RU2685359C1 - Метод построения сетевых приоритетных путей миграции газа, а также отвода и добычи газа - Google Patents

Метод построения сетевых приоритетных путей миграции газа, а также отвода и добычи газа Download PDF

Info

Publication number
RU2685359C1
RU2685359C1 RU2018140552A RU2018140552A RU2685359C1 RU 2685359 C1 RU2685359 C1 RU 2685359C1 RU 2018140552 A RU2018140552 A RU 2018140552A RU 2018140552 A RU2018140552 A RU 2018140552A RU 2685359 C1 RU2685359 C1 RU 2685359C1
Authority
RU
Russia
Prior art keywords
hole
cracks
crack
roof
gas
Prior art date
Application number
RU2018140552A
Other languages
English (en)
Inventor
Байцюань ЛИНЬ
Тун ЛЮ
Тин ЛЮ
Вэй Ян
Хэ ЛИ
Жуй ВАН
Чжэн ВАН
Original Assignee
Китайский Университет Горного Дела И Технологии
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Китайский Университет Горного Дела И Технологии filed Critical Китайский Университет Горного Дела И Технологии
Application granted granted Critical
Publication of RU2685359C1 publication Critical patent/RU2685359C1/ru

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F7/00Methods or devices for drawing- off gases with or without subsequent use of the gas for any purpose
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/17Interconnecting two or more wells by fracturing or otherwise attacking the formation
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • E21B43/263Methods for stimulating production by forming crevices or fractures using explosives

Abstract

Изобретение относится к горному делу и может быть использовано для дегазации угольных пластов. Техническим результатом является обеспечение простого и эффективного способа извлечения газа метана из отрабатываемых пластов. Предложен метод построения сетевых приоритетных путей миграции газа, а также отвода и извлечения газа, который включает в себя следующие этапы: определение графической характеристики распределения напряжения рабочей поверхности и определение длины L изменения продвижения напряжения; на противоположных местах в основном вентиляционном штреке (2) и боковом вентиляционном штреке с ограниченным входом (1) соответственно создают отверстие образования трещины (4) вовнутрь устойчивой кровли (14) над угольным пластом (8) в направлении, обращенном к рабочей поверхности (7), выполняя контурное бурение глубокой скважины путем подрывного процесса в отверстии образования трещины (4) таким образом, что большое количество трещин созданы взрывной работой и сформированы вокруг отверстия образования трещины (4) внутри устойчивой кровли (14), ослабляя соединение между устойчивой кровлей (14) и вышележащим пластом устойчивой кровли (20), а также вызывая и ускоряя образование трещин от отделения слоев (18). Далее в месте, где сконструировано отверстие образования трещины (4), строится направленное распространение трещины и расширение отверстия (5) внутри устойчивой кровли (14) над угольным пластом (8) в направлении, обращенном к рабочей поверхности (7), выполняя контурное бурение глубокой скважины путем подрывного процесса в направленном распространении трещины и расширении отверстия (5) таким образом, что большое количество трещин формируются вокруг направленного распространения трещины и расширения отверстия (5) и соединены с трещинами, образованными вокруг отверстия образования трещины (4), чтобы обеспечить контроль над изменением и развитием трещин. Затем в месте, где сконструировано отверстие образования трещины (4), строится отверстие ответвления разрыва (3) вовнутрь устойчивой кровли (14) над угольным пластом (8) в направлении, обращенном к рабочей поверхности (7) для ослабления зоны ответвления устойчивой кровли (14) и контролирования положения ответвления разрыва устойчивой кровли (14). Далее в месте, где сконструировано отверстие образования трещины (4), строится отверстие соединения трещины (6) вовнутрь устойчивой кровли (14) над угольным пластом (8) в направлении, противоположном рабочей поверхности (7), выполняя контурное бурение глубокой скважины путем подрывного процесса в отверстии соединения трещины (6) таким образом, что отверстие соединения трещины (6) соединяется с трещинами, сформированными вокруг отверстия образования трещины (4), направленного распространения трещины и расширения отверстия (5), а также отверстия ответвления разрыва (3), в конечном счете формируя группу искусственно направляемых трещин (15), имеющих конкретные направления и морфологические характеристики внутри устойчивой кровли (14). Затем выполняется выемка угла на рабочей поверхности (7) обычным способом. Также осуществляют построение скважин для отвода и извлечения газа (11) в зоне разрыва от отделения пластов (19) над выработанным пространством (9) в ограниченной выработке (10) за рабочей поверхностью (7) и осуществление централизованного отвода и извлечения газа (16) в зоне разрыва отделения пластов (19). 4 з.п. ф-лы, 3 ил.

Description

ПРЕДПОСЫЛКИ СОЗДАНИЯ ИЗОБРЕТЕНИЯ
Область технического применения
Настоящее изобретение относится к методу построения сетевых приоритетных путей миграции газа, а также отвода и добычи газа, который в частности применяется при активном строительстве сетевой структуры путей разрывов внутри кровли, а также при отводе газа и выполнении контроля при условии, что угольный пласт покрывает устойчивая кровля.
Уровень техники
Китай имеет сложные условия залегания подземных угольных пластов. Условия залегания в кровле и подошве угольного пласта влияют на распределение напряжения перемычки и изменчивость трещин в слое углеродной породы и, следовательно, влияют на порядок миграции и направления прохождения добычи газа. При наличии условия покрытия толстослойной устойчивой кровли, ввиду устойчивой и компактной кровли, то процесс формирования и изменения трещин затрудняется. Быстрое формирование путей разрывов в кровле является сложным, если оно осуществляется исключительно путем воздействия напряжения, вызванного ведением горных работ. Кроме того, устойчивая кровля имеет относительно большую прочность и не разрушается легко, и поэтому большая территория кровли легко формируется в выработанном пространстве. Трудно, чтобы пути разрывов и пространство отделения пластов были быстро сконструированы и сформированы внутри устойчивой кровли под воздействием влияния, вызванного ведением горных работ, и газ не может мигрировать и легко скапливаться вдоль путей разрывов в кровле. Большое количество газа скапливается в выработанном пространстве, что приводит к избытку газа. Кроме того, большая площадь кровли внезапно рушится для проталкивания газа, который скапливается в выработанном пространстве, чтобы вылиться на рабочую поверхность. В результате безопасность производства на рабочей поверхности оказывается под серьезной угрозой, а контроль за газом становится затрудненным. Как построить пути миграции газа внутри кровли над угольным пластом в покрытии толстослойной устойчивой кровли, чтобы реализовать эффективный отвод и контроль над газом, становящегося проблемой, которая срочно должна быть решена для безопасной и эффективной добычи угольных пластов.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
Техническая задача: Целью настоящего изобретения является преодоление недостатков предшествующего уровня техники и предоставление метода построения сетевых приоритетных путей миграции газа, а также отвода и добычи газа, который является простым, действенным, научным и эффективным, а также который может эффективно решать такие проблемы, как трудности в генерации трещин внутри толстого слоя устойчивой кровли, скопление газа в выработанном пространстве, затруднение прохождения и концентрация газа по приоритетным путям миграции, а также проблемы с отводом газа.
Для достижения вышеуказанной цели метод построения сетевых приоритетных путей миграции газа, а также отвода и извлечение газа в рамках настоящего изобретения создает искусственно направляемые трещины вокруг отверстия образования трещины, направленного распространения трещины и расширения отверстия, а также отверстия ответвления разрыва и отверстия соединения трещины, используя контурное бурение глубокой скважины путем подрывного процесса, и включает в себя следующие этапы:
a. в соответствии с залеганиями угольного пласта и кровли, определение графической характеристики распределения напряжения рабочей поверхности и определение длины L зоны изменения продвижения напряжения;
b. на противоположных местах в основном вентиляционном штреке и боковом вентиляционном штреке с ограниченным входом соответственно, которые находятся на расстоянии длиной L от зоны изменения продвижения напряжения перед рабочей поверхностью, создается соответственно отверстие образования трещины вовнутрь устойчивой кровли над угольным пластом в направлении, обращенном к рабочей поверхности, выполняя контурное бурение глубокой скважины путем подрывного процесса в отверстии образования трещины, таким образом, что большое количество трещин создаются путем проведения взрывных работ и формируются вокруг отверстия образования трещины внутри устойчивой кровли, ослабляя соединение между устойчивой кровлей и вышележащим пластом устойчивой кровли, а также вызывая и ускоряя образование трещин при отделении пластов;
c. в месте, где сконструировано отверстие образования трещины, строится направленное распространение трещины и расширение отверстия в устойчивой кровле над угольным пластом в направлении, обращенном к рабочей поверхности, выполняя контурное бурение глубокой скважины путем подрывного процесса в направленном распространении трещины и расширении отверстия, таким образом что большое количество трещин формируются вокруг направленного распространения трещины и расширения отверстия и соединены с трещинами, образованными вокруг отверстия образования трещины, чтобы обеспечить контроль над изменением и развитием трещин;
d. в месте, где сконструировано отверстие образования трещины, делается отверстие ответвления разрыва вовнутрь устойчивой кровли над угольным пластом в направлении, обращенном к рабочей поверхности для ослабления зоны ответвления устойчивой кровли и контроля положения ответвления разрыва устойчивой кровли;
e. в месте, где сконструировано отверстие образования трещины, делается отверстие соединения трещины вовнутрь устойчивой кровли над угольным пластом в направлении, противоположном рабочей поверхности, выполняя контурное бурение глубокой скважины путем подрывного процесса в отверстии соединения трещины, таким образом что отверстие соединения трещины соединяется с трещинами, сформированными вокруг отверстия образования трещины, направленного распространения трещины и расширения отверстия, а также отверстия ответвления разрыва, в конечном счете формируя группу искусственно направляемых трещин, имеющих конкретные направления и морфологические характеристики внутри устойчивой кровли, которая находится на расстоянии длиной L от зоны изменения продвижения напряжения;
е. выполняется выемка на рабочей поверхности обычным способом, при этом во время выемки напряжение, вызванное ведением горных работ, увеличивается до достижения пиковой точки напряжения, напряжение, вызванное ведением горных работ, вызывает образование трещин в угольном пласте и устойчивой кровле, газ внутри угольного пласта начинает десорбироваться и рассеиваться, а вокруг группы искусственно направляемых трещин, образованных внутри устойчивой кровли, образуется большое количество новых трещин, которые соединяются с трещинами, образованными при разработке месторождения;
g. каждый раз рабочая поверхность продвигается на 1/2 длины L зоны изменения продвижения напряжения, повторяя этапы от b до е, при которых делается группа отверстий для искусственно направляемых трещин;
h. по мере того, как рабочая поверхность продвигается, напряжение, вызванное ведением горных работ, начинает падать с пиковой точки напряжения, где уменьшение ограничивающего давления приводит к появлению большого количества трещин в устойчивой кровле, отверстие соединения трещины начинает продуцировать эффект соединения межгрупповых трещин, смежные искусственно направляемые трещины начинают соединяться друг с другом, сетевые приоритетные пути миграции газа формируются внутри устойчивой кровли, в то же время развитие трещин внутри устойчивой кровли и снижает жесткость и несущую способность устойчивой кровли, устойчивая кровля начинает проседать, начинают формироваться трещины от отделения пластов, а газ, десорбированный из угольного массива, начинает мигрировать и проходить вверх по сетевым приоритетным путям миграции газа и накапливаться в трещинах, вызванных отделением пластов;
i. по мере того, как рабочая поверхность продолжает продвигаться, трещины внутри устойчивой кровли дополнительно развиваются за рабочей поверхностью, где сетевые приоритетные пути миграции газа постепенно развиваются в полную форму, в то же время разрывы, образованные при отделении пластов, в кровле продолжают расширятся, а газ постепенно концентрируется внутри разрывов, полученных от отделения пластов, в кровле по сетевым приоритетным путям миграции газа;
формирование сетевых приоритетных путей миграции газа внутри устойчивой кровли снижает общую прочность и жесткость устойчивой кровли, время посадки и разрушения, а также протяженность устойчивой кровли уменьшаются, разрушение происходит за рабочей поверхностью, зона трещин разрыва от отделения пластов формируется над выработанным пространством, а газ в выработанном пространстве мигрирует вверх и концентрируется в зоне трещин разрыва от отделения пластов;
j. определение, в соответствии с расположениями выполненного отверстия образования трещины, направленного распространения трещины и расширения отверстия, а также характеристик залегания в кровле, местоположения зоны трещин разрыва от отделения пластов в кровле над выработанным пространством и расположений скважин для отвода и извлечения газа в ограниченной выработке;
k. построение скважин для отвода и извлечения газа в зоне разрыва от отделения пластов над выработанным пространством в ограниченной выработке за рабочей поверхностью и осуществление централизованного отвода и извлечения газа в зоне трещин разрыва от отделения пластов.
Высота забоя скважины в отверстии образования трещины составляет от 2 до 3 м над уровнем устойчивой кровлей.
Расстояние между концами двух направленных распространений трещин и расширения отверстия, противоположно сконструированных в основном вентиляционном штреке и боковом вентиляционном штреке с ограниченным входом не превышает 20 м, а расстояние b между концами двух отверстий образования трещин не превышает 1/3 от длины рабочей поверхности.
В ограниченной выработке делается множество скважин для отвода и извлечения газа.
Угол наклона α скважины для отвода и извлечения газа, построенной в ограниченной выработке, больше, чем угол наклона отверстия образования трещины.
Положительный эффект: В настоящем изобретении, ввиду проблем, наряду с которыми трудно сформировать путь миграции газа в кровле при условии устойчивой кровли, а также трудно реализовать избирательную концентрацию и централизованную добычу газа, активно строятся скважины для искусственно направляемых трещин в устойчивой кровле, в зоне изменения продвижения напряжения перед рабочей поверхностью, а также генерируются сетевые искусственно направляемые трещины внутри угольного массива. Посредством изменения напряжения, вызванного ведением горных работ, далее формируются сетевые приоритетные пути миграции газа. Газ проходит вверх по сетевым приоритетным путям миграции в кровле, тем самым решая проблему, из-за которой трудно создавать трещины устойчивой кровли, и в результате, высококонцентрированный газ скапливается в выработанном пространстве в течение длительного времени. Между тем, скважины для искусственно направляемых трещин вызывают образование сетевых трещин внутри устойчивой кровли, таким образом, что прочность и жесткость устойчивой кровли снижаются, период разрушения кровли сокращается, образование зоны трещин разрыва от отделения пластов в выработанном пространстве ускоряется, газ в выработанном пространстве концентрируется в зоне трещин разрыва от отделения пластов по сетевым путям трещин в кровле, а базовая точка обеспечивается в целях построения ориентаций скважин для добычи газа в кровле, чтобы создать желаемые условия для централизованного отвода и контроля газа в горной выработке. Скважины для искусственно направляемых трещин заранее активно строятся для активного построения и формирования сетевых приоритетных путей миграции газа внутри устойчивой кровли, таким образом что разрушение кровли ускоряется, чтобы обеспечить миграцию газу и его концентрацию в зоне трещин разрыва от отделения пластов в кровле во время прохождения по приоритетным путям, с тем чтобы облегчить централизованный отвод и контроль газа в горной выработке угольного пласта. Определенная часть проблем по газу, обусловленных устойчивыми кровлями, решаются эффективно, благодаря чему реализуются исследовательский контроль и активно управляемые потоки газа в горной выработке. Метод, предусмотренный настоящим изобретением, прост и предусматривает выполнение удобных операции, желаемые эффекты и широкую практичность в технической области.
КРАТКОЕ ОПИСАНИЕ СХЕМ
ФИГ. 1 представляет собой схематическое изображение метода построения сетевых приоритетных путей миграции газа в соответствии с настоящим изобретением;
ФИГ. 2 представляет собой схематическое изображение плана расположения скважин для искусственно направляемых трещин и отвода газа, а также скважин для отвода и извлечения газа в соответствии с настоящим изобретением; а также
ФИГ. 3 представляет собой схематическое изображение в разрезе расположения скважин для отвода и извлечения газа в направлении А-А', в месте расположения выработанного пространства согласно настоящему изобретению.
На чертежах: 1 - боковой вентиляционный штрек с ограниченным входом, 2 - основной вентиляционный штрек, 3 - отверстие ответвления разрыва, 4 - направленное распространение трещины и расширение отверстия, 5 - отверстие образования трещины, 6 - отверстие соединения трещины, 7 - рабочая поверхность, 8 - угольный пласт, 9 - выработанное пространство, 10 - ограниченная выработка, 11 - газодобывающая скважина, 12 - газовый трубопровод, 13 - кровля, 14 - устойчивая кровля, 15 - искусственно направляемая трещина, 16 - газ, 17 - приоритетный путь миграции газа, 18 - трещины от отделения пластов, 19 - зона трещин разрыва от отделения пластов, 20 - вышележащий пласт устойчивой кровли, 21 - кривая характеристики распределения напряжения, 22 - направление трещины устойчивой кровли, 23 - гидравлическая опора и 24 - глухая стена.
ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
Настоящее изобретение более подробно описано ниже со ссылкой на варианты его осуществления и сопроводительные чертежи:
Согласно методу построения сетевых приоритетных путей миграции газа, а также отвода и извлечения газа в рамках настоящего изобретения создаются искусственно направляемые трещины вокруг отверстия образования трещины (4), направленного распространения трещины и расширения отверстия (5), а также отверстия ответвления разрыва (3) и отверстия соединения трещины (6), используя контурное бурение глубокой скважины путем подрывного процесса. Конкретные меры заключаются в следующем:
a. в соответствии с залеганиями угольного пласта 8 и кровли 13, определение кривой характеристики распределения напряжения 21 рабочей поверхности и определение длины L зоны изменения продвижения напряжения;
b. на противоположных местах в основном вентиляционном штреке 2 и боковом вентиляционном штреке с ограниченным входом 1 соответственно, которые находятся на расстоянии длиной L от зоны изменения продвижения напряжения перед рабочей поверхностью 7, создается соответственно отверстие образования трещины 4 вовнутрь устойчивой кровли 14 над угольным пластом 8 в направлении, обращенном к рабочей поверхности 7, выполняя контурное бурение глубокой скважины путем подрывного процесса в отверстии образования трещины 4, таким образом, что большое количество трещин выполняются путем проведения подрывных работ и формируются вокруг отверстия образования трещины 4 внутри устойчивой кровли 14, ослабляя соединение между устойчивой кровлей 14 и вышележащим пластом устойчивой кровли 20, а также вызывая и ускоряя образование трещин от отделения пластов 18;
c. в месте, где сконструировано отверстие образования трещины 4, строится направленное распространение трещины и расширение отверстия 5 внутри устойчивой кровле 14 над угольным пластом 8 в направлении, обращенном к рабочей поверхности 7, выполняя контурное бурение глубокой скважины путем подрывного процесса в направленном распространении трещины и расширении отверстия 5, таким образом, что большое количество трещин формируются вокруг направленного распространения трещины и расширения отверстия 5 и соединены с трещинами, образованными вокруг отверстия образования трещины 4, чтобы обеспечить контроль над изменением и развитием трещин;
d. в месте, где сконструировано отверстие образования трещины 4, строится отверстие ответвления разрыва 3 вовнутрь устойчивой кровли 14 над угольным пластом 8 в направлении, обращенном к рабочей поверхности 7 для ослабления зоны ответвления устойчивой кровли 14 и контроля положения ответвления разрыва устойчивой кровли 14;
e. в месте, где сконструировано отверстие образования трещины 4, выполняется отверстие соединения трещины 6 вовнутрь устойчивой кровли 14 над угольным пластом 8 в направлении, противоположном рабочей поверхности 7, выполняя контурное бурение глубокой скважины путем подрывного процесса в отверстии соединения трещины 6, таким образом, что отверстие соединения трещины 6 соединяется с трещинами, сформированными вокруг отверстия образования трещины 4, направленного распространения трещины и расширения отверстия 5, а также отверстия ответвления разрыва 3, в конечном счете формируя группу искусственно направляемых трещин 15, имеющих конкретные направления и морфологические характеристики внутри устойчивой кровли 14, которая находится на расстоянии длиной L от зоны изменения продвижения напряжения;
f. выполняется выемка на рабочей поверхности 7 обычным способом, при этом во время выемки напряжение, вызванное ведением горных работ, увеличивается до достижения пиковой точки напряжения, напряжение, вызванное ведением горных работ, вызывает образование трещин в угольном пласте 8 и устойчивой кровле 14, газ 16 внутри угольного пласта 8 начинает десорбироваться и рассеиваться, а вокруг группы искусственно направляемых трещин 15, образованных внутри устойчивой кровли 14, образуется большое количество новых трещин, которые соединяются с трещинами, образованными при разработке месторождения;
g. каждый раз рабочая поверхность продвигается на 1/2 длины L зоны изменения продвижения напряжения, повторяя этапы от b до е, при которых делается группа отверстий для искусственно направляемых трещин;
h. по мере того, как рабочая поверхность продвигается, напряжение, вызванное ведением горных работ, начинает падать с пиковой точки напряжения, где уменьшение ограничивающего давления приводит к развитию большого количества трещин в устойчивой кровле 14, отверстие соединения трещины 6 начинает продуцировать эффект соединения межгрупповых трещин, смежные искусственно направляемые трещины 15 начинают соединяться друг с другом, сетевые приоритетные пути миграции газа 17 формируются внутри устойчивой кровли 14, в то же время развитие трещин внутри устойчивой кровли 14 снижает жесткость и несущую способность устойчивой кровли 14, устойчивая кровля 14 начинает проседать, начинают формироваться трещины от отделения пластов 18, а газ 16, десорбированный из угольного массива 8, начинает мигрировать и проходить вверх по сетевым приоритетным путям миграции газа 17 и накапливаться в трещинах от отделения пластов 18;
i. по мере того, как рабочая поверхность 7 продолжает продвигаться, за рабочей поверхностью 7 дополнительно развиваются трещины внутри устойчивой кровли 14, где сетевые приоритетные пути миграции газа 17 постепенно формируются в полную форму, в то же время разрывы от отделения пластов 18 в кровле продолжают увеличиваться, а газ 16 постепенно концентрируется внутри разрывов от отделения пластов 18 в кровле по сетевым приоритетным путям миграции газа 17;
формирование сетевых приоритетных путей миграции газа 17 внутри устойчивой кровли 14 снижает общую прочность и жесткость устойчивой кровли 14, время посадки и разрушения, а также протяженность устойчивой кровли 14 уменьшаются, разрушение происходит за рабочей поверхностью 7, зона трещин разрыва от отделения пластов 19 формируется над выработанным пространством 9, а газ 16 в выработанном пространстве 9 мигрирует вверх и концентрируется в зоне трещин разрыва от отделения пластов 19;
j. определение, в соответствии с расположениями выполненного отверстия образования трещины 4, направленного распространения трещины и расширения отверстия 5, а также характеристик залегания в кровле 13, местоположения зоны трещин разрыва от отделения пластов 19 в кровле над выработанным пространством 9 и расположений скважин для отвода и извлечения газа 11 в ограниченной выработке 10, где множество скважин для отвода и извлечения газа 11 сконструированы в ограниченной выработке 10, а угол наклона α скважины для отвода и извлечения газа 11, построенной в ограниченной выработке 10, больше, чем угол наклона отверстия образования трещины 4; а также
k. построение скважин для отвода и извлечения газа 11 в зоне трещин разрыва от отделения пластов 19 над выработанным пространством 9 в ограниченной выработке 10 за рабочей поверхностью 7 и осуществление централизованного отвода и извлечения газа 16 в зоне трещин разрыва от отделения пластов 19.
Вариант осуществления 1, толстослойная устойчивая кровля 14 покрывает кровлю в угольном пласте, толщина устойчивой кровли составляет 17 м, а протяженность рабочей поверхности - 150 м. Метод построения сетевых приоритетных путей миграции газа, а также отвода и извлечения газа выглядит следующим образом:
Как показано на ФИГ. 1, в первую очередь, анализируется характеристика распределения напряжения перед рабочей поверхностью в соответствии с залеганиями угольного пласта 8 и кровли 13. Наличие устойчивой кровли увеличивает протяженность зоны изменения продвижения напряжения. Из кривой характеристики распределения напряжения 21 перед рабочей поверхностью определяется, что длина зоны изменения продвижения напряжения составляет 50 м, то есть расстояние конструкции продвижения скважин для искусственно направляемых трещин. Как показано на ФИГ. 2, в месте, которое составляет 50 м перед рабочей поверхностью в основном вентиляционном штреке 2 и боковом вентиляционном штреке с ограниченным входом 1 рабочей поверхности 7 в направлении, обращенном к рабочей поверхности 7, построено отверстие образования трещины 4 в устойчивой кровле 14 над угольным пластом 8. Высота забоя скважины в отверстии образования трещины 4 составляет от 2 до 3 м над уровнем устойчивой кровли 14. Определено, что высота забоя скважины составляет 20 м. Контурное бурение глубокой скважины путем подрыва проводится в отверстии образования трещины 4. Подрыв осуществляется внутри устойчивой кровли 14, чтобы вызвать образование трещин, имеющих определенное направление. В то же время соединение между устойчивой кровлей 14 и вышележащим пластом устойчивой кровли 20 ослабевает, а также происходит и ускоряется образование трещин при отделении пластов 18. Направленное распространение трещины и расширение отверстия 5 строится внутри устойчивой кровли 14 над угольным пластом 8 в направлении, обращенном к рабочей поверхности 7, где после контурного бурения глубокой скважины путем проведения подрывных работ в направленном распространении трещины и расширении отверстия 5 трещины формируются вокруг направленного распространения трещины и расширения отверстия 5 и соединены с трещинами, образованными вокруг отверстия образования трещины 4, чтобы обеспечить контроль над изменением и развитием трещин. Для обеспечения эффекта обработки и дальности буровых скважин для искусственно направляемых трещин на устойчивой кровле 14, определяется, что расстояние между концами направленного распространения трещины и расширения отверстия 5 в основном вентиляционном штреке 2 и боковом вентиляционным штреком с ограниченным входом 1 рабочей поверхности 7 составляет 20 м. Расстояние между концами отверстий образования трещин 4 не превышает 1/3 длины рабочей поверхности, и это расстояние составляет 50 м. Отверстие ответвления разрыва 3 сконструировано вовнутрь устойчивой кровли 14 над угольным пластом 8, обращенным к рабочей поверхности 7 для ослабления зоны ответвления устойчивой кровли 14 и контроля положения ответвления разрыва устойчивой кровли 14. Отверстие соединения трещины 6 строится вовнутрь устойчивой кровли 14 над угольным пластом 8 в направлении, противоположном рабочей поверхности 7. Контурное бурение глубокой скважины путем выполнения подрыва выполняется в отверстии соединения трещины 6. Отверстие соединения трещины 6 соединяется с трещинами, сформированными отверстием образования трещины 4, направленным распространением трещины и расширением отверстия 5, а также отверстием ответвления разрыва 3. В конечном счете, искусственно направляемые трещины 15, имеющие конкретные направления и морфологические характеристики, формируются в месте, которое составляет 50 м перед рабочей поверхностью внутри устойчивой кровли 14. По мере того как происходит продвижение рабочей поверхности 7, напряжение, вызванное проведением горных работ, сначала увеличивается, достигая точки пика напряжения. В этом процессе напряжение, вызванное проведением горных работ, вызывает образование трещин в угольном пласте 8 и устойчивой кровле 14. Газ 16 внутри угольного пласта 8 начинает десорбироваться и рассеиваться, а вокруг группы искусственно направляемых трещин 15, образованных внутри устойчивой кровли 14, образуется большое количество новых трещин, которые соединяются с трещинами, образованными при разработке месторождения в целях развития. Напряжение, вызванное проведением горных работ, увеличивается до достижения пиковой точки напряжения, а после понижается. Уменьшение ограничивающего давления приводит к развитию большого количества трещин в устойчивой кровле 14, отверстие соединения трещины 6 начинает продуцировать эффект соединения межгрупповых трещин, смежные искусственно направляемые трещины 15 начинают соединяться друг с другом, сетевые приоритетные пути миграции газа 17 формируются внутри устойчивой кровли 14, в то же время развитие трещин внутри устойчивой кровли 14 снижает жесткость и несущую способность устойчивой кровли 14, устойчивая кровля 14 начинает проседать, начинают формироваться трещины от отделения пластов 18, а газ 16, десорбированный из угольного массива 8, начинает мигрировать и проходить вверх по сетевым приоритетным путям миграции газа 17 и накапливаться в трещинах от отделения пластов 18 По мере того, как рабочая поверхность 7 продолжает продвигаться, за рабочей поверхностью 7 дополнительно развиваются трещины внутри устойчивой кровли 14, где сетевые приоритетные пути миграции газа 17 развиваются в полную форму постепенно, в то же время разрывы отделения слоев 18 в кровле продолжают развиваться, а газ 16 постепенно концентрируется внутри разрывов от отделения пластов 18 в кровле по сетевым приоритетным путям миграции газа 17. Формирование сетевых приоритетных путей миграции газа 17 внутри устойчивой кровли 14 снижает общую прочность и жесткость устойчивой кровли 14, время посадки и разрушения, а также протяженность устойчивой кровли 14 уменьшаются, разрушение происходит на определенном расстоянии за рабочей поверхностью 7, зона трещин разрыва от отделения пластов 19 формируется над выработанным пространством 9, а газ 16 в выработанном пространстве 9 мигрирует вверх и концентрируется в зоне трещин разрыва от отделения пластов 19. Местоположения зоны трещин разрыва от отделения пластов 19 в кровле над выработанным пространством 9 и расположения скважин для отвода газа 11 в ограниченной выработке 10 определяются в соответствии с расположением построенных скважин для искусственно направляемых трещин и характеристиками залегания в кровле 13. Необходимо чтобы угол наклона α скважины для отвода и извлечения газа 11, построенной в ограниченной выработке 10, был больше, чем угол наклона отверстия образования трещины 4. Он рассчитывается в соответствии с высотой и шириной отверстия образования трещины 4, чтобы угол наклона отверстия образования трещины 4 составлял 22°. В соответствии с характеристикой разрыва пласта определяется, что угол наклона α скважин для отвода и добычи газа 11 составляет 25-30°. Как показано на ФИГ. 3, скважины для отвода и добычи газа 11 сконструированы в зоне трещин разрыва, вызванного отделением пластов 19 над выработанным пространством 9 в ограниченной выработке 10 за рабочей поверхностью 7, а централизованный отвод и контроль добычи производится с газом 16 в зоне трещин разрыва, обусловленного отделением пластов 19.

Claims (17)

1. Метод построения сетевых приоритетных путей миграции газа, а также отвода и извлечения газа, включающий в себя построение искусственно направляемых трещин вокруг отверстия образования трещины (4), направленного распространения трещины и расширения отверстия (5), а также отверстия ответвления разрыва (3) и отверстия соединения трещины (6), используя контурное бурение глубокой скважины путем выполнения подрывов, отличающийся тем, что метод включает в себя следующие этапы:
a. с учетом залегания угольного пласта (8) и кровли (13) определяют графическую характеристику распределения напряжения (21) рабочей поверхности и определяют длину L изменения продвижения напряжения;
b. на противоположных местах в основном вентиляционном штреке (2) и боковом вентиляционном штреке с ограниченным входом (1) соответственно, которые находятся на расстоянии длиной L от зоны изменения продвижения напряжения перед рабочей поверхностью (7), создают соответственно отверстие образования трещины (4) вовнутрь устойчивой кровли (14) над угольным пластом (8) в направлении, обращенном к рабочей поверхности (7), выполняя контурное бурение глубокой скважины путем подрывного процесса в отверстии образования трещины (4) таким образом, что большое количество трещин созданы взрывной работой и сформированы вокруг отверстия образования трещины (4) внутри устойчивой кровли (14), ослабляя соединение между устойчивой кровлей (14) и вышележащим пластом устойчивой кровли (20), а также вызывая и ускоряя образование трещин от отделения слоев (18);
c. в месте, где сконструировано отверстие образования трещины (4), строят направленное распространение трещины и расширение отверстия (5) внутри устойчивой кровли (14) над угольным пластом (8) в направлении, обращенном к рабочей поверхности (7), выполняя контурное бурение глубокой скважины путем подрывного процесса в направленном распространении трещины и расширении отверстия (5) таким образом, что большое количество трещин формируется вокруг направленного распространения трещины и расширения отверстия (5) и соединяется с трещинами, образованными вокруг отверстия образования трещины (4), чтобы обеспечить контроль над изменением и развитием трещин;
d. в месте, где сконструировано отверстие образования трещины (4), строят отверстие ответвления разрыва (3) вовнутрь устойчивой кровли (14) над угольным пластом (8) в направлении, обращенном к рабочей поверхности (7), для ослабления зоны ответвления устойчивой кровли (14) и контролируют положение ответвления разрыва устойчивой кровли (14);
е. в месте, где сконструировано отверстие образования трещины (4), строят отверстие соединения трещины (6) вовнутрь устойчивой кровли (14) над угольным пластом (8) в направлении, противоположном рабочей поверхности (7), выполняя контурное бурение глубокой скважины путем подрывного процесса в отверстии соединения трещины (6) таким образом, что отверстие соединения трещины (6) соединяется с трещинами, сформированными вокруг отверстия образования трещины (4), направленного распространения трещины и расширения отверстия (5), а также отверстия ответвления разрыва (3), в конечном счете формируя группу искусственно направляемых трещин (15), имеющих конкретные направления и морфологические характеристики внутри устойчивой кровли (14), которая находится на расстоянии длиной L от изменения продвижения напряжения;
е. выполняют выемку на рабочей поверхности (7) обычным способом, при этом во время выемки напряжение, вызванное ведением горных работ, увеличивается до достижения пиковой точки напряжения, напряжение, вызванное ведением горных работ, вызывает образование трещин в угольном пласте (8) и устойчивой кровле (14), газ (16) внутри угольного пласта (8) начинает десорбироваться и рассеиваться, а вокруг группы искусственно направляемых трещин (15), образованных внутри устойчивой кровли (14), образуется большое количество новых трещин, которые соединяются с трещинами, образованными в разработке месторождения;
g. каждый раз рабочая поверхность продвигается на 1/2 длины L зоны изменения продвижения напряжения, повторяя этапы от b до е, при которых делают группу отверстий для искусственно направляемых трещин;
h. по мере того как рабочая поверхность продвигается, напряжение, вызванное ведением горных работ, начинает падать с пиковой точки напряжения, где уменьшение ограничивающего давления приводит к развитию большого количества трещин в устойчивой кровле (14), отверстие соединения трещины (6) начинает продуцировать эффект соединения межгрупповых трещин, смежные искусственно направляемые трещины (15) начинают соединяться друг с другом, таким образом сетевые приоритетные пути миграции газа (17) формируются внутри устойчивой кровли (14), в то же время развитие трещин внутри устойчивой кровли (14) снижает жесткость и несущую способность устойчивой кровли (14), устойчивая кровля (14) начинает проседать, начинают формироваться трещины отделения пластов (18), а газ (16), десорбированный из угольного массива (8), начинает мигрировать и проходить вверх по сетевым приоритетным путям миграции газа (17) и накапливаться в трещинах отделения слоев (18);
i. по мере того как рабочая поверхность (7) продолжает продвигаться, трещины внутри устойчивой кровли (14) дополнительно развиваются за рабочей поверхностью (7), где сетевые приоритетные пути миграции газа (17) постепенно формируются в полную форму, в то же время разрывы от отделения пластов (18) в кровле продолжают расширяться, а газ (16) постепенно концентрируется внутри разрывов отделения слоев (18) в кровле по сетевым приоритетным путям миграции газа (17);
формирование сетевых приоритетных путей миграции газа (17) внутри устойчивой кровли (14) снижает общую прочность и жесткость устойчивой кровли (14), время посадки и разрушения, а также протяженность устойчивой кровли (14) уменьшаются, разрушение происходит за рабочей поверхностью (7), зона трещин разрыва от отделения слоев (19) в кровле формируется над выработанным пространством 9, а газ 16 в выработанном пространстве 9 мигрирует вверх и концентрируется в зоне трещин разрыва от отделения пластов 19;
j. определяют, в соответствии с расположениями построенного отверстия образования трещины (4), направленное распространение трещины и расширение отверстия (5), а также характеристики залегания в кровле (13), местоположение зоны трещин разрыва отделения пластов (19) в кровле над выработанным пространством (9) и расположение скважин для отвода и извлечения газа (11) в ограниченной выработке (10);
k. строят скважины для отвода и извлечения газа (11) в зоне разрыва от отделения пластов (19) над выработанным пространством (9) в ограниченной выработке (10) за рабочей поверхностью (7) и осуществляют централизованный отвод и извлечение газа (16) в зоне разрыва отделения пластов (19).
2. Метод по п. 1, отличающийся тем, что высота забоя скважины в отверстии образования трещины (4) составляет от 2 до 3 м над уровнем устойчивой кровли (14).
3. Метод по п. 1, отличающийся тем, что расстояние между концами двух направленных распространений трещин и расширения отверстия (5), противоположно сконструированных в основном вентиляционном штреке (2) и боковом вентиляционном штреке с ограниченным входом (1), не превышает 20 м, а расстояние b между концами двух отверстий образования трещин (4), противоположно сконструированных в основном вентиляционном штреке (2) и боковом вентиляционном штреке с ограниченным входом (1), не превышает 1/3 от длины рабочей поверхности (7).
4. Метод по п. 1, отличающийся тем, что множество скважин для отвода и извлечения газа (11) сконструированы в ограниченной выработке (10).
5. Метод по п. 1 или 4, отличающийся тем, что угол наклона α скважины для отвода и извлечения газа (11), построенной в ограниченной выработке (10), больше, чем угол наклона отверстия образования трещины (4).
RU2018140552A 2017-03-20 2017-12-01 Метод построения сетевых приоритетных путей миграции газа, а также отвода и добычи газа RU2685359C1 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201710166050.0A CN106948859B (zh) 2017-03-20 2017-03-20 一种网络化优势瓦斯运移通道构建及瓦斯导流抽采方法
CN201710166050.0 2017-03-20
PCT/CN2017/114229 WO2018171255A1 (zh) 2017-03-20 2017-12-01 一种网络化优势瓦斯运移通道构建及瓦斯导流抽采方法

Publications (1)

Publication Number Publication Date
RU2685359C1 true RU2685359C1 (ru) 2019-04-17

Family

ID=59472026

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018140552A RU2685359C1 (ru) 2017-03-20 2017-12-01 Метод построения сетевых приоритетных путей миграции газа, а также отвода и добычи газа

Country Status (5)

Country Link
US (1) US10487656B2 (ru)
CN (1) CN106948859B (ru)
AU (1) AU2017405410B2 (ru)
RU (1) RU2685359C1 (ru)
WO (1) WO2018171255A1 (ru)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106948859B (zh) * 2017-03-20 2018-07-27 中国矿业大学 一种网络化优势瓦斯运移通道构建及瓦斯导流抽采方法
CN106837408B (zh) * 2017-03-20 2018-08-21 中国矿业大学 一种煤层采场优势瓦斯运移通道阶梯式构建方法
CN109667562B (zh) * 2018-12-19 2021-12-07 中煤科工集团重庆研究院有限公司 采动体瓦斯井上下联合全域抽采方法
CN109600904B (zh) * 2019-01-08 2020-03-06 惠州学院 半导体激光加速器及其激光加速单元
CN110057634B (zh) * 2019-04-11 2021-09-07 东北石油大学 一种制造岩心裂缝的装置及方法
CN110173238A (zh) * 2019-05-27 2019-08-27 中国矿业大学(北京) 厚煤层立体化巷道布置网络化爆破增透抽采全厚瓦斯方法
CN111520183A (zh) * 2020-05-13 2020-08-11 安徽理工大学 厚层砂岩下煤层群开采爆破切顶卸压增透瓦斯治理方法
CN111608630B (zh) * 2020-06-22 2021-02-09 中国矿业大学 一种煤层群高位顶板水力压裂井下施工方法
CN112127939B (zh) * 2020-08-28 2023-12-05 晋城蓝焰煤业股份有限公司 一种采煤工作面初采期间瓦斯管控方法
RU2749707C1 (ru) * 2020-12-14 2021-06-16 федеральное государственное бюджетное образовательное учреждение высшего образования «Санкт-Петербургский горный университет» Способ дегазации надрабатываемых пластов-спутников
CN113062762B (zh) * 2021-03-26 2022-06-07 太原理工大学 一种提高高抽巷瓦斯抽采效率的方法
CN112796712B (zh) * 2021-03-26 2022-07-26 山西省煤炭地质勘查研究院 一种采空区与煤层压裂综合抽采方法
CN113266355A (zh) * 2021-05-31 2021-08-17 中煤科工开采研究院有限公司 一种沿空掘巷方法
CN113323715A (zh) * 2021-06-11 2021-08-31 中煤科工集团西安研究院有限公司 一种坚硬顶板强矿压与采空区瓦斯灾害协同治理方法
CN113685225A (zh) * 2021-09-27 2021-11-23 太原理工大学 一种y型通风工作面采空区顶管瓦斯抽采方法
CN114165209B (zh) * 2021-11-30 2023-09-15 中国矿业大学 一种逐级构建煤层复杂缝网的方法
CN114673497A (zh) * 2022-03-08 2022-06-28 中国矿业大学(北京) 一种基于坚硬顶板控向致裂的悬顶处理方法
CN115163026B (zh) * 2022-06-30 2023-08-01 河南理工大学 一种远距离煤层下保护层穿层钻孔布置方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU796464A1 (ru) * 1976-04-16 1981-01-15 Ордена Октябрьской Революции Иордена Трудового Красного Знамениинститут Горного Дела Им.A.A.Скочинского Способ комплексной дегазациишАХТНыХ пОлЕй
RU2065973C1 (ru) * 1994-07-27 1996-08-27 Государственный научно-исследовательский, проектно-конструкторский и проектный угольный институт с экспериментальным заводом Способ дегазации пластов-спутников
RU2118458C1 (ru) * 1997-02-10 1998-08-27 Полевщиков Геннадий Яковлевич Способ управления газовыделением при отработке свиты угольных пластов
CN1532374A (zh) * 2003-03-18 2004-09-29 淮南矿业(集团)有限责任公司 开采煤层顶板瓦斯抽放的方法
RU2445462C1 (ru) * 2010-10-26 2012-03-20 Анатолий Николаевич Осипов Способ дегазации шахтного поля
CN104863561A (zh) * 2015-04-15 2015-08-26 中国矿业大学 一种井下煤层脉冲爆震波定向致裂增透方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3650564A (en) * 1970-06-15 1972-03-21 Jacobs Associates Mining method for methane drainage and rock conditioning
US3814480A (en) * 1973-03-23 1974-06-04 Continental Oil Co Method of controlling gas accumulation in underground mines
US4265570A (en) * 1979-06-01 1981-05-05 Conoco, Inc. Mine roof control
US4544208A (en) * 1984-07-23 1985-10-01 Concoco Inc. Degasification of coal
US4978172A (en) * 1989-10-26 1990-12-18 Resource Enterprises, Inc. Gob methane drainage system
RU2108464C1 (ru) * 1996-04-08 1998-04-10 Институт угля СО РАН Способ герметизации дегазационных скважин
US8740310B2 (en) * 2008-06-20 2014-06-03 Solvay Chemicals, Inc. Mining method for co-extraction of non-combustible ore and mine methane
AU2012272545B2 (en) * 2011-06-24 2017-01-05 Ian Gray Mining method for gassy and low permeability coal seams
CN103758559B (zh) * 2014-01-09 2016-07-27 中国矿业大学 沿空留巷y型通风高位回风巷钻孔抽采瓦斯方法
WO2015157812A1 (en) * 2014-04-14 2015-10-22 Peabody Energy Australia A multi purpose drilling system and method
CN104712358A (zh) * 2015-02-05 2015-06-17 中国矿业大学 基于首采全岩卸压工作面沿空留巷的高瓦斯煤层群卸压共采方法
CN106014473B (zh) * 2016-02-03 2018-01-09 中国矿业大学(北京) 一种交叉钻孔约束爆破网络增透瓦斯抽放方法
CN106948859B (zh) * 2017-03-20 2018-07-27 中国矿业大学 一种网络化优势瓦斯运移通道构建及瓦斯导流抽采方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU796464A1 (ru) * 1976-04-16 1981-01-15 Ордена Октябрьской Революции Иордена Трудового Красного Знамениинститут Горного Дела Им.A.A.Скочинского Способ комплексной дегазациишАХТНыХ пОлЕй
RU2065973C1 (ru) * 1994-07-27 1996-08-27 Государственный научно-исследовательский, проектно-конструкторский и проектный угольный институт с экспериментальным заводом Способ дегазации пластов-спутников
RU2118458C1 (ru) * 1997-02-10 1998-08-27 Полевщиков Геннадий Яковлевич Способ управления газовыделением при отработке свиты угольных пластов
CN1532374A (zh) * 2003-03-18 2004-09-29 淮南矿业(集团)有限责任公司 开采煤层顶板瓦斯抽放的方法
RU2445462C1 (ru) * 2010-10-26 2012-03-20 Анатолий Николаевич Осипов Способ дегазации шахтного поля
CN104863561A (zh) * 2015-04-15 2015-08-26 中国矿业大学 一种井下煤层脉冲爆震波定向致裂增透方法

Also Published As

Publication number Publication date
CN106948859B (zh) 2018-07-27
US10487656B2 (en) 2019-11-26
CN106948859A (zh) 2017-07-14
US20190145260A1 (en) 2019-05-16
AU2017405410B2 (en) 2019-06-06
AU2017405410A1 (en) 2018-11-22
WO2018171255A1 (zh) 2018-09-27

Similar Documents

Publication Publication Date Title
RU2685359C1 (ru) Метод построения сетевых приоритетных путей миграции газа, а также отвода и добычи газа
US20200232323A1 (en) Multi-section non-pillar staggered protected roadway for deep inclined thick coal seam and method for coal pillar filling between sections
US8740310B2 (en) Mining method for co-extraction of non-combustible ore and mine methane
US8820847B2 (en) Block caving method
RU2333363C1 (ru) Способ управления газовыделением при разработке свиты высокогазоносных угольных пластов
CN107559008B (zh) 一种联合复采特厚煤层停采线煤柱的方法
AU2021106168A4 (en) High-gas Coal Seam Group Pressure Relief Mining Method Based on Gob-side Entry Retaining in the First Mining Whole Rock Pressure Relief Working Face
RU2282030C1 (ru) Способ разработки свиты сближенных высокогазоносных угольных пластов
CN107905816A (zh) 一种三软煤层大采高综采工作面仰采过5m以上大断层方法
Li et al. Trial of small gateroad pillar in top coal caving longwall mining of large mining height
Kazanin et al. Choosing and substantiating the methods of managing gas emission in the conditions of the Kotinskaya mine of JSC Suek-Kuzbass
CN105422097A (zh) 煤层群的开采方法
Meshkov et al. Methane emission control at the high-productive longwall panels of the Yalevsky coal mine
RU2502872C1 (ru) Способ разработки мощных крутопадающих рудных тел
CN107503790A (zh) 快速回采综采面瓦斯综合抽放布置治理方法
RU2512049C2 (ru) Способ управления газовыделением при отработке склонного к самовозгоранию угольного пласта
RU2360128C1 (ru) Способ дегазации выработанного пространства
CN114961728A (zh) 一种冲击地压与瓦斯综合防治的采区无煤柱开采方法
RU2642193C1 (ru) Способ разработки горизонтальных и пологих рудных тел средней мощности
RU2100611C1 (ru) Способ управления газовыделением из выработанного пространства
RU2415266C1 (ru) Способ выемки угля из камер с попутной добычей метана
RU2732931C1 (ru) Способ дегазации выемочного участка
Lunarzewski Gas drainage practices
RU2755287C1 (ru) Способ разработки тонких и маломощных крутопадающих рудных тел
RU2807283C1 (ru) Способ дегазации выемочного угольного поля