, таких как состав сырья и давление подачи ПГ, а также факторов окружающей среды (таких как температура окружающей среды и барометрическое давление) в месте расположения установки сжижения ПГ. В частности, СХ, полученный смешиванием множества компонентов хладагента, может обеспечить кривую охлаждения, в которой температура изменяется вдоль кривой охлаждения ПГ. Следовательно, возможно осуществление эффективного цикла сжижения с малыми потерями.
[0004] Однако в некоторых случаях состав сырья или давление подачи ПГ отличаются от значений, заданных в качестве предварительных условий во время проектирования, из-за изменений с течением времени природного газа, полученного из газовой скважины, переключения газовых скважин и тому подобного. Отклонение от значения, установленного в качестве одного из указанных выше предварительных условий, приводит к сокращению объема производства СПГ и увеличению потребляемой мощности устройством сжижениям ПГ для поддержания заданного объема производства, что приводит к потенциальному снижению эффективности эксплуатации установки сжижения ПГ (увеличение потребления энергии на единицу объема производства СПГ).
[0005] В патентной литературе 1 описана технология оптимизации совокупности заданных контролируемых переменных (например, разности температур между природным газом и испаренным СХ на теплом конце основного теплообменника (что соответствует «криогенному теплообменнику» в настоящей заявке) для сжижения природного газа и температурой сжиженного природного газа) путем настройки совокупности множества регулируемых переменных (таких как массовый расход тяжелой фракции и легкой фракции СХ, а также количества компонентов хладагента (соответствует «смешанному хладагенту» в настоящей заявке)), относящихся к работе основного теплообменника с использованием известного управления на основе прогнозирующих моделей.
Список литературы
Патентная литература
[0006] [Патентная литература 1] США 7266975
Сущность изобретения
Техническая задача
[0007] Однако управление на основе прогнозирующих моделей, описанное в патентной литературе 1, соответствует технологии создания модели откликов с использованием эмпирической зависимости отклика конкретной регулируемой переменной от изменения заданной регулируемой переменной в каждой из совокупностей регулируемых переменных для осуществления управления с применением модели отклика, в результате чего, например, объем производства СПГ становится максимальным. Следовательно, зависимость отклика регулируемой переменной и контролируемой переменной ограничено данными, полученными в ходе предшествующей эксплуатации установки сжижения ПГ.
[0008] В целом, каждый диапазон регулирования регулируемых переменных и допустимый диапазон изменения контролируемых переменных установки сжижения ПГ ограничен диапазоном, в котором установка сжижения ПГ позволяет эффективно получать СПГ в заранее определенных условиях, как описано выше. Следовательно, в случае изменения состава сырья или давления подачи ПГ, заданных в качестве предварительных условий, существует вероятность того, что в это время произойдет отклонение допустимого диапазона изменения от оптимального состояния, которое может быть реализовано на каждом из устройств, составляющих установку сжижения ПГ. По указанной причине после изменения состава сырья или давления подачи ПГ возможно более эффективное рабочее состояние, чем полученное в результате управления на основе прогнозирующих моделей.
[0009] Настоящее изобретение выполнено с учетом описанного выше уровня техники, задачей изобретения является обеспечение способа определения состава смешанного хладагента, подходящего для новых условий подачи природного газа, даже после изменения по меньшей мере одного из условий подачи природного газа.
Решение задачи
[0010] Согласно одному из вариантов реализации настоящего изобретения предложен способ определения состава смешанного хладагента для устройства сжижения природного газа, при этом устройство сжижения природного газа включает:
теплообменник предварительного охлаждения, выполненный с возможностью предварительного охлаждения природного газа с помощью хладагента предварительного охлаждения;
криогенный теплообменник, выполненный с возможностью сжижения предварительно охлажденного природного газа с помощью смешанного хладагента, содержащего множество компонентов хладагента, выбранных из группы компонентов хладагента, состоящей из азота и углеводородов, число атомов углерода в которых составляет от 1 до 3; а также
множество компрессоров, выполненных с возможностью сжатия газообразного хладагента предварительного охлаждения и газообразного смешанного хладагента, при этом способ включает:
создание имитационной модели, в которую обеспечена возможность ввода информации о работе установки сжижения природного газа, причем информация о работе необходима для расчета значения UA путем умножения общего коэффициента теплопередачи криогенного теплообменника на площадь теплопередачи, а также общей потребляемой мощности множества компрессоров на основе данных о работе устройства сжижения природного газа при определении состава сырья, давления подачи природного газа и состава смешанного хладагента для получения сжиженного природного газа, охлажденного до заданной температуры;
расчет значения UA путем выполнения имитационной модели с использованием состава смешанного хладагента, а также состава сырья и давления подачи природного газа во время получения данных о работе;
предварительный расчет общей потребляемой мощности путем выполнения имитационной модели, скорректированной таким образом, что значение UA криогенного теплообменника становится равным значению UA, которое является результатом расчета значения UA для множества случаев смешанного хладагента, в которых состав множества компонентов хладагента отличается от состава смешанного хладагента во время получения данных о работе в новых условиях подачи, в которых изменено по меньшей мере одно условие из состава сырья или давления подачи природного газа; а также
определение, в качестве состава смешанного хладагента в новых условиях подачи, состава смешанного хладагента в случае смешанного хладагента, в котором общая потребляемая мощность в расчете на единицу сжиженного природного газа становится наименьшей среди результатов выполнения имитационной модели соответственно для множества случаев смешанного хладагента, полученных при предварительном расчете общей потребляемой мощности.
[0011] Способ определения состава смешанного хладагента для устройства сжижения природного газа может иметь следующие характеристики.
(a) Смешанный хладагент содержит четыре компонента хладагента.
Способ дополнительно включает:
определение предварительного количества первого компонента хладагента, имеющего самое высокое давление пара среди множества компонентов хладагента, содержащихся в смешанном хладагенте, при котором разность температур между температурой сжиженного природного газа в верхней части башни криогенного теплообменника и температурой смешанного хладагента для охлаждения сжиженного природного газа в верхней части башни становится равной или меньше максимальной разности температур, необходимой для получения сжиженного природного газа, охлажденного до заданной температуры, путем выполнения имитационной модели, скорректированной таким образом, что значение UA криогенного теплообменника становится равным значению UA, которое является результатом расчета значения UA при изменении содержания первого компонента хладагента; а также
определение предварительного количества второго компонента хладагента, имеющего самое низкое давление пара среди множества компонентов хладагента, содержащихся в смешанном хладагенте, при котором разность температур между температурой природного газа в нижней части башни криогенного теплообменника и температурой смешанного хладагента для охлаждения природного газа в нижней части башни становится равным или меньше максимальной разности температур, необходимой для получения сжиженного природного газа, охлажденного до заданной температуры, путем выполнения имитационной модели, скорректированной таким образом, что значение UA криогенного теплообменника становится равным значению UA, которое является результатом расчета значения UA при изменении содержания второго компонента хладагента.
Во множестве случаев смешанного хладагента при предварительном расчете общей потребляемой мощности множество компонентов хладагента содержит первый компонент хладагента, содержащийся в предварительном количестве, полученном при определении предварительного количества первого компонента хладагента, а также второй компонент хладагента, содержащийся в предварительном количестве, полученном при определении предварительного количества второго компонента хладагента.
(б) Во множестве случаев смешанного хладагента при предварительном расчете общей потребляемой мощности содержание первого компонента хладагента устанавливают в пределах диапазона величиной ±0,5% от уровня содержания первого компонента хладагента в смешанном хладагенте при предварительном количестве первого компонента хладагента, содержание второго компонента хладагента устанавливают в пределах диапазона величиной ±0,5% от уровня содержания второго компонента хладагента в смешанном хладагенте при предварительном количестве второго компонента хладагента, а содержание остальных двух компонентов хладагента, кроме первого компонента хладагента и второго компонента хладагента, изменяют.
Преимущества изобретения
[0012] В соответствии с одним из вариантом реализации настоящего изобретения значение UA, полученное путем умножения общего коэффициента теплопередачи криогенного теплообменника на площадь теплообмена, рассчитывают с помощью имитационной модели установки сжижения ПГ, созданной на основе фактических рабочих параметров. Затем имитационную модель создают в новых условиях подачи, в которых по меньшей мере одно условие из состава сырья или давления подачи природного газа изменяется при настройке таким образом, что значение UA криогенного теплообменника становится равным расчетному значению UA. Затем на основе результатов выполнения имитационной модели для множества случаев смешанного хладагента, в которых состав компонентов хладагента изменен по сравнению с составом смешанного хладагента на время получения рабочих параметров, состав смешанного хладагента в случае смешанного хладагента, в котором общая потребляемая мощность на единицу сжиженного природного газа (далее «общая потребляемая мощность на единицу СПГ») становится наименьшей, устанавливается как состав смешанного хладагента в новых условиях подачи. Таким образом, может быть выбран состав смешанного хладагента с меньшим энергопотреблением.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
[0013] Фигура 1 представляет собой пояснительную схему, на которой представлен пример конфигурации установки сжижения ПГ.
Фигура 2 представляет собой пояснительный график, на котором представлены кривые охлаждения для ПГ и хладагентов в устройстве сжижения ПГ.
Фигура 3 представляет собой пояснительную диаграмму, на которой представлен пример способа определения состава СХ, применяемого для сжижения ПГ в устройстве сжижения ПГ.
Описание вариантов реализации изобретения
[0014] Далее со ссылкой на Фигуру 1 описан пример установки сжижения ПГ, для которой применен способ определения состава СХ в соответствии с вариантом реализации настоящего изобретения.
Как показано на Фигуре 1, установка сжижения ПГ в данном варианте реализации включает теплообменники предварительного охлаждения 101 - 104, предназначенные для предварительного охлаждения ПГ в результате применения хладагента предварительного охлаждения, скрубберную колонну 2, предназначенную для отделения тяжелой фракции от ПГ, главный криогенный теплообменник (ГКТО) 3, выполненный с возможностью сжижения предварительно охлажденного ПГ, и компрессоры 41, 42 и 51, предназначенные для сжатия газообразного хладагента предварительного охлаждения и газообразного СХ после теплообмена.
[0015] После предварительной обработки с целью удаления ртути, кислого газа и воды, содержащихся в ПГ, в блоке предварительной обработки (не показан), ПГ, подаваемый из устья скважины, направляют в теплообменники предварительного охлаждения 101 - 104. В установке сжижения ПГ согласно данному варианту реализации ПГ, который подают при температуре, например, от 40 до 50°С, охлаждают до температуры примерно -30°С с помощью хладагента предварительного охлаждения на основе пропана (далее также указан как «хладагент C3»), например, в последовательно соединенных четырехступенчатых теплообменниках предварительного охлаждения 101 - 104 после предварительной обработки.
[0016] Выше по потоку относительно трубопроводов для подачи хладагента C3 соответственно в теплообменники предварительного охлаждения 101 - 104 предусмотрены расширительные клапаны (на фигуре не показаны). Потоки хладагента C3, подвергнутые адиабатическому расширению для понижения температуры с помощью расширительных клапанов, соответственно подают в теплообменники предварительного охлаждения 101 - 104. В результате ПГ охлаждают в теплообменниках предварительного охлаждения 101 - 104 с помощью потоков хладагента C3 (на Фигуре 1 обозначены соответственно как «HPC3», «MPC3», «LPC3» и «LLPC3»), при этом корректируют уровни давления для постепенного снижения в направлении потока ПГ от стороны впуска (теплообменник предварительного охлаждения 101) к стороне выпуска (теплообменник предварительного охлаждения 104).
[0017] Скрубберная колонна 2 предназначена для фракционной перегонки ПГ, предварительно охлажденного в теплообменниках предварительного охлаждения 101 - 104, в газ, содержащий большое количество метана, в верхней части скрубберной колонны 2, и жидкость, содержащую большое количество углеводородных компонентов тяжелее метана, в нижней части скрубберной колонны 2. В скрубберной колонне 2 данного варианта реализации предусмотрен ребойлер 201, выполненный с возможностью нагрева жидкости, извлеченной из нижней секции скрубберной колонны 2, и возврата нагретого газа и жидкости в скрубберную колонну 2.
[0018] Газ, выходящий из верхней части скрубберной колонны 2, протекает по трубам для ПГ в описанном далее нижнем пучке, входящем в ГКТО 3, и подвергается охлаждению с помощью СХ, имеющего относительно высокую температуру около нижней части башни ГКТО 3, с целью частичного сжижения. Затем поток газожидкостной смеси ПГ, извлеченной из труб в нижнем пучке, подают в емкость орошения 202 для разделения газожидкостной смеси. После разделения газожидкостной смеси жидкость с помощью насоса для орошения 203 возвращают в скрубберную колонну, а газ вводят в трубы для ПГ в среднем пучке ГКТО 3.
[0019] Кроме того, жидкость, вытекающую из нижней части скрубберной колонны 2, разделяют на конденсат, который представляет собой жидкость при нормальной температуре, и газ легче конденсата в ректификационной установке 21, включающей ректификационную колонну (на фигуре не показана). Отделенный от конденсата газ подают в ГКТО 3.
[0020] В конструкции ГКТО 3 в данном варианте реализации большое количество труб для ПГ и СХ расположены в направлении потока СХ внутри корпуса, в котором СХ стекает вниз от верхней части башни к нижней части башни. ПГ и СХ протекают по трубам от нижней части башни к верхней части башни в направлении, противоположном направлению потока СХ внутри корпуса.
[0021] Указанное выше большое количество труб для ПГ и СХ собрано в пучок. Пучок труб можно разделить на три зоны, а именно, верхний пучок, расположенный в области корпуса в верхней части башни, средний пучок и нижний пучок соответственно, расположенные в указанном порядке в области от нижней части верхнего пучка до нижней части корпуса. ГКТО 3, включающий разделенные таким образом три области, соответствующие верхнему пучку, среднему пучку и нижнему пучку, далее упоминается как «трехпучковый ГКТО 3».
Некоторые из труб для ПГ расположены так, что часть ПГ (ПГ, выходящего из верхней части описанной выше скрубберной колонны 2) извлекается из ГКТО 3 после протекания через нижний пучок. Некоторые из труб для СХ расположены так, что часть СХ (газ СХ, полученный в результате разделения газожидкостной смеси в сепараторе СХ 31, описанном далее) извлекают из ГКТО 3 после протекания через средний пучок и нижний пучок. Остальные трубы для ПГ и СХ расположены так, что ПГ и СХ извлекают из верхней части башни ГКТО 3 после протекания через нижний пучок, средний пучок и верхний пучок.
[0022] В ГКТО 3 газ после отделения от конденсата, который подается из описанного выше ректификационного устройства 21, вводят в трубы для ПГ в нижнем пучке для постепенного охлаждения с помощью СХ, протекающего в межтрубном пространстве. Газ, извлеченный из емкости орошения 202, описанной выше, соединяется с текучей средой. Затем указанные потоки газа (ПГ) направляются в средний пучок и верхний пучок для сжижения в процессе охлаждения. ПГ дополнительно подвергают переохлаждению и извлекают из верхней части башни ГКТО 3 в виде СПГ, охлажденного до температуры от примерно -150°С до примерно -155°С.
[0023] СПГ, вытекающий из ГКТО 3, подвергается рекуперации через расширительную турбину 33, а затем расширению с помощью расширительного клапана V5. После быстрого испарения азота и части легких компонентов в испарительной емкости 61 для корректировки температуры кипения СПГ на уровне примерно -161°С происходит отвод в резервуар для СПГ (не показан). Легкие компоненты, которые быстро испаряются из СПГ в конечной испарительной емкости 61, используются, например, в качестве газового топлива на заводе, на котором эксплуатируют установку сжижения ПГ.
[0024] Далее следует описание потока СХ для сжижения и переохлаждения ПГ в ГКТО 3 (цикл СХ). СХ, который используют для охлаждения ПГ, извлекают в виде СХ низкого давления (при температуре примерно -40°C и давлении примерно 3,5 бар) в газообразном состоянии из нижней части корпуса ГКТО 3. После отделения капель от СХ низкого давления во всасывающем барабане 413 давление СХ низкого давления повышают от низкого давления до среднего давления в компрессоре 41 СХ низкого давления. Кроме того, СХ среднего давления охлаждают в дополнительном охладителе 411. После отделения капель от СХ среднего давления во всасывающем барабане 423 давление СХ среднего давления, охлажденного в дополнительном охладителе 411, повышают от среднего давления до высокого давления (до давления от 50 бар до 55 бар) в компрессоре СХ высокого давления 42. Кроме того, СХ высокого давления охлаждают в дополнительном охладителе 421 (до температуры примерно +30°С).
[0025] Компрессоры СХ 41 и 42 соответственно приводятся в действие приводными устройствами 412 и 422, такими как газовые турбины, в которых в качестве топлива используют ПГ, паровые турбины, которые приводятся в действие паром, полученным при сжигании газового топлива, или электродвигателями. Каждый из дополнительных охладителей 411 и 421 состоит, например, из теплообменника с воздушным охлаждением, включающего пучок труб, образованный путем связывания большого количества труб, через которые протекает СХ после выпуска из одного из соответствующих компрессоров СХ 41 и 42, и вентилятора, предназначенного для подачи воздуха к пучку труб или теплообменнику с водяным охлаждением.
[0026] СХ высокого давления дополнительно охлаждают хладагентом C3 в охлаждающих установках 431 - 434, а затем подают в виде жидкой смеси газа и жидкости в сепаратор СХ 31, где выполняют разделение газожидкостной смеси. Как и в теплообменниках предварительного охлаждения 101 - 104, СХ высокого давления охлаждают также в охлаждающих установках 431 - 434 потоками хладагента C3, которые были подвергнуты расширению для понижения температуры с помощью расширительных клапанов, и уровни их давления постепенно снижаются от впуска (охлаждающее устройство 431) к выпуску (охлаждающее устройство 434) в направлении потока СХ высокого давления (для удобства иллюстрации уровни давления потоков хладагента C3 «HPC3», «MPC3», «LPC3» и «LLPC3» для охлаждающих устройств 431 - 443 на фигуре не представлены).
[0027] После того, как газ СХ (при температуре от примерно -30°C до примерно -40°C), полученный разделением газожидкостной смеси в сепараторе СХ 31, вводят в трубки для СХ их нижней части башни ГКТО 3, газ СХ охлаждается при протекании через нижний пучок, средний пучок и верхний пучок и затем извлекается из верхней части башни ГКТО 3 (при температуре от примерно -150°C до примерно -155°С). После расширения с помощью расширительного клапана V1 СХ, извлеченный из ГКТО 3, подают в межтрубное пространство ГКТО 3 через отверстие 302, предусмотренное в верхней части башни ГКТО 3.
[0028] С другой стороны, после введения жидкого СХ (при температуре от примерно -30°C до примерно -40°C), полученного в результате газожидкостной сепарации в сепараторе СХ 31, в трубы для СХ со стороны нижней части башни ГКТО 3 жидкий СХ охлаждают при протекании через нижний пучок и средний пучок и затем извлекают из ГКТО 3 (при температуре от примерно -120°C до примерно -125°C). После того, как жидкий СХ, извлеченный из среднего пучка, подвергают рекуперации через расширительную турбину 32 и затем расширяют с помощью расширительного клапана V2, жидкий СХ вводят в межтрубное пространство ГКТО 3 через отверстие 301, расположенное ниже указанного отверстия 302 для газообразного СХ (ниже верхнего пучка).
[0029] После того, как СХ, введенный в межтрубное пространство ГКТО 3 через отверстия 302 и 301, расположенные на двух вертикальных уровнях, соответствующих верхнему уровню и нижнему уровню, использован для сжижения и переохлаждения ПГ, протекающего по трубам для ПГ, а также для охлаждения газообразного СХ и жидкого СХ, проходящих через трубки для СХ, СХ извлекают из нижней части башни ГКТО 3 в виде СХ низкого давления, который затем снова подают в компрессор СХ низкого давления 41.
[0030] В описанном выше цикле СХ трубопровод отбора для удаления газообразного СХ и трубопровод отбора для удаления жидкого СХ за пределы установки сжижения ПГ соответственно отходят от трубопровода для извлечения газообразного СХ из сепаратора СХ 31 для подачи извлеченного газообразного СХ в ГКТО 3 и трубопровода для извлечения жидкого СХ из сепаратора СХ 31 для подачи извлеченного жидкого СХ в ГКТО 3. Подачу СХ в ГКТО 3 можно регулировать путем изменения степени открытия клапанов V1 и V2. Компоненты СХ можно корректировать, изменив степень открытия выпускных клапанов V3 и V4.
[0031] Кроме того, например, в положении выше по потоку относительно всасывающего барабана 413, который предусмотрен вместе с компрессором СХ низкого давления 41, обеспечены трубы подачи компонентов СХ, обеспечивающие добавление по отдельности азота (N2), метана (C1), этана (C2) и пропана (С3), которые представляют собой компоненты СХ. Добавление компонентов хладагента из труб для подачи компонентов СХ можно регулировать путем изменения степени открытия регулирующих клапанов V51 - V54.
[0032] Далее следует описание потока хладагента C3 (цикл C3), который применяется для предварительного охлаждения ПГ и охлаждения СХ высокого давления. После теплообмена с ПГ в теплообменниках предварительного охлаждения 101 - 104 и теплообмена с СХ высокого давления в охлаждающих установках 431 - 443 от газообразного хладагента C3 отделяют капли во всасывающих емкостях 512 - 515. Потоки хладагента C3 подают со стороны всасывания компрессора C3 51, который выполняет, например, четырехступенчатое сжатие в соответствии с уровнями давления потоков хладагента C3.
[0033] Для удобства иллюстрации представлено отдельное изображение теплообменников предварительного охлаждения 101 - 104, охлаждающих установок 431 - 443 и расширительных клапанов, соответственно предусмотренных выше по потоку относительно теплообменников предварительного охлаждения 101 - 104, а охлаждающие установки 431 - 443 в цикле C3 не изображены. Теплообменники предварительного охлаждения, охлаждающие установки и расширительные клапаны, описанные выше, вместе обозначены как «устройство теплообмена хладагента С3 50».
Аналогично компрессорам СХ 41 и 42, компрессор С3 51 приводится в действие приводным устройством 511, таким как газовая турбина, в которой в качестве топлива используют ПГ, паровая турбина, которая приводится в действие паром, полученным при сжигании газового топлива, или электродвигатель.
[0034] Хладагент C3, сжатый до заданного давления в компрессоре C3 51, охлаждают в пароохладителе 521 и конденсаторе 522. После сбора в сепараторе 53 конденсированный хладагент С3 снова направляют в расширительные клапаны, предусмотренные выше по потоку относительно теплообменника предварительного охлаждения 101 и охлаждающей установки 431, входящих в устройство теплообмена хладагента С3 50. Как и дополнительный охладитель 411 со стороны компрессора СХ 41 и дополнительный охладитель 421 со стороны компрессора СХ 42, пароохладитель 521 и конденсатор 522 соответственно состоят из, например, теплообменников с воздушным охлаждением или теплообменников с водяным охлаждением.
[0035] Пример конфигурации установки сжижения ПГ описан выше со ссылкой на Фигуру 1. Однако конфигурация установки сжижения ПГ, для которого возможно применение способа определения состава СХ согласно варианту реализации настоящего изобретения, не ограничивается приведенным выше примером. Конфигурация установки сжижения ПГ может быть применена для множества модификаций существующих установок сжижения ПГ.
[0036] Например, количество стадий сжатия компрессора C3 51 может составлять три или пять. В указанном случае количество установленных теплообменников предварительного охлаждения 101 - 104 и охлаждающих установок 431 - 444 может быть увеличено или уменьшено в соответствии с количеством стадий сжатия компрессора С3 51. Кроме того, между сепаратором 53 и устройством теплообмена хладагента С3 50 может быть предусмотрен переохладитель для переохлаждения хладагента С3.
Кроме того, конфигурация ГКТО 3 не ограничивается описанным выше трехпучковым типом, а также может быть двухпучкового типа, включающего верхний пучок и нижний пучок.
[0037] В следующем далее описании применение способа определения состава СХ в соответствии с вариантом реализации настоящего изобретения для установки сжижения ПГ, изображенной на Фигуре 1, представлено как типичный пример различных вариантов установок сжижения ПГ.
Установка сжижения ПГ, предназначенная для предварительного охлаждения ПГ с помощью хладагента предварительного охлаждения и сжижения ПГ с помощью СХ, спроектирована таким образом, что возможно охлаждение ПГ в соответствии с кривой охлаждения, представленной на Фигуре 2. На горизонтальной оси на Фигуре 2 показаны изменения энтальпии ПГ, хладагента С3 и СХ, а на вертикальной оси - температуры указанных жидкостей. На Фигуре 2 сплошная линия и линия с чередующимися длинными и короткими штрихами указывают кривую охлаждения ПГ. Пунктирная линия с длинными штрихами представляет кривую охлаждения хладагента С3 (показана как «цикл предварительного охлаждения»), а пунктирная линия с короткими штрихами представляет кривую охлаждения СХ (показана как «цикл сжижения»).
[0038] После того, как ПГ, поданный на вход теплообменника предварительного охлаждения 101 при температуре, например, 40°C, предварительно охлажден в многостадийном цикле предварительного охлаждения (для удобства изображения на Фигуре 2 представлен трехстадийный цикл предварительного охлаждения) с помощью хладагента C3, ПГ подвергают дальнейшему сжижению и переохлаждению в цикле сжижения с применением СХ в ГКТО 3.
В цикле сжижения определяют состав СХ, содержащего N2, C1, C2 и C3 (уровни содержания компонентов хладагента в СХ), на основе проектных данных состава сырья и давления подачи ПГ из устья скважины.
[0039] Однако состав сырья или давление подачи ПГ в установку сжижения ПГ время от времени меняется из-за изменения условий добычи ПГ из устья скважины, переключения скважин, из которых получают ПГ или тому подобного.
Например, линия с чередующимися длинными и короткими штрихами на Фигуре 2 представляет пример кривой охлаждения ПГ, который является более тяжелым по сравнению с ПГ, имеющим кривую охлаждения, обозначенную сплошной линией. В данном случае разность температур между ПГ и СХ в ГКТО 3 увеличивается, и эффективность сжижения ПГ понижается. С другой стороны, если ПГ становится легче, а разность температур между СХ и ПГ в ГКТО 3 является очень малой, технологические возможности ГКТО 3 ограничиваются.
[0040] Для решения описанной выше задачи в данном варианте реализации вместо состава СХ, который обычно используют в неизменном виде, определяют новый состав СХ, который позволяет осуществлять эффективную переработку в соответствии с изменениями состава сырья или давления подачи ПГ.
Далее приведен пример способа определения состава СХ согласно варианту реализации настоящего изобретения со ссылкой на Фигуру 3.
[0041] Сначала создают имитационную модель установки сжижения ПГ (стадия создания модели: P1). Имитационная модель может быть создана с помощью известного имитатора процесса, описывающего отдельные операции, которые выполняет в устройстве сжижения ПГ каждое из устройств, такие как теплообмен в теплообменниках предварительного охлаждения 101 - 104 и ГКТО 3, фракционная перегонка ПГ в скрубберной колонне 2 и сжатие каждого из потоков газообразного хладагента в компрессорах 41, 42 и 51.
[0042] В имитационной модели установлены рабочие параметры, такие как состав сырья, давление подачи и температура подачи ПГ, давление и температура каждой из текучих сред в ГКТО 3, а также скорость потока, давление и температура каждого из хладагентов, таких как C3 и СХ. Указанные рабочие параметры устанавливают на основе фактических рабочих параметров установки сжижения ПГ, для которых определяют состав нового СХ. Например, на Фигуре 1 манометр (PI), термометр (TI), расходомер (FI), анализатор состава (AI) и измеритель мощности компрессора (SC), от которых получают рабочие параметры, обведены пунктирными линиями. Например, средние значения величин, измеренных указанными выше измерительными устройствами в течение заданного периода времени, могут использоваться в качестве рабочих параметров.
[0043] На основе созданной имитационной модели установки сжижения ПГ путем умножения общего коэффициента теплопередачи ГКТО 3 на площадь теплообмена и мощность, потребляемую каждым из компрессоров 41, 42, и 51, можно рассчитать значение UA.
Значение UA может быть рассчитано на основе зависимости UA=q/LMTD, где количество передаваемой теплоты за единицу времени от ПГ к СХ в ГКТО 3 равно q, и среднелогарифмическая разность температур (LMTD) между температурой ПГ и температурой СХ в ГКТО 3 составляет LMTD. Количество передаваемой теплоты q и разность температур LMTD получают в результате выполнения имитационной модели.
[0044] Кроме того, работу, которая выполняется в каждом из компрессоров 41, 42 и 51, рассчитывают на основе скорости потока, температуры, давления на входе и давления на выходе СХ или хладагента предварительного охлаждения. На основе эффективности (отношения работы к входной мощности) каждого из компрессоров 41, 42 и 51 можно определить потребляемую мощность. Общее значение потребляемой мощности всех компрессоров 41, 42 и 51 получают как общую потребляемую мощность.
[0045] После создания имитационной модели имитационную модель выполняют с использованием состава СХ, состава сырья и давления подачи ПГ в момент получения рабочих параметров. При достаточном соответствии рассчитанных значений рабочим параметрам имитационная модель может быть оценена как модель, надлежащим образом описывающая установку сжижения ПГ, которая является целью исследования.
[0046] Затем на основании результата выполнения имитационной модели рассчитывают значение UA (стадия расчета значения UA: P2). Как описано выше, имитационная модель соответствующим образом описывает состояние установки сжижения ПГ в момент получения рабочих параметров. Поэтому можно утверждать, что значение UA, вычисленное на основе результата выполнения имитационной модели, также является показателем, который соответствующим образом выражает охлаждающую способность ГКТО 3 во время получения рабочих параметров.
[0047] Затем состав СХ изменяют, корректируя имитационную модель таким образом, что значение UA ГКТО 3 становится равным вычисленному значению UA в новых условиях подачи ПГ, в которых по меньшей мере одно условие из состава сырья или давления подачи изменено по сравнению с условиями подачи, установленными во время создания имитационной модели. Необязательно, чтобы результате корректировки, выполненной для того, чтобы «значение UA для ГКТО 3 равнялось рассчитанному значению UA», значение UA и вычисленное значение UA были точно равны друг другу. Значения UA могут иметь отклонение, например, от примерно ± 1% до примерно ± 2% в зависимости от точности, которая требуется для имитационной модели.
[0048] Как описано выше, значение UA выражено как отношение количества передаваемой теплоты в единицу времени в ГКТО 3 к разности температур между ПГ и СХ. Поэтому для корректировки значений UA корректируют параметры, влияющие на значения количества передаваемой теплоты и разности температур. В качестве примеров параметров можно привести количество СПГ, степени открытия расширительных клапанов V1 и V2 и тому подобное. Кроме того, при необходимости может быть отрегулировано открытие выпускных клапанов V3 и V4 для отвода газообразного СХ и жидкого СХ или открытие регулирующих клапанов V51, V52, V53 и V54 соответственно, предусмотренных в линиях подачи компонентов СХ.
[0049] Для обеспечения эффективного охлаждения, подобного представленному кривой охлаждения, обозначенной сплошной линией на Фигуре 2, даже для нового состава СХ, определяют предварительное количество компонента хладагента с самым высоким давлением пара (N2 в данном варианте реализации) (PAH) и предварительное количество компонента хладагента с самым низким давлением пара (C3 в данном варианте реализации) (PAL) (стадия определения первого предварительного количества и второго предварительного количества: P3).
[0050] Для PAH создают имитационную модель, корректируя содержание N2 в СХ и значение UA ГКТО 3 , чтобы оно было равно рассчитанному значению UA в условиях, включающих новый состав и давление подачи ПГ. Расход N2 при разности температур между температурой ПГ в верхней части башни ГКТО 3 и температурой СХ в верхней части башни, равной или меньшей максимальной разности температур, которая требуется для получения СПГ, охлажденного до предварительно заданной температуры (заданная температура в диапазоне от -150°С до -155°С в данном варианте реализации) получают как PAH (стадия определения первого предварительного количества). На указанной стадии содержание компонентов хладагента, отличных от N2 , определяют на стадии определения второго предварительного количества и стадии предварительного расчета в качестве последующий стадий. Поэтому для содержания остальных компонентов хладагента устанавливают временные значения (например, для текущего содержания C1, C2 и C3).
[0051] Затем создают имитационную модель для PAL, корректируя содержание C3 в СХ и значение UA ГКТО 3, чтобы оно было равно рассчитанному значению UA в условиях, включающих новый состав и давление подачи ПГ. Расход C3 при разности температур между температурой ПГ в нижней части башни ГКТО 3 и температурой СХ для охлаждения ПГ в нижней части башни ГКТО 3, равной или меньшей максимальной разности температур, которая требуется для получения СПГ, охлажденного до заданной температуры, получают как PAL (стадия определения второго предварительного количества). На указанной стадии содержания компонентов хладагента, отличных от C3 и N2, определяют на стадии определения первого предварительного количества, описанной выше, а остальные два компонента хладагента (C1 и C2) определяют на стадии предварительного расчета на следующем этапе. Поэтому для содержания остальных компонентов хладагента устанавливают временные значения (например, для текущего содержания C1 и C2).
[0052] Затем для множества случаев СХ, в которых содержание остальных компонентов хладагента (C1 и C2) изменяют в условиях нового состава и давления подачи ПГ в пределах диапазона ограничений, обусловленных PAH и PAL, выполняют имитационную модель, которую корректируют таким образом, что значение UA ГКТО 3 становится равным рассчитанному значению UA. В это время содержание N2 и C3 в СХ не обязательно точно равно PAH и PAL соответственно. Например, уровень содержания каждого из N2 и С3 может отличаться в пределах диапазона величиной ±0,5% от уровня содержания каждого из компонентов хладагента в PAH и PAL (например, в пределах от 9,5% до 10,5% в случае, в котором уровень содержания N2 в СХ при PAH составляет 10%).
Для множества случаев СХ, для которых выполнена имитационная модель, получают общую потребляемую мощность компрессоров 41, 42 и 51 (стадия предварительного расчета: P4).
[0053] Кроме того, на основании результатов определения полной потребляемой мощности для множества случаев СХ рассчитали удельную мощность установки (PSP: общая потребляемая мощность на единицу СПГ), которая представляет собой значение, полученное путем деления общей потребляемой мощности на ориентировочное значение выхода СПГ из установки сжижения ПГ. Состав СХ в случае СХ, в котором значение PSP становится минимальным, определяют как состав СХ, подходящий для нового состава и давления подачи ПГ (стадия определения состава: P5).
После определения состава СХ, подходящего для новых условий подачи, выполняют корректировку для определения состава СХ, фактически циркулирующего через установку сжижения ПГ, близкого к значениям, определенным на стадии определения состава, путем корректировки открытия регулирующих клапанов V51 - V54.
[0054] В соответствии со способом определения состава СХ для установки сжижения ПГ в данном варианте реализации обеспечены следующие результаты. В частности, значение UA, полученное путем умножения общего коэффициента теплопередачи ГКТО 3 на поверхность теплообмена, рассчитывают с использованием имитационной модели установки сжижения ПГ, созданной на основе фактических рабочих параметров. Имитационную модель выполняют в новых условиях подачи, в которых по меньшей мере одно условие из состава сырья или давления подачи ПГ изменяют при корректировке таким образом, что значение UA ГКТО 3 становится равным расчетному значению UA. Затем на основании результатов создания имитационной модели для множества случаев СХ, в которых состав компонентов хладагента отличается от состава СХ во время получения рабочих параметров, состав СХ в случае СХ, в котором общая потребляемая мощность на единицу СПГ становится наименьшей, определяют в качестве состава СХ в новых условиях подачи. Поэтому можно выбрать состав СХ, при котором потребляемая мощность ниже.
[0055] Для определения состава СХ в новых условиях подачи ПГ необязательно использовать способ изменения содержания остальных компонентов хладагента (C1 и C2) в условиях, при которых содержание N2 и C3 в СХ соответственно корректируются до PAH и PAL после определения PAH и PAL.
В качестве альтернативы имитационную модель выполняют для множества случаев СХ, в том числе случая с текущим составом СХ, и таким образом рассчитывают PSP. Когда случай СХ, в котором PSP становится наименьшим, является случаем СХ, отличным от случая с текущим составом СХ, эффективность работы установки сжижения ПГ может быть улучшена.
[0056] Необязательно, чтобы СХ содержал все компоненты хладагента, включенные в группу компонентов хладагента, состоящую из N2, C1, C2 и C3. Если СХ содержит множество компонентов хладагента, выбранных из группы компонентов хладагента, случай СХ, в котором PSP становится наименьшим, может быть определен на основании результата выполнения имитационной модели для множества случаев СХ.
[Пример]
[0057] Далее на основе варианта реализации настоящего изобретения описано влияние изменения состава СХ на PSP, которое определяют при изменении по меньшей мере одного из условий подачи ПГ.
В данном примере для случая, в котором среднюю молекулярную массу ПГ, подаваемого при заданном давлении в установку сжижения ПГ, изображенную на Фигуре 1, увеличили с 17,15 до 18,29, влияние изменения состава СХ на PSP было проверено с помощью имитационной модели. Использовали СХ, содержащий N2, C1, C2 и C3 в качестве компонентов хладагента. В таблицах ниже средняя молекулярная масса указана как совокупный показатель вместо отдельных показателей уровня содержания компонентов хладагента. Для создания имитационной модели использовали имитатор технологического процесса UNISIM (торговая марка) от компании Honeywell International Inc.
[0058] (Справочные примеры)
Имитационная модель была создана с использованием текущих рабочих параметров установки сжижения ПГ. Для ПГ, средняя молекулярная масса которого составляет 17,15 до увеличения средней молекулярной массы ПГ, PSP были получены путем выполнения имитационной модели для случаев СХ, в которых средняя молекулярная масса СХ постепенно увеличивалась. Указанные PSP приведены в качестве справочных примеров 1 - 5 в Таблице 1.
Согласно результатам, представленным в Таблице 1, отношение PSP является минимальным в Справочном примере 3, соответствующем случаю СХ, в котором средняя молекулярная масса составляла 25,73. В случае СХ в Справочном примере 3 содержание компонентов хладагента составляло 13% мол. для N2, 40% мол. для С1, 36% мол. для С2 и 11% мол. для С3.
Таблица 1
Справочный пример 1 | Справочный пример 2 | Справочный пример 3 | Справочный пример 4 | Справочный пример 5 | |||
СХ | Средняя молекулярная масса СХ | - | 25,31 | 25,60 | 25,73 | 25,80 | 25,87 |
Установка сжижения ПГ | PSP | кВт-ч/т | 312,1 | 302,3 | 299,0 | 300,1 | 302,8 |
Коэфф. PSP | - | 1,000 | 0,968 | 0,958 | 0,963 | 0,970 | |
Коэффициент выхода СПГ | - | 1 | 1 | 1 | 1 | 1 | |
Отношение значения UA | - | 1 | 1 | 1 | 1 | 1 |
[0059] (Пример)
Имитационная модель была выполнена в новых условиях подачи, в которых средняя молекулярная масса ПГ была увеличена до 18,29 для случая СХ со средней молекулярной массой СХ, составляющей 25,87, а содержание компонентов хладагента составляло 13% мол. для N2, 39% мол. для С1, 37% мол. для С2 и 11% мол. для С3, таким образом рассчитали PSP, общую потребляемую мощность и выход СПГ. Для выполнения имитационной модели скорректировали значение UA для ГКТО 3 таким образом, чтобы оно было равно значению UA в Справочных примерах 1 - 5.
(Сравнительный пример)
Имитационную модель была выполнена в новых условиях подачи, в которых среднюю молекулярную массу ПГ увеличили до 18,29 для случая СХ, соответствующего Справочному примеру 3, таким образом рассчитали PSP, общую потребляемую мощность и выход СПГ тем же способом, что и в Примере.
Результаты Примера и Сравнительного примера приведены в Таблице 2. Аналогичные данные для Справочного примера 3 также приведены в Таблице 2.
[Таблица 2]
Средняя молекулярная масса ПГ | Средняя молекулярная масса СХ | PSP | Общая потребляемая мощность | Выход СПГ | |
- | - | кВт-ч/т | МВт | т/ч | |
Пример | 18,29 | 25,87 | 292 | 182,7 | 626 |
Сравнительный пример | 18,29 | 25,73 | 296 | 182,7 | 617 |
Справочный пример 3 | 17,15 | 25,73 | 299 | 182,7 | 611 |
[0060] В соответствии с результатами, представленными в Таблице 2, PSP была больше в Сравнительном примере со случаем СХ, соответствующим Справочному примеру 3, в котором PSP была минимальной до того, как увеличили среднюю молекулярную массу ПГ. С другой стороны, выход СПГ стал больше в Примере, в котором средняя молекулярная масса СХ была увеличена (что соответствует случаю СХ в Справочном примере 5). В результате PSP стала меньше.
В соответствии с описанными выше результатами можно утверждать, что при изменении по меньшей мере одного из условий подачи ПГ применяют и выполняют имитационную модель, созданную с использованием рабочих параметров, а значение UA корректируют, чтобы оно стало равным рассчитанному значению UA для множества случаев СХ (случаи СХ в Примере и Сравнительном примере) для расчета и сравнения PSP. В результате может быть определен СХ, подходящий для новых условий подачи.
Список обозначений
[0061] 101-104 теплообменник предварительного охлаждения
3 ГКТО
41 компрессор СХ низкого давления
42 компрессор СХ среднего давления
412, 422 приводное устройство
431 - 434 охлаждающая установка
50 устройство теплообмена хладагента C3
51 компрессор C3
511 приводное устройство
Claims (16)
1. Способ определения состава смешанного хладагента для устройства сжижения природного газа, при этом устройство сжижения природного газа содержит:
теплообменник предварительного охлаждения, выполненный с возможностью предварительного охлаждения природного газа с помощью хладагента предварительного охлаждения;
криогенный теплообменник, выполненный с возможностью сжижения предварительно охлажденного природного газа с помощью смешанного хладагента, содержащего множество компонентов хладагента, выбранных из группы компонентов хладагента, состоящей из азота и углеводородов с числом атомов углерода от 1 до 3; и
множество компрессоров, выполненных с возможностью сжатия газообразного хладагента предварительного охлаждения и газообразного смешанного хладагента,
при этом способ включает:
создание имитационной модели, в которую обеспечена возможность ввода информации о работе устройства сжижения природного газа, причем информация о работе необходима для расчета значения UA, получаемого путем умножения общего коэффициента теплопередачи криогенного теплообменника на площадь теплопередачи, а также общей потребляемой мощности множества компрессоров на основе данных о работе, полученных от устройства сжижения природного газа, при определении состава сырья, давления подачи природного газа и состава смешанного хладагента для получения сжиженного природного газа, охлажденного до заданной температуры;
расчет значения UA путем выполнения имитационной модели, созданной при создании имитационной модели, с использованием состава смешанного хладагента, а также состава сырья и давления подачи природного газа во время получения данных о работе;
предварительный расчет общей потребляемой мощности путем выполнения имитационной модели, скорректированной таким образом, что значение UA криогенного теплообменника становится равным значению UA, которое является результатом расчета значения UA для множества случаев смешанного хладагента, в которых состав множества компонентов хладагента отличается от состава смешанного хладагента во время получения данных о работе в новых условиях подачи, в которых изменено по меньшей мере одно условие из состава сырья или давления подачи природного газа; и
определение, в качестве состава смешанного хладагента в новых условиях подачи, состава смешанного хладагента в случае смешанного хладагента, когда общая потребляемая мощность в расчете на единицу сжиженного природного газа становится наименьшей среди результатов выполнения имитационной модели соответственно для множества случаев смешанного хладагента, полученных при предварительном расчете общей потребляемой мощности.
2. Способ определения состава смешанного хладагента для устройства сжижения природного газа по п. 1, в котором:
смешанный хладагент содержит четыре компонента хладагента;
при этом способ дополнительно включает:
определение предварительного количества первого компонента хладагента, имеющего самое высокое давление пара среди множества компонентов хладагента, содержащихся в смешанном хладагенте, при котором разность температур между температурой сжиженного природного газа в верхней части башни криогенного теплообменника и температурой смешанного хладагента для охлаждения сжиженного природного газа в верхней части башни становится равной или меньше максимальной разности температур, необходимой для получения сжиженного природного газа, охлажденного до заданной температуры, путем выполнения имитационной модели, скорректированной таким образом, что значение UA криогенного теплообменника становится равным значению UA, которое является результатом расчета значения UA при изменении содержания первого компонента хладагента; и
определение предварительного количества второго компонента хладагента, имеющего самое низкое давление пара среди множества компонентов хладагента, содержащихся в смешанном хладагенте, при котором разность температур между температурой природного газа в нижней части башни криогенного теплообменника и температурой смешанного хладагента для охлаждения природного газа в нижней части башни равно или меньше максимальной разности температур, необходимой для получения сжиженного природного газа, охлажденного до заданной температуры, путем выполнения имитационной модели, скорректированной таким образом, что значение UA криогенного теплообменника становится равным значению UA, которое является результатом расчета значения UA при изменении содержания второго компонента хладагента; а также
во множестве случаев смешанного хладагента при предварительном расчете общей потребляемой мощности множество компонентов хладагента содержит первый компонент хладагента, содержащийся в предварительном количестве, полученном при определении предварительного количества первого компонента хладагента, и второй компонент хладагента, содержащийся в предварительном количестве, полученном при определении предварительного количества второго компонента хладагента.
3. Способ определения состава смешанного хладагента для устройства сжижения природного газа по п. 2, в котором во множестве случаев смешанного хладагента при предварительном расчете общей потребляемой мощности содержание первого компонента хладагента устанавливают в пределах диапазона величиной ±0,5% от уровня содержания первого компонента хладагента в смешанном хладагенте при определении предварительного количества первого компонента хладагента, и содержание второго компонента хладагента устанавливают в пределах диапазона величиной ±0,5% от уровня содержания второго компонента хладагента в смешанном хладагенте при определении предварительного количества второго компонента хладагента и изменяют содержание остальных двух компонентов хладагента, отличных от первого компонента хладагента и второго компонента хладагента.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2016/057651 WO2017154181A1 (ja) | 2016-03-10 | 2016-03-10 | 天然ガス液化装置の混合冷媒組成の決定方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2686355C1 true RU2686355C1 (ru) | 2019-04-25 |
Family
ID=59789145
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2018121938A RU2686355C1 (ru) | 2016-03-10 | 2016-03-10 | Способ определения состава смешанного хладагента для установки сжижения природного газа |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP6286812B2 (ru) |
MY (1) | MY190843A (ru) |
RU (1) | RU2686355C1 (ru) |
WO (1) | WO2017154181A1 (ru) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019017421A1 (ja) * | 2017-07-19 | 2019-01-24 | 千代田化工建設株式会社 | Lng生産量予測システム |
JP7144462B2 (ja) | 2018-02-15 | 2022-09-29 | 千代田化工建設株式会社 | プラント運転条件設定支援システム及び運転条件設定支援装置 |
RU2751049C9 (ru) * | 2018-02-19 | 2022-04-26 | ДжГК Корпорейшн | Установка для сжижения природного газа |
WO2020012637A1 (ja) * | 2018-07-13 | 2020-01-16 | 千代田化工建設株式会社 | 天然ガス液化装置の混合冷媒組成の決定方法 |
CN109404718B (zh) * | 2018-12-13 | 2023-12-19 | 国能龙源环保有限公司 | 减少油品储罐VOCs排放量与密封氮气消耗量的系统及方法 |
JP6781851B1 (ja) * | 2019-05-13 | 2020-11-04 | 日揮グローバル株式会社 | 運転指針探索方法、及び運転指針探索システム |
AU2019456245A1 (en) | 2019-07-10 | 2022-01-27 | Jgc Corporation | Operation analysis method of natural gas plant |
JP7429600B2 (ja) * | 2020-05-19 | 2024-02-08 | 大陽日酸株式会社 | 天然ガス液化装置及びその起動方法 |
WO2021240689A1 (ja) * | 2020-05-27 | 2021-12-02 | 千代田化工建設株式会社 | 液化天然ガスプラントの運転条件決定方法及びそのシステム |
WO2022137296A1 (ja) * | 2020-12-21 | 2022-06-30 | 日揮グローバル株式会社 | 複合天然ガス処理システム |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6325481A (ja) * | 1986-07-10 | 1988-02-02 | エア・プロダクツ・アンド・ケミカルズ・インコ−ポレイテツド | 多成分冷媒系の自動制御システム |
RU2060431C1 (ru) * | 1992-07-24 | 1996-05-20 | Эр Продактс Энд Кемикалз, Инк. | Способ управления процессом сжижения газа |
RU2142605C1 (ru) * | 1997-07-24 | 1999-12-10 | Эр Продактс Энд Кемикалз, Инк. | Способ и устройство для регулируемого контроля выработки и температуры в оборудовании со смешанным хладагентом, предназначенном для сжижения природного газа |
US20040255615A1 (en) * | 2003-01-31 | 2004-12-23 | Willem Hupkes | Process of liquefying a gaseous, methane-rich feed to obtain liquefied natural gas |
JP2012531576A (ja) * | 2009-07-03 | 2012-12-10 | シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ | 冷却された炭化水素流を製造する方法及び装置 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EA026653B1 (ru) * | 2010-03-25 | 2017-05-31 | Дзе Юниверсити Оф Манчестер | Способ охлаждения |
-
2016
- 2016-03-10 JP JP2017550787A patent/JP6286812B2/ja active Active
- 2016-03-10 RU RU2018121938A patent/RU2686355C1/ru active
- 2016-03-10 MY MYPI2018001158A patent/MY190843A/en unknown
- 2016-03-10 WO PCT/JP2016/057651 patent/WO2017154181A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6325481A (ja) * | 1986-07-10 | 1988-02-02 | エア・プロダクツ・アンド・ケミカルズ・インコ−ポレイテツド | 多成分冷媒系の自動制御システム |
RU2060431C1 (ru) * | 1992-07-24 | 1996-05-20 | Эр Продактс Энд Кемикалз, Инк. | Способ управления процессом сжижения газа |
RU2142605C1 (ru) * | 1997-07-24 | 1999-12-10 | Эр Продактс Энд Кемикалз, Инк. | Способ и устройство для регулируемого контроля выработки и температуры в оборудовании со смешанным хладагентом, предназначенном для сжижения природного газа |
US20040255615A1 (en) * | 2003-01-31 | 2004-12-23 | Willem Hupkes | Process of liquefying a gaseous, methane-rich feed to obtain liquefied natural gas |
JP2012531576A (ja) * | 2009-07-03 | 2012-12-10 | シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ | 冷却された炭化水素流を製造する方法及び装置 |
Also Published As
Publication number | Publication date |
---|---|
MY190843A (en) | 2022-05-12 |
JPWO2017154181A1 (ja) | 2018-03-15 |
JP6286812B2 (ja) | 2018-03-07 |
WO2017154181A1 (ja) | 2017-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2686355C1 (ru) | Способ определения состава смешанного хладагента для установки сжижения природного газа | |
JP4879730B2 (ja) | メタンに富むガス状原料を液化して液化天然ガスを得る方法 | |
KR100521705B1 (ko) | 액화 천연가스를 획득하기 위하여 메탄이 풍부한기체원료를 액화시키는 방법 | |
RU2170894C2 (ru) | Способ распределения нагрузки в процессе каскадного охлаждения | |
RU2226660C2 (ru) | Способ ожижения потока газа (варианты) | |
RU2716099C1 (ru) | Модульное устройство для отделения спг и теплообменник газа мгновенного испарения | |
JP5726184B2 (ja) | 冷却された炭化水素流を製造する方法及び装置 | |
CN107869881B (zh) | 混合制冷剂冷却过程和系统 | |
EA000800B1 (ru) | Способ извлечения конденсацией и отгонкой ароматических и/или высокомолекулярных углеводородов из сырья на основе метана и устройство для его осуществления | |
AU2023237164A1 (en) | Liquefaction system | |
CN115993043A (zh) | 用混合制冷剂来冷却气体的方法 | |
RU2751049C9 (ru) | Установка для сжижения природного газа | |
WO2016103295A1 (ja) | 冷凍装置 | |
WO2009103715A2 (en) | Method and apparatus for cooling and separating a hydrocarbon stream | |
Tirandazi et al. | Effect of valve pressure drop in exergy analysis of C2+ recovery plants refrigeration cycles | |
TWI856372B (zh) | 混合製冷劑系統和方法 | |
JP6470482B1 (ja) | 天然ガス液化装置の混合冷媒組成の決定方法 | |
WO2021255876A1 (ja) | 天然ガス液化装置 | |
Ujile et al. | Research Article Performance Evaluation of Refrigeration Units in Natural Gas Liquid Extraction Plant |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PD4A | Correction of name of patent owner | ||
PC41 | Official registration of the transfer of exclusive right |
Effective date: 20210226 |