RU2683452C1 - Способ извлечения тепловой энергии на нефтяном месторождении - Google Patents

Способ извлечения тепловой энергии на нефтяном месторождении Download PDF

Info

Publication number
RU2683452C1
RU2683452C1 RU2018107366A RU2018107366A RU2683452C1 RU 2683452 C1 RU2683452 C1 RU 2683452C1 RU 2018107366 A RU2018107366 A RU 2018107366A RU 2018107366 A RU2018107366 A RU 2018107366A RU 2683452 C1 RU2683452 C1 RU 2683452C1
Authority
RU
Russia
Prior art keywords
heat
oil
thermal energy
reservoir
steam
Prior art date
Application number
RU2018107366A
Other languages
English (en)
Inventor
Николай Александрович Горбатенко
Тамара Леонардовна Леканова
Валентин Тимофеевич Чупров
Original Assignee
Николай Александрович Горбатенко
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Николай Александрович Горбатенко filed Critical Николай Александрович Горбатенко
Priority to RU2018107366A priority Critical patent/RU2683452C1/ru
Application granted granted Critical
Publication of RU2683452C1 publication Critical patent/RU2683452C1/ru

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

Изобретение относится к области разработки альтернативных источников энергии и может быть использовано, например, для отопления зданий и сооружений, подогрева приточного вентиляционного воздуха, производства бытовой горячей воды. Технический результат - повышение эффективности получения тепловой энергии. По способу на нефтяном месторождении получают тепловую энергию с помощью теплового насоса. Вход этого насоса подключен к трубопроводу, помещенному в среду для теплообмена. Выход насоса подключен к системе распределения тепла потребителю. Извлекают тепловую энергию, потерянную в породах, окружающих продуктивный пласт высоковязкой нефти. Упомянутый пласт разрабатывают комбинированным термошахтным способом путем закачивания в пласт перегретого пара парогенераторными установками через галерею подземных скважин, пробуренных с поверхности участка разрабатываемого месторождения. В качестве среды для теплообмена используют слой грунта высотой до 100 м, расположенный над пластом. Тепловой насос устанавливают на поверхности земли в границах участка разрабатываемого месторождения. Над зоной активации разогрева нефтяного пласта бурят вертикальную скважину на глубину от 30 до 100 м. В эту скважину устанавливают U-образный трубопровод, выполняющий роль теплообменника. Отбор и преобразование низкопотенциального тепла из грунта до высокого температурного уровня проводят путем передачи тепла через теплообменник закрытого типа с жидким незамерзающим теплоносителем. Теплообменник подключают к контуру испарителя теплового насоса. 2 з.п. ф-лы, 2 ил.

Description

Изобретение относится к способам извлечения тепловой энергии из искусственно нагретого грунта и может использоваться в качестве альтернативных источников энергии, например, для отопления зданий и сооружений, подогрева приточного вентиляционного воздуха, производства бытовой горячей воды или иное применение.
Известен способ извлечения геотермальной энергии из скважины (РФ №2341736, опубл. 20.12.2008) с помощью теплового насоса, вход которого соединен с трубопроводами с заборной и поглощающей скважинами, выход теплового насоса подключен трубопроводами к системе распределения тепла. К тепловому насосу подключен U-образный контур трубопровода, помещенный в скважину и по которому циркулирует жидкость, подаваемая с поверхности. В известном техническом решении тепло контуру теплового насоса передается жидкостью, нагреваемой в скважине.
Известен способ извлечения геотермальной энергии из добытой продукции действующей нефтяной скважины, выбранный за прототип, (РФ №2592913, опубл. 04.06.2015), включающий подключение входа теплового насоса к трубопроводу, помещенному в ствол скважины, а выхода - к системе распределения тепла потребителю, при этом осуществляют разделение в скважине с помощью скважинного сепаратора продукции нефтяной скважины на нефть и воду, затем с помощью скважинного насоса очищенную воду направляют в продуктопровод, подключенный к тепловому насосу, при этом тепловой насос включает внутренний замкнутый контур, проходящий через испаритель с жидкостью низкотемпературного кипения, конденсатор, компрессор и редукционный клапан, к конденсатору которого подключают отвод теплопровода потребителя, а к испарителю с жидкостью низкотемпературного кипения подключают отвод продуктопровода с очищенной водой. В известном патенте используется тепловая энергия добываемой скважинной жидкости, в частности смеси нефти и воды. Установка расположена на участке нефтяного месторождения на устье скважины и не может быть использована на участках месторождения высоковязкой нефти.
Указанные способы не эффективны и не могут быть применены для извлечения тепловой энергии, добываемой из грунта, искусственно нагретого паром при извлечении высоковязкой нефти.
Задачей заявляемого изобретения является разработка способа, позволяющего эффективно извлечь и применить тепло искусственно нагретого паровыми потоками, в процессе разработки и эксплуатации месторождений высоковязкой нефти.
Технический результат состоит в расширении арсенала способов получения тепловой энергии и реализации назначения, именно в повышении эффективности извлечения и использования тепла, создаваемого в процессе разработки и эксплуатации месторождения высоковязкой нефти по комбинированному термошахтному способу, получение дешевой тепловой энергии для нужд населения, в том числе для отопления и бытовых нужд близлежащих поселений.
Технический результат достигается тем, что способ извлечения тепловой энергии на нефтяном месторождении, включающий извлечение тепловой энергии с помощью теплового насоса, вход которого подключен к трубопроводу, помещенному в среду для теплообмена, а выход - к системе распределения тепла потребителю, согласно изобретения, извлечение тепловой энергии осуществляют из искусственно нагреваемого грунта, в качестве среды для теплообмена используют слой грунта высотой до 100 метров, расположенный над пластом продуктивной высоковязкой нефти, разрабатываемым комбинированным термошахтным способом, постоянный искусственный нагрев слоя грунта осуществляют от галереи подземных скважин, пробуренных с поверхности участка разрабатываемого месторождения до продуктивного пласта, в которые закачивается перегретый пар парогенераторными установками, тепловой насос устанавливают на поверхности земли в границах участка разрабатываемого месторождения, над зоной активации разогрева нефтяного пласта бурят вертикальную скважину на глубину 30-100 м, в которую устанавливают U-образный трубопровод, выполняющий роль теплообменника, отбор и преобразование низкопотенциального тепла из грунта до высокого температурного уровня проводят путем передачи тепла через теплообменник закрытого типа с жидким незамерзающим теплоносителем, подключенный к контуру испарителя теплового насоса. На поверхности земли в границах участка месторождения может быть установлено два и более тепловых насосов, выход которых подключен к системе распределения тепла потребителю. Для исключения вероятности охлаждения трубопровода в зимний период его теплоизолируют на глубину до 3,1 м.
Известны способы добычи высоковязкой нефти из коллектора через горизонтальный ствол скважины или систему скважин (РФ 2421608), с использованием инжекции нагретой текучей среды (РФ 2422618), шахматно-циклическим способом (РФ 2418945), специально разработанные для «тяжелой» ярегской нефти.
Из уровня техники известен комбинированный способ термошахтной разработки месторождения высоковязкой нефти (РФ 2425211, МПК Е21И 43/24, опубл. 27.07.2011).
С момента открытия месторождения в 1932 году «тяжелую» ярегскую нефть пытались извлечь традиционными методами - при помощи скважин. Но большая вязкость сырья и низкое пластовое давление не позволили добывать его с поверхности земли. С 1972 года стали применять паротепловые методы добычи: в пласт нагнетается пар, который делает нефть более текучей и «легкой на подъем».
Среди основных были одногоризонтный способ и подземно-поверхностная система. Основное различие между ними в том, что при первом пар подается в пласт непосредственно из эксплуатационной галереи в нефтеносном пласте, а при второй - через нагнетательные скважины на поверхности земли.
Инженеры ЛУКОЙЛ-Коми вместе со специалистами из ЛУКОЙЛ-Инжиниринга объединили технологии теплоподачи одногоризонтной и подземно-поверхностной систем, разработав комбинированный способ термошахтной разработки месторождения высоковязкой нефти. В настоящее время изобретение внедряется в производство. В результате применения технологии пар закачивается с двух направлений. В качестве источников пара используются парогенераторы, вырабатывающие влажный пар с сухостью 0,8 и температурой до 250°С. Для производства тонны пара в среднем расходуется 60÷70 кг нефти или 60÷70 м3 газа. Производимый в парогенераторах теплоноситель транспортируется к нагнетательным скважинам по паропроводам.
Предполагаемое изобретение позволяет извлечь тепловую энергию из грунта и использовать ее для отопления зданий и сооружений жилого поселка, находящегося в 3,5 км от места ведения разработки.
На рисунке 1 представлено распределение температур в пласте через 0,5 года эксплуатации [Рузин, Л.М. Разработка залежей высоковязких нефтей и битумов с применением тепловых методов: учеб. пособие / Л.М. Рузин, О.А. Морозюк. Ухта: УГТУ, 2015. - 166 с., стр. 89]. На рисунке 2 представлено схематичное функционирование теплового насоса с замкнутой системой циркуляции теплоносителя в теплообменнике.
Добыча высоковязкой нефти осуществляется закачиванием пара через галерею скважин 3 в нефтяной пласт 2, вокруг которых создается текучая среда 7. Нагретый продукт скважинным насосом 9 подается на поверхность для аккумулирования и дальнейшей переработки. На всем участке разработки тяжелой нефти тепло нагретого грунта 1 не используется. Нами предлагается извлечение тепловой энергии искусственно нагретого грунта тепловым насосом. Для работы теплового насоса требуется только источник электроэнергии. Принцип действия теплового насоса аналогичен принципу действия холодильника. В обоих есть испаритель, компрессор, конденсатор и дросселирующее устройство - все части объединены в единый контур. В испарителе хладагент нагревается до температуры 6-8°С, отобранной от теплоносителя из скважины, закипает и испаряется. Полученный пар сжимается компрессором. При росте давления температура хладагента поднимается до 35-65°С. Это тепло отдается через теплообменник конденсатора рабочей жидкости потребителя, который использует энергию по своему усмотрению. Охлажденный хладагент снова конденсируется, продавливается через дроссель, давление падает, и хладагент вновь поступает в испаритель, где готов испариться.
В качестве среды для теплообмена используется слой грунта высотой до 100 метров, расположенный над пластом продуктивной высоковязкой нефти. Слой грунта в процессе разработки и эксплуатации месторождения постоянно нагревается от галереи подземных скважин, в которые закачивается перегретый пар парогенераторными установками. Работа парогенераторных установок ведется ежесуточно непрерывно в течение всего периода разработки месторождения.
Тепловой насос, установленный на поверхности земли в пределах границ разрабатываемого месторождения в радиусе действия паровых установок, содержит: 10 - U-образный трубопровод, выполняющий роль теплообменника; 11 - испаритель; 12 - контур хладагента; 13 - компрессор; 14 - конденсатор; 15 - расширительный клапан.
Теплообменник 10 подключен к входу теплового насоса и представляет собой внешний контур трубопровода с циркулирующим незамерзающим жидким теплоносителем (например, раствор этиленгликоля), помещенный в среду для теплообмена в виде искусственно нагретого грунта. Для обеспечения теплообменной среды специально для теплообменника 10 над зоной активации разогрева нефтяного пласта в радиусе действия паровых установок бурят вертикальную скважину на глубину от 30 метров до 100 метров и устанавливают в нее теплообменник замкнутого типа. Из описания патента №2425211 известно, что все подземные скважины: добывающие, нагнетательные и парораспределительные обсаживают на глубину 50-100 м. Зона активации разогрева пласта 2 высоковязкой нефти обеспечивается галереей подземных скважин - нагнетательной 3 с перфорационными каналами 5 и парораспределительной, взаимосвязанных с добывающей скважиной 4. Разогретая нефть 8 представляет собой текучую среду 7, которая извлекается с помощью скважинного насоса 9. Теплоноситель нагревается в слое искусственно разогретого грунта и отдает свое тепло контуру теплового насоса. Глубина погружения внешнего контура (теплообменника) обоснована расчетами. С помощью расчетов нами обосновано, что при установке теплообменника 10 на глубину до 30 метров работа теплового насоса будет недостаточно эффективна, т.к. не обеспечивается требуемая разность подающей и возвратной температур и достаточная скорость потока теплоносителя (см. пример). Распределение температуры в пласте при нагнетании горячей воды с расходом 500 м3/сут., составляет около 70 м при начальной температуре пласта То=20°С и температуре теплового агента на забое нагнетательной скважины Тв=200°С. Тепло, вырабатываемое парогенератором Qпг, включает полезное тепло Qпол, которое накапливается в продуктивном пласте, и потерянное тепло Qпот: в паропроводах - Qтр, в нагнетательных скважинах - Qнагн, в окружающих пласт породах -Qокр и в добывающих скважинах - Qдоб. Доля теплопотерь в среднем составляет 40÷60% от количества тепла, производимого парогенераторами.
Известно, что глубина промерзания грунта в зимний период в г. Усинск может достигать 3, 1 м (http://www.center-pss.ru/goroda/20/usinsk-glpr.htm). Наблюдения за снежным покровом земной поверхности на разрабатываемом месторождении с применением выше указанной технологии свидетельствуют о том, что в зимний период температура верхнего слоя близка к нулевой, однако с целью исключения вероятности охлаждения внешнего контура в зимний период, его необходимо теплоизолировать на глубину до 3,1 м.
В U-образном теплообменнике 10 теплоноситель циркулирует от теплового насоса к источнику тепла за счет разности температур теплоносителя и грунта. В испарителе 11 нагретый в грунте теплоноситель отдает свою тепловую энергию контуру хладагента 12, охлаждается и возвращается к источнику тепла, где вновь нагревается. В испарителе 11 хладагент нагревается, начинает кипеть и превращается в пар, поступающий в компрессор 13, сжимается и с возрастанием давления температура его повышается. В конденсаторе 14 пар нагревает воду системы отопления и через расширительный клапан 15 возвращается к теплоносителю. Циклы повторяются. Тепловая установка расположена в радиусе действия паровых установок нефтяного месторождения, где располагаются скважина нефтяная 4 и скважина нагнетательная 3, в которую закачивается пар 6 от парогенераторной установки.
Извлеченную тепловую энергию нагретого грунта 16 можно использовать для отопления зданий, сооружений, технологических нужд, подогрева приточного вентиляционного воздуха, горячего водоснабжения (ГВС). Тепловой насос обладает высоким КПД, повышает эффективность использования тепла без затрат на топливо и снижает энергозатраты предприятия.
Пример.
В качестве теплоносителя первичного контура теплового насоса используют низкозамерзающую жидкость, например, раствор этиленгликоля с точкой замерзания равной -13°С. Тепловая мощность Qо, получаемая от низкопотенциального источника искусственно нагретого грунта составляет:
Figure 00000001
где, G - расход теплоносителя первичного контура, кг/с; w - скорость потока теплоносителя, принимаем равной 0,5 м/с; ρ - плотность раствора этиленгликоля, равная 1005 кг/м3; ср - теплоемкость раствора незамерзающей жидкости, например, этиленгликоля, при температуре 0°С составляет 3700 Дж/кг °С; tB, tH - температура подающей и возвратной линии теплового насоса, °С; разность этих температур (tв-tн) принимаем равной 5°С.
Объем отапливаемого здания определяем по укрупненным показателям (для жилых и общественных зданий):
Qmax=αVзд⋅q⋅(tв-tн)
Figure 00000002
где α - коэффициент, учитывающий район строительства здания α=0,54+22/(tв-tн); q - удельная тепловая характеристика здания, кДж/(м3⋅°С⋅сут.), для общественных зданий малой этажностью q=42 кДж/(м3⋅°С⋅сут.) [СНиП 23-02-2003. Тепловая защита зданий (приняты Постановлением Госстроя РФ от 26.06.2003 N 113 // М.: Госстрой РФ, ФГУП ЦПП, 2004]; tв, tн - температура воздуха внутри помещений и снаружи здания, °С, tв=22 С, tн.=-36 С; Vзд - объем здания, м3.
Тепловой насос при принятых исходных данных может быть использован для теплоснабжения здания объемом 2813 м3. Для получения требуемого количества тепловой энергии для теплоснабжения жилого поселка на участке может установлено несколько тепловых насосных установок.

Claims (3)

1. Способ извлечения тепловой энергии на нефтяном месторождении, включающий извлечение тепловой энергии с помощью теплового насоса, вход которого подключен к трубопроводу, помещенному в среду для теплообмена, а выход - к системе распределения тепла потребителю, отличающийся тем, что извлекают тепловую энергию, потерянную в породах, окружающих продуктивный пласт высоковязкой нефти, который разрабатывают комбинированным термошахтным способом путем закачивания в пласт перегретого пара парогенераторными установками через галерею подземных скважин, пробуренных с поверхности участка разрабатываемого месторождения, в качестве среды для теплообмена используют слой грунта высотой до 100 м, расположенный над пластом, тепловой насос устанавливают на поверхности земли в границах участка разрабатываемого месторождения, над зоной активации разогрева нефтяного пласта бурят вертикальную скважину на глубину от 30 до 100 м, в которую устанавливают U-образный трубопровод, выполняющий роль теплообменника, отбор и преобразование низкопотенциального тепла из грунта до высокого температурного уровня проводят путем передачи тепла через теплообменник закрытого типа с жидким незамерзающим теплоносителем, подключенный к контуру испарителя теплового насоса.
2. Способ извлечения тепловой энергии по п. 1, отличающийся тем, что для исключения вероятности охлаждения трубопровода в зимний период его теплоизолируют на глубину до 3,1 м.
3. Способ извлечения тепловой энергии по п. 1, отличающийся тем, что на поверхности земли в границах участка месторождения устанавливают один и более тепловых насосов, выход которых подключен к системе распределения тепла потребителю.
RU2018107366A 2018-02-27 2018-02-27 Способ извлечения тепловой энергии на нефтяном месторождении RU2683452C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018107366A RU2683452C1 (ru) 2018-02-27 2018-02-27 Способ извлечения тепловой энергии на нефтяном месторождении

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018107366A RU2683452C1 (ru) 2018-02-27 2018-02-27 Способ извлечения тепловой энергии на нефтяном месторождении

Publications (1)

Publication Number Publication Date
RU2683452C1 true RU2683452C1 (ru) 2019-03-28

Family

ID=66089953

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018107366A RU2683452C1 (ru) 2018-02-27 2018-02-27 Способ извлечения тепловой энергии на нефтяном месторождении

Country Status (1)

Country Link
RU (1) RU2683452C1 (ru)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3786858A (en) * 1972-03-27 1974-01-22 Atomic Energy Commission Method of extracting heat from dry geothermal reservoirs
RU2280816C2 (ru) * 2004-11-17 2006-07-27 Станислав Викторович Цивинский Устройство для отопления индивидуальных зданий и способ его работы
RU2292000C1 (ru) * 2005-04-20 2007-01-20 Федеральное государственное унитарное предприятие "Научно-производственный центр по сверхглубокому бурению и комплексному изучению недр Земли" (ФГУП НПЦ "Недра") Устройство для энергообеспечения помещений с использованием низкопотенциальных энергоносителей
RU2341736C2 (ru) * 2006-11-07 2008-12-20 Фисенко Вячеслав Николаевич Способ использования геотермальной энергии "fill well"
RU2483255C1 (ru) * 2011-10-20 2013-05-27 Открытое акционерное общество "Научно-производственный центр по сверхглубокому бурению и комплексному изучению недр Земли" (ОАО "НПЦ "Недра") Способ посезонного использования низкопотенциального тепла приповерхностного грунта и скважинные теплообменники для осуществления вариантов способа
RU2592913C1 (ru) * 2015-06-04 2016-07-27 Расим Наилович Ахмадиев Способ извлечения геотермальной энергии из добытой продукции действующей нефтяной скважины

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3786858A (en) * 1972-03-27 1974-01-22 Atomic Energy Commission Method of extracting heat from dry geothermal reservoirs
RU2280816C2 (ru) * 2004-11-17 2006-07-27 Станислав Викторович Цивинский Устройство для отопления индивидуальных зданий и способ его работы
RU2292000C1 (ru) * 2005-04-20 2007-01-20 Федеральное государственное унитарное предприятие "Научно-производственный центр по сверхглубокому бурению и комплексному изучению недр Земли" (ФГУП НПЦ "Недра") Устройство для энергообеспечения помещений с использованием низкопотенциальных энергоносителей
RU2341736C2 (ru) * 2006-11-07 2008-12-20 Фисенко Вячеслав Николаевич Способ использования геотермальной энергии "fill well"
RU2483255C1 (ru) * 2011-10-20 2013-05-27 Открытое акционерное общество "Научно-производственный центр по сверхглубокому бурению и комплексному изучению недр Земли" (ОАО "НПЦ "Недра") Способ посезонного использования низкопотенциального тепла приповерхностного грунта и скважинные теплообменники для осуществления вариантов способа
RU2592913C1 (ru) * 2015-06-04 2016-07-27 Расим Наилович Ахмадиев Способ извлечения геотермальной энергии из добытой продукции действующей нефтяной скважины

Similar Documents

Publication Publication Date Title
US20210332807A1 (en) Geothermal heat harvesters
US5515679A (en) Geothermal heat mining and utilization
US8650875B2 (en) Direct exchange geothermal refrigerant power advanced generating system
US9709337B2 (en) Arrangement for storing thermal energy
Alimonti et al. Coupling of energy conversion systems and wellbore heat exchanger in a depleted oil well
Mertoglu et al. Geothermal energy use, country update for Turkey
US20100064710A1 (en) Self contained water-to-water heat pump
CN103983035B (zh) 一种基于压裂技术的双井回灌地热开发系统
AU633246B2 (en) Power generation plant
RU2330219C1 (ru) Геотермальная установка энергоснабжения потребителей
Eggen et al. Heat pump for district cooling and heating at Oslo Airport Gardermoen
Lund et al. Analysis of deep-heat energy wells for heat pump systems
Steins et al. Assessment of the geothermal space heating system at Rotorua Hospital, New Zealand
RU2683452C1 (ru) Способ извлечения тепловой энергии на нефтяном месторождении
WO2016091969A1 (en) System for providing energy from a geothermal source
US20080006046A1 (en) Self contained water-to-water heat pump
RU2341736C2 (ru) Способ использования геотермальной энергии "fill well"
RU2683059C1 (ru) Способ извлечения и использования геотермального тепла для охлаждения грунтов вокруг тоннелей метрополитена
EP2163828A2 (en) Appartus and method for transferrign energy
Usenkov Utilization of bathygenic heat of the earth for heating and hot water supply in living houses
Alkhasova Technological design and efficiency assessment of heat production from dry rock with different energy potential
RU2664271C2 (ru) Грунтовый теплообменник геотермальной теплонасосной системы с увлажнением грунта и способ его использования
RU2701029C1 (ru) Способ извлечения петротермального тепла
Wiekiera Technical and Economic Analysis of the Use of Heat Pumps in a Public Facility
Goričanec et al. Hydrogeothermal cascade heat pump–Economic and ecologic appropriacy