RU2683597C1 - Способ определения модуля упругости материала покрытия на изделии - Google Patents

Способ определения модуля упругости материала покрытия на изделии Download PDF

Info

Publication number
RU2683597C1
RU2683597C1 RU2018118989A RU2018118989A RU2683597C1 RU 2683597 C1 RU2683597 C1 RU 2683597C1 RU 2018118989 A RU2018118989 A RU 2018118989A RU 2018118989 A RU2018118989 A RU 2018118989A RU 2683597 C1 RU2683597 C1 RU 2683597C1
Authority
RU
Russia
Prior art keywords
coating
parameter
values
elasticity
depth
Prior art date
Application number
RU2018118989A
Other languages
English (en)
Inventor
Николай Алексеевич Воронин
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт машиноведения им. А.А. Благонравова Российской академии наук (ИМАШ РАН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт машиноведения им. А.А. Благонравова Российской академии наук (ИМАШ РАН) filed Critical Федеральное государственное бюджетное учреждение науки Институт машиноведения им. А.А. Благонравова Российской академии наук (ИМАШ РАН)
Priority to RU2018118989A priority Critical patent/RU2683597C1/ru
Application granted granted Critical
Publication of RU2683597C1 publication Critical patent/RU2683597C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/40Investigating hardness or rebound hardness
    • G01N3/42Investigating hardness or rebound hardness by performing impressions under a steady load by indentors, e.g. sphere, pyramid

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

Изобретение относится к измерительной технике для определения модуля упругости материала тонких покрытий. Сущность: измеряют толщину покрытия и модуль упругости материала основы изделия, помещают изделие в микротвердомер, с помощью которого производят внедрение алмазного пирамидального индентора в изделие на глубину, равную толщине покрытия, записывают диаграмму внедрения (кривую нагружения) в координатах «усилие нагружения - глубина внедрения», получают массив данных параметрасравнивают с теоретически рассчитанным массивом данных изменения параметра (D)=[D{E}⋅D{E=1}] (или аппроксимирующей зависимостью D=ƒ (s/h)) для ряда дискретных значений величины контактной упругости Е* от относительной глубины внедрения индентора в поверхность модели слоистого тела, имитирующего поверхность изделия с покрытием, и определяют модуль нормальной упругости материала покрытия Епо результатам максимального совпадения значений параметра D, полученного из эксперимента, с набором значений параметра Dв диапазоне от 0,1 до 1,0 значений относительной глубины внедрения индентораиспользуя зависимости. Технический результат: снижение трудоемкости и повышение точности определения модуля упругости тонкого покрытия. 1 табл., 7 ил.

Description

Изобретение относится к измерительной технике для определения модуля упругости материала тонких покрытий.
Известен способ определения модуля упругости материала покрытий на изделии заключающийся в том, что в поверхность с покрытием с известной толщиной внедряют сферический индентор с известными упругими характеристиками и радиусом, записывают диаграмму изменения нагрузки от глубины внедрения и для участка диаграммы, отвечающей упругому деформированию материала покрытия, рассчитывают модуль упругости материала покрытия Епок из аналитического соотношения, связывающего обобщенный приведенный модуль упругости образца с покрытием E**, с толщиной покрытия, геометрией контакта, упругими свойствами материала основы и покрытия, а также эмпирическим параметром α:
Figure 00000001
Figure 00000002
Figure 00000003
где
Figure 00000004
- модуль сдвига, s - глубина внедрения индентора в слоистое тело, h - толщина покрытия, Е* = Е/(1-μ2); Е* Е, μ - приведенные модули упругости, модули нормальной упругости и коэффициенты Пуассона образца с покрытием, индентора, подложки и покрытия, соответственно; а 0 - радиус отпечатка в материале основы; «об», «и», «ос», «пок» - подстрочные индексы, обозначающие, что параметр, у которого они стоят, относится к образцу с покрытием, индентору, материалу основы или материалу покрытия, соответственно, α - экспериментально определяемая функция, учитывающая отличие характера распределения давления в отпечатке слоистого тела от Герцевского с изменением относительной толщины покрытия
Figure 00000005
[1].
(Патент US 7 165 463 В2, от 23.01.2007).
Недостатком этого способа является низкая точность определения величины модуля упругости материала тонкого покрытия, связанные с трудностью точного определения области диаграммы нагружение - внедрение, отвечающей упругому деформированию только материала покрытия, а также низкой точностью определения функции а, учитывающей отличие характера распределения давления в контакте сферического индентора со слоистым телом от Герцевского с изменением толщины покрытия.
Известен способ определения модуля упругости материала покрытия на изделии, заключающийся в том, что измеряют толщину покрытия и модуль упругости материала основы изделия, помещают изделие в микротвердомер, с помощью которого производят внедрение алмазного пирамидального индентора Виккерса в изделие, на глубину, превышающую толщину покрытия и записывают диаграмму изменения величины нагрузки с увеличением глубины внедрения индентора.
(Патент РФ №2618500, G 01N 3/42,2016 г. )
Данный способ по технической сущности и достигаемому результату наиболее близок к предложенному техническому решению и, поэтому, принят за его ближайший аналог- прототип.
Согласно этому способу измеряют толщину покрытия и модуль упругости материала основы изделия, помещают изделие в микротвердомер, с помощью которого производят внедрение алмазного пирамидального индентора в изделие, на глубину, превышающую толщину покрытия, записывают диаграммы изменения величины нагрузки с увеличением глубины внедрения, строят массив данных (или функциональную зависимость) изменения параметра
Figure 00000006
значения входящих в данный параметр величин определяются при равных по величине значениях нагрузки, от относительной глубины внедрения
Figure 00000007
сравнивают с теоретически рассчитанным массивом данных (или аналитическими зависимостями) изменения параметра Мтаб, для ряда дискретных значений величины контактной упругости К от относительной глубины внедрения индентора в поверхность модели слоистого тела, имитирующего поверхность изделия с покрытием, определяют модуль нормальной упругости материала покрытия Е1 по результатам максимального совпадения значений параметра Мэкс, полученного из эксперимента, с набором значений параметра Мтаб в диапазоне от 0,2 до 1,0 значений относительной глубины внедрения индентора
Figure 00000008
используя следующие зависимости и обозначения:
Figure 00000009
Figure 00000010
Figure 00000011
Figure 00000012
Figure 00000013
где Ф - упруго-геометрический параметр, диапазон существования которого
Figure 00000014
для
Figure 00000015
t0 - толщина поверхностного слоя слоистого полупространства, моделирующего реальное слоистое тело с покрытием h;
Figure 00000016
- предельный радиус пятна контакта для материала основы;
Figure 00000017
- модули нормальной упругости материалов покрытия, основы (подложки) и индентора,
Figure 00000018
- коэффициенты Пуассона материала основы, покрытия и индентора, h - толщина покрытия,
Figure 00000019
- текущее значение относительной толщины покрытия, s0, sc - текущая глубина внедрения в материал основы и материал с покрытием (слоистое тело);
Figure 00000020
- предельный радиус отпечатка для слоистого тела; А1, А2, А3, …Ai, B1, B2, B3, …Bj - коэффициенты двухточечной Паде аппроксиманты [2].
Недостатком этого способа является высокая трудоемкость проведения измерительных процедур и невысокая точность рассчитываемого значения модуля упругости тонкого покрытия, связанные с необходимостью проведения экспериментального внедрения в материал основы изделия без покрытия и учета этих результатов в расчетах при определении модуля упругости материала покрытия.
Задача, решаемая в предлагаемом способе - снижение трудоемкости и повышение точности определения модуля упругости тонкого покрытия за счет обработки результатов экспериментального исследования только изделия с покрытием.
Согласно этому способу измеряют толщину покрытия и модуль упругости материала основы изделия, помещают изделие в микротвердомер, с помощью которого производят внедрение алмазного пирамидального индентора в изделие, на глубину, равную толщине покрытия, записывают диаграмму внедрения (кривую нагружения) в координатах «усилие нагружения - глубина внедрения», получают массив данных параметра
Figure 00000021
сравнивают с теоретически рассчитанным массивом данных изменения параметра (Dтеор)i=[D{E*}⋅D{E*=1}] (или аппроксимирующей зависимостью Dтеор=ƒ(s/h)), для ряда дискретных значений величины контактной упругости Е* от относительной глубины внедрения индентора в поверхность модели слоистого тела, имитирующего поверхность изделия с покрытием и определяют модуль нормальной упругости материала покрытия Е1 по результатам максимального совпадения значений параметра Dэксп, полученного из эксперимента, с набором значений параметра Dтеор в диапазоне от 0,1 до 1,0 значений относительной глубины внедрения индентора
Figure 00000022
, используя следующие зависимости и обозначения:
Figure 00000023
Figure 00000024
Figure 00000025
Figure 00000026
Figure 00000027
где h - толщина покрытия, s,. - текущая глубина внедрения в материал с покрытием (слоистое тело); (Hc)h - твердость покрытия, определяемая при глубине внедрения в материал с покрытием равной толщине покрытия; [H0] - твердость основы материала;
Figure 00000017
- модули нормальной упругости материалов покрытия, основы (подложки) и индентора. (D{E*})i и D{E*=1} - табулированные безразмерные значения (таблица 1) функции, теоретически определяемой по методике, изложенной в работах Воронина Н.А. [3, 4].
Figure 00000028
Отличительным признаком изобретения является то, что определение модуля нормальной упругости материала покрытия производят только по результатам исследования отклика изделия с покрытием (слоистое тело) на внедрение пирамидального алмазного индентора. Таким образом, предлагаемый способ позволяет существенно снизить трудоемкость и повысить точность определения модуля упругости тонкого покрытия, так как в заявляемом техническом решении осуществляется измерение модуля Юнга только по результатам экспериментального исследования изделия с покрытием, в то время как в прототипе экспериментальные данные получают в результате двух процедур инструментального внедрения - в изделие с покрытием и в изделие без покрытия.
Согласно изобретению набор значений параметра (Dтеор)i=[D{E*}i⋅D{E*=1}], рассчитываются по табулированным значениям [D{E*}i], взятым из таблицы 1 или в результате табулирования функции, теоретически определяемой по методике, изложенной в работах Воронина Н.А. [3, 4] (Теоретическая оценка композиционной и истинной твердости тонких покрытий. Трение и смазка в машинах и механизмах. 2011, №7. с. 11-21. и Расчет параметров упругого контакта и эффективных характеристик топокомпозита для случая взаимодействия последнего со сферическим индентором. Трение и износ. 2002, т. 23, №6. с. 583-596).
Проведенный заявителем анализ техники, включающий поиск по патентным и научно-техническим источникам информации и выявление источников, содержащих сведения об аналогах заявленного изобретения, позволил установить, что заявителем не обнаружен аналог, характеризующийся признаками, идентичными всем существенным признакам заявленного изобретения, а определение из перечня выявленных аналогов прототипа, как наиболее близкого по совокупности признаков аналога, позволил выявить совокупность существенных (по отношению к усматриваемому заявителем техническому результату) отличительных признаков в заявленном объекте, изложенных в формуле изобретения. Следовательно, заявленное изобретение соответствует требованию "новизна" по действующему законодательству.
Для проверки соответствия заявленного изобретения требованию изобретательского уровня заявитель провел дополнительный поиск известных решений, с целью выявления признаков, совпадающих с отличительными от прототипа признаками заявленного изобретения, результаты которого показывает, что заявленное изобретение не следует для специалиста явным образом из известного уровня техники, поскольку из уровня техники, определенного заявителем, не выявлено влияние предусматриваемых существенными признаками заявленного изобретения действий на достижение технического результата. Следовательно, заявленное изобретение соответствует требованию "изобретательский уровень" по действующему законодательству.
Предлагаемый способ поясняется чертежами, представленными на фиг. 1-7.
На фиг. 1 изображена диаграмма внедрения алмазного индентора в поверхность изделия с тонким покрытием, в виде зависимости изменения нагрузки Рэкс„ от величины глубины внедрения sc, полученной из экспериментального исследования. Маркеры обозначают ряд экспериментальных точек, используемых в дальнейшем для расчета переводного коэффициента, позволяющего совмещать на одном графике экспериментальные значения и теоретически рассчитываемые значения глубин внедрения.
На фиг. 2 изображена зависимость изменения параметра
Figure 00000029
от относительной величины глубины внедрения
Figure 00000030
алмазного индентора в основу изделия с покрытием толщиной h. Маркеры обозначают результаты расчета параметра (Dэксп)i для экспериментальных точек, указанных на фиг. 1. Здесь же приведена аппроксимирующая зависимость степенная функция и указана точность совпадения аппроксимирующей зависимости экспериментальным точкам.
На фиг. 3 изображена таблица теоретических значений параметра Dтеор для ряда значений упругого контактного параметра Е* в зависимости от значений относительной глубины внедрения
Figure 00000031
алмазного индентора в поверхность модельного слоистого материала, имитирующего изделие с покрытием.
На фиг. 4 представлены в графическом виде зависимости изменения параметра Dтеор от относительной глубины внедрения
Figure 00000022
алмазного индентора для ряда дискретных значений упругого контактного параметра Е* (зависимости построены по некоторым значениям, приведенным в таблице на фиг. 3)
На фиг. 5 изображены зависимости изменения параметров Dэксп (см. фиг. 2) и Dтеор для двух значений Е* (см. фиг. 4) от относительной глубины внедрения
Figure 00000022
алмазного индентора в слоистое тело.
На фиг. 6 приведены результаты численного сравнения значений параметра Dэксп и теоретических параметров Dтеор для Е*=0,5, Е*=0,4 и для Е*=0,45 для диапазона изменения относительной глубины внедрения
Figure 00000032
в пределах от 0,01 до 1,0 в виде коэффициента корреляции R2 значений табличных параметров Dтеор и экспериментального параметра Dэксп,
На фиг. 7 представлены результаты сравнения значений параметра Dэксп (виде экспериментальных точек и аппроксимирующей функции степенного вида) и теоретических параметров Dтеор для Е*=0,45 и Е*=0,45 от относительной глубины внедрения на графике в полулогарифмическом масштабе.
Способ определения модуля нормальной упругости тонких покрытий реализуется следующим образом.
Для исследуемой твердой поверхности с тонким покрытием (слоистой системы) измеряют толщину покрытия h. В случае использования стандартного материала в качестве подложки записывают значения модуля нормальной упругости Е0, коэффициента Пуассона μ0 и значение твердости [Н0] по Виккерсу из справочников. Если материал основы неизвестен, то производят измерение упругих характеристик и объемной твердости с использованием стандартизованных методик. Записывают известные значения упругих характеристик алмазного индентора: модуля Юнга
Figure 00000033
и коэффициента Пуассона
Figure 00000034
. С помощью прибора - микро- или нанотвердомера с непрерывной регистрацией нагрузки и глубины внедрения внедряют алмазный наконечник в виде четырехугольной (пирамида Виккерса) или треугольной пирамиды (пирамида Берковича) в исследуемую слоистую систему (поверхность с тонким твердым покрытием) и производят запись диаграммы «нагрузка Р - внедрение s» (см. фиг. 1). Внедрение в исследуемую поверхность производят на глубину не меньшую, чем толщина покрытия и всегда большую, чем 0,1 часть толщины покрытия.
По экспериментальной диаграмме внедрения для слоистой системы рассчитывают значения твердости покрытия
Figure 00000035
при максимальной глубине внедрения, равной толщине покрытия, и определяют параметр
Figure 00000036
для всего диапазона нагрузки в данном испытании. Рассчитывают значения относительной величины внедрения индентора
Figure 00000037
путем деления значений (sc)i на толщину покрытия h. Массиву значений
Figure 00000038
ставят в соответствие соответствующие значения
Figure 00000039
и называют параметром (Dэксп). Графически этот параметр (Dэксп) может быть представлен в виде набора экспериментальных точек в координатах
Figure 00000040
или аппроксимирован некоторой функцией, например полиномом или степенной функцией (см. фиг. 2).
Массив значений
Figure 00000041
является конечным результатом обработки экспериментальных данных, полученных инструментальным индентированием изделия с тонким твердым покрытием (поверхностным слоем).
Известен аналитический способ определения теоретической композиционной твердости Нс поверхности твердого тела с покрытием на основе рассмотрения механики контактного взаимодействия в слоистую систему сферического индентора [3]:
Figure 00000042
где
Figure 00000043
- предельный упруго-геометрический параметр, диапазон существования которого
Figure 00000044
для
Figure 00000045
Ф - упруго-геометрический параметр, диапазон существования которого
Figure 00000046
для
Figure 00000047
t0 - толщина поверхностного слоя слоистого полупространства, моделирующего реальное слоистое тело с покрытием h;
Figure 00000048
- предельный радиус пятна контакта для материала основы;
Figure 00000049
Н1, Н0 - значения микротвердости материала покрытия и основы, соответственно.
Предельный упруго-геометрический параметр
Figure 00000050
в общем случае зависит от геометрических
Figure 00000051
и упругих
Figure 00000052
характеристик, а также величин твердости (Н0, Н1) компонентов слоистой системы.
Предельный упруго-геометрический параметр
Figure 00000053
и связь модельного слоя t0 с толщиной покрытия в области глубин внедрения больших, чем 0,1 толщины покрытия могут быть рассчитаны по следующим аналитическим зависимостям:
Figure 00000054
С учетом зависимости (2) выражение (1) для определения композиционной твердости слоистого тела в диапазоне глубин внедрения от 0,1 до 1,0 величины
Figure 00000055
может быть преобразовано к виду:
Figure 00000056
Параметр Т в уравнении (3) зависит от относительной глубины внедрения и от величины контактного модуля упругости слоистой системы Е*. Величина H0 для идеальных компактных твердых тел и при моделировании принимается равной объемной твердости исследуемого материала. На практике при инструментальном индентировании объемных материалов установлен эффект повышения твердости с уменьшением глубины внедрения (так называемый размерный эффект). Одна из основных причин влияния размерного эффекта на сопротивление материала пластической деформации заключается в уровне удельной площади деформируемой поверхности [5].
Учесть влияние размерного эффекта на величину материал основы при индентировании слоистых тел можно, применив структуру уравнения (3) к однородному материалу, для которого параметр Г рассчитывается при значении величины Е*=1, то есть рассматривать однородное тело как слоистое тела с покрытием, у которого модуль упругости равен модулю упругости материала основы:
Figure 00000057
где (H0)h - твердость подложки при глубине внедрения индентора, равной толщине покрытия.
При индентировании слоистых покрытий с твердыми защитными поверхностными покрытиями также установлен эффект повышения напряжения в пластической области материала основы при индентировании пирамидального наконечника, за счет стеснения (дополнительного уплотнения) материала подложки твердым поверхностным слоем [6]. Эффект стеснения приводит к повышению значения твердости материала основы под покрытием, по сравнению с исходной объемной твердостью материала.
Учет указанных эффектов - размерного эффекта и эффекта стеснения -учитывается в параметре (H0)h следующим образом:
Figure 00000058
где (Hc)h - твердость покрытия, определяемая при глубине внедрения в материал с покрытием равной толщине покрытия; [H0] - объемная твердость основы материала (по справочнику на этот материал или измеренная по известной стандартной методике). Первый член уравнения (5) учитывает вклад размерного эффекта на глубине внедрения, равной толщине покрытия, а второй член уравнения (5) учитывает эффект стеснения материала основы при инструментальном индентировании с увеличением глубины внедрения от нуля до глубины, равной толщине покрытия.
Таким образом, уравнение (3) можно переписать в виде
Figure 00000059
Твердость слоистого тела может быть представлена в виде
Figure 00000060
Тогда параметры (Dэксп)i=(Dтеор)i, рассчитываемые при (Рс)эксп=(Рс)теор=(Р0)теор, можно вычислять по следующим выражениям
Figure 00000061
Figure 00000062
где в правая часть уравнения (6) представляет собой массив данных экспериментальных точек кривой нагружения диаграммы внедрения, а уравнения (7) массив данных точек теоретической кривой нагружения диаграммы внедрения при одинаковом значении относительной глубины внедрения
Figure 00000063
.
Сопоставляя массив значений Dэксп, полученных из эксперимента инструментального внедрения для исследуемого изделия с покрытием, с теоретически рассчитываемым массивом Dтеор, можно определить численно или графически контактный модуль упругости Е* (см. фиг. 5, 6 и 7).
Заявляемый способ определения модуля Юга материала покрытия предполагает проведение сопоставления экспериментальных Dэксп и теоретически рассчитываемых параметров Dтеор при значения относительных глубин внедрения
Figure 00000064
в диапазоне 0,1 до 1,0. Диапазон значений параметра
Figure 00000065
выбран не случайно. В диапазоне параметра
Figure 00000066
от 0 до 0,1 велика вероятность повышенной погрешности измерения глубины внедрения индентора при инструментальном индентировании, как из-за малости измеряемых линейных величин, так и за счет ошибки оценки точки начального касания индентора с исследуемой поверхности, принимаемой на диаграмме за нулевую точку. При значениях параметра
Figure 00000067
близких и больших 1,0, которые характеризуют физическое проникновение индентора на всю толщину покрытия, вероятность изменения характера деформирования становится значительна, за счет наличия границы раздела между покрытием и основой, представляющего собой протяженный макродефект, и измененных физико-механических характеристик материала покрытия и материала основы в прилегающих слоях к границе раздела, за счет термо-химических процессов синтеза покрытия в технологическом процессе получения последнего.
Из выражения для контактного модуля упругости Е* можно определить модуль Юнга материала покрытия:
Figure 00000068
Пример. Для примера было произведено определение модуля Юнга материала слоистого тела, которое было использовано в изобретении-прототипе. Это было покрытие из нитрида алюминия, нанесенное магнетронным способом толщиной 5 мкм на нержавеющую сталь 12Х18Н10Т. Модуль Юнга и коэффициент Пуассона алмазной пирамиды Виккерса были
Figure 00000069
Упругие характеристики материала основы изделия Е0=180 ГПа, μ0=0,3. Принято было, что коэффициент Пуассона материала покрытия равен материалу основы. Запись диаграмм внедрения в поверхность с покрытием производилось на микроиндентометре МТИ 5 с достижением максимальной нагрузки в 2,5 Н (см. фиг. 1). Твердость покрытия при глубине внедрения 5 мкм, рассчитанная по диаграмме внедрения, составила 2,6 ГПа (260 кгс/мм2). Объемная твердость материала основы была измерена приборе ПМТЗ при максимальной нагрузке в 5 Н. Она составила 2 ГПа (200 кгс/мм2).
Результаты обработки экспериментальных диаграмм внедрения представлены в графическом виде (см. фиг. 2). Там же приведена аппроксимирующая зависимость степенного вида для параметра Dэксп в виде
Figure 00000070
полученная по экспериментальным точкам. Точность соответствия аппроксимирующей зависимости демонстрационным экспериментальным точкам равна R2=0,9953.
Теоретические расчеты параметра (Dтеор)i представлены в таблице на фиг. 3 в виде массива данных и в графическом виде (см. фиг. 4) для ряда типовых значений контактного модуля упругости Е*.
Оценить совпадение экспериментально определенного параметра Dэксп с теоретически рассчитанным значением параметра Dтеор можно графически (см. фиг. 5) или по степени корреляции массива данных параметра Dэксп массиву расчетных данных Dтеор (см. фиг. 6). Из графиков, приведенных на фиг. 5 наглядно видно, что экспериментальные точки параметра Dэксп располагается между двумя кривыми, построенными по значениям параметра Dтеор для контактных модулей упругости K=0,5 и K=0,4. Если рассматривать аргумент полученных функциональных зависимостей в диапазоне от 0,1 до 1,0, то экспериментально полученному параметру Dэксп соответствует значение контактного модуля упругости, близкое к 0,4-0,45. Если судить по значению коэффициента корреляции Пирсона R2, то несколько лучшее соответствие экспериментальному массиву данных соответствует теоретически рассчитанный массив данных для K=0,40 (фиг. 6 и 7).
Расчет модуля Юнга покрытия по контактному модулю упругости слоистой системы E*=0,40 дал значение Е1=355 ГПа, что близко к значению, указанному в изобретении-прототипе, где Е1=342 ГПа.
Результаты экспериментальной проверки свидетельствуют о пригодности предлагаемого способа для практического использования. Следовательно, заявленное изобретение соответствует требованию "промышленная применимость" по действующему законодательству.
Литература
1. Герцевская эпюра распределения давления в контакте - эллиптический закон изменения давления в контакте при внедрении сферического штампа в поверхность однородного компактного материала, рассчитываемый по известным формулам Герца (см. Джонсон К. Механика контактного взаимодействия. М.: Мир, 1989. - 510 с.) Для слоистых твердых тел эпюра давления отличается от эллиптической и тем сильнее, чем большее различие в механических характеристиках материала покрытия и материала основы. Большинство исследователей используют эмпирические зависимости (как это сделано в аналоге в Патенте US 7165463) для учета этого различия.
2. Коэффициенты двухточечной Паде-аппроксиманты, рассчитываются по известным формулам (Н.А. Воронин. Расчет параметров упругого контакта и эффективных характеристик топокомпозита для случая взаимодействия последнего со сферическим индентором. Трение и износ. 2002, т. 23, №6. с. 583-596).
3. Воронин Н.А. Теоретическая оценка композиционной и истинной твердости тонких покрытий. Трение и смазка в машинах и механизмах. 2011, №7. с. 11-21.
4. Воронин Н.А. Расчет параметров упругого контакта и эффективных характеристик топокомпозита для случая взаимодействия последнего со сферическим индентором. Трение и износ. 2002, т. 23, №6. с. 583-596.
5. В.М. Матюнин. Индентирование в диагностике механических свойств материалов. М:, МЭИ, 2015, - 288 с.
6. Воронин Н.А. Моделирование диаграммы внедрения для топокомпозитов. Проблемы машиностроения и надежности машин. 2018, №3.

Claims (12)

  1. Способ определения модуля упругости материала покрытия на изделии, заключающийся в том, что изделие, на поверхности которого имеется жестко связанное с материалом изделия покрытие известной толщины и которое имеет известное значение модуля упругости и объемной твердости, помещают в прибор-твердомер, с помощью которого производят нагружение путем внедрения алмазного пирамидального наконечника в поверхность изделия с покрытием на глубину, близкую толщине покрытия, записывают диаграмму изменения величины нагрузки с увеличением глубины внедрения, отличающийся тем, что по диаграмме «нагрузка - внедрение» получают массив данных или функциональную зависимость изменения параметра
    Figure 00000071
    от относительной глубины внедрения
    Figure 00000072
    сравнивают с теоретически рассчитанным массивом данных или аналитическими зависимостями изменения параметра Dтеор для ряда дискретных значений контактного модуля упругости Е* от относительной глубины внедрения индентора в поверхность модели слоистого тела, имитирующего поверхность изделия с покрытием, определяют модуль нормальной упругости материала покрытия Е1 по результатам максимального совпадения значений параметра Dэкс, полученного из эксперимента, с набором значений параметра Dтеор в диапазоне от 0,1 до 1,0 значений относительной глубины внедрения индентора
    Figure 00000073
    , используя следующие зависимости и обозначения:
  2. Figure 00000074
    Figure 00000075
    i=1…n;
    Figure 00000076
    Figure 00000077
    (Dтеор)i=[(D{E*})i⋅D{E*=1}];
  3. i=1…n;
    Figure 00000078
    (E*)j=0,1…1,0; j=1…m;
  4. Figure 00000079
    ΔH=(Hc)h-[H0];
  5. Figure 00000080
    Figure 00000081
  6. где h - толщина покрытия,
  7. si - текущая глубина внедрения в материал с покрытием (слоистое тело);
  8. (Hc)h - твердость покрытия, определяемая при глубине внедрения в материал с покрытием, равной толщине покрытия;
  9. 0] - твердость основы материала;
  10. Е1, Е0, Eu - модули нормальной упругости материалов покрытия, основы (подложки) и индентора;
  11. (D{E*})i и D{E*=1} - коэффициенты, в качестве которых использованы табличные табулированные безразмерные значения
  12. Figure 00000082
RU2018118989A 2018-05-23 2018-05-23 Способ определения модуля упругости материала покрытия на изделии RU2683597C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018118989A RU2683597C1 (ru) 2018-05-23 2018-05-23 Способ определения модуля упругости материала покрытия на изделии

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018118989A RU2683597C1 (ru) 2018-05-23 2018-05-23 Способ определения модуля упругости материала покрытия на изделии

Publications (1)

Publication Number Publication Date
RU2683597C1 true RU2683597C1 (ru) 2019-03-29

Family

ID=66089722

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018118989A RU2683597C1 (ru) 2018-05-23 2018-05-23 Способ определения модуля упругости материала покрытия на изделии

Country Status (1)

Country Link
RU (1) RU2683597C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2747709C1 (ru) * 2020-09-22 2021-05-13 Федеральное государственное бюджетное учреждение науки Институт машиноведения им. А.А. Благонравова Российской академии наук (ИМАШ РАН) Способ определения адгезионной прочности тонких твердых покрытий на податливых подложках
RU2800339C1 (ru) * 2022-08-19 2023-07-20 Федеральное государственное бюджетное учреждение науки Институт машиноведения им. А.А. Благонравова Российской академии наук (ИМАШ РАН) Способ определения остаточных напряжений в тонких твердых покрытиях по выпуклости покрытия

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100024534A1 (en) * 2008-07-29 2010-02-04 Han Li Method to measure the elastic modulus and hardness of thin film on substrate by nanoindentation
RU2489701C1 (ru) * 2012-02-29 2013-08-10 Федеральное Государственное Бюджетное Учреждение Науки Институт Машиноведения Им. А.А. Благонравова Российской Академии Наук Способ определения модуля упругости материала покрытия на изделии
RU2618500C1 (ru) * 2016-04-28 2017-05-03 Федеральное государственное бюджетное учреждение науки Институт машиноведения им. А.А. Благонравова Российской академии наук (ИМАШ РАН) Способ определения модуля упругости материала покрытия на изделии
RU2646442C1 (ru) * 2016-10-04 2018-03-05 Федеральное государственное бюджетное учреждение науки Институт машиноведения им. А.А. Благонравова Российской академии наук (ИМАШ РАН) Способ определения физико-механических характеристик модифицированного поверхностного слоя материала изделия и устройство для его осуществления

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100024534A1 (en) * 2008-07-29 2010-02-04 Han Li Method to measure the elastic modulus and hardness of thin film on substrate by nanoindentation
RU2489701C1 (ru) * 2012-02-29 2013-08-10 Федеральное Государственное Бюджетное Учреждение Науки Институт Машиноведения Им. А.А. Благонравова Российской Академии Наук Способ определения модуля упругости материала покрытия на изделии
RU2618500C1 (ru) * 2016-04-28 2017-05-03 Федеральное государственное бюджетное учреждение науки Институт машиноведения им. А.А. Благонравова Российской академии наук (ИМАШ РАН) Способ определения модуля упругости материала покрытия на изделии
RU2646442C1 (ru) * 2016-10-04 2018-03-05 Федеральное государственное бюджетное учреждение науки Институт машиноведения им. А.А. Благонравова Российской академии наук (ИМАШ РАН) Способ определения физико-механических характеристик модифицированного поверхностного слоя материала изделия и устройство для его осуществления

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2747709C1 (ru) * 2020-09-22 2021-05-13 Федеральное государственное бюджетное учреждение науки Институт машиноведения им. А.А. Благонравова Российской академии наук (ИМАШ РАН) Способ определения адгезионной прочности тонких твердых покрытий на податливых подложках
RU2800339C1 (ru) * 2022-08-19 2023-07-20 Федеральное государственное бюджетное учреждение науки Институт машиноведения им. А.А. Благонравова Российской академии наук (ИМАШ РАН) Способ определения остаточных напряжений в тонких твердых покрытиях по выпуклости покрытия

Similar Documents

Publication Publication Date Title
Borodich The Hertz-type and adhesive contact problems for depth-sensing indentation
Fischer-Cripps Critical review of analysis and interpretation of nanoindentation test data
Page et al. Using nanoindentation techniques for the characterization of coated systems: a critique
Tunvisut et al. Use of scaling functions to determine mechanical properties of thin coatings from microindentation tests
Bocciarelli et al. Indentation and imprint mapping method for identification of residual stresses
Lee et al. Reverse analysis of nano-indentation using different representative strains and residual indentation profiles
Yamazaki et al. Determination of interfacial fracture toughness of thermal spray coatings by indentation
Bushby Nano-indentation using spherical indenters
Jeon et al. Estimation of fracture toughness of metallic materials using instrumented indentation: critical indentation stress and strain model
Kang et al. Conventional Vickers and true instrumented indentation hardness determined by instrumented indentation tests
CN109520828B (zh) 薄膜的弹性模量测试方法
Jeon et al. Optimum definition of true strain beneath a spherical indenter for deriving indentation flow curves
RU2683597C1 (ru) Способ определения модуля упругости материала покрытия на изделии
Chudoba et al. Determination of mechanical properties of graded coatings using nanoindentation
RU2618500C1 (ru) Способ определения модуля упругости материала покрытия на изделии
Farmakovskaya et al. Application of the spherical indenter for determination of the elastic modulus of coatings
Bouzakis et al. Indenter surface area and hardness determination by means of a FEM-supported simulation of nanoindentation
Fischer-Cripps et al. Nanoindentation test standards
Kim et al. Contact morphology and constitutive equation in evaluating tensile properties of austenitic stainless steels through instrumented spherical indentation
RU2489701C1 (ru) Способ определения модуля упругости материала покрытия на изделии
Stepanov et al. Modeling of indentation of hard coatings by an arbitrarily shaped indenter
Korsunsky et al. The influence of indenter bluntness on the apparent contact stiffness of thin coatings
RU2710392C1 (ru) Способ определения адгезионной прочности тонких твердых покрытий на изделиях
Voronin The effective and true adhesive strength of thin protective coatings
Fischer-Cripps Study of analysis methods of depth-sensing indentation test data for spherical indenters

Legal Events

Date Code Title Description
QB4A Licence on use of patent

Free format text: LICENCE FORMERLY AGREED ON 20191112

Effective date: 20191112