RU2682570C1 - Способ определения серо- и азотсодержащих веществ в жидких углеводородных топливах - Google Patents

Способ определения серо- и азотсодержащих веществ в жидких углеводородных топливах Download PDF

Info

Publication number
RU2682570C1
RU2682570C1 RU2018116064A RU2018116064A RU2682570C1 RU 2682570 C1 RU2682570 C1 RU 2682570C1 RU 2018116064 A RU2018116064 A RU 2018116064A RU 2018116064 A RU2018116064 A RU 2018116064A RU 2682570 C1 RU2682570 C1 RU 2682570C1
Authority
RU
Russia
Prior art keywords
nitrogen
sulfur
acetone
heptane
vol
Prior art date
Application number
RU2018116064A
Other languages
English (en)
Inventor
Алексей Георгиевич Дедов
Дмитрий Юрьевич Марченко
Анастасия Александровна Пархоменко
Делгир Андреевна Санджиева
Екатерина Александровна Иванова
Елена Сергеевна Лобакова
Галина Александровна Дольникова
Санжи Валерьевич Будинов
Любовь Всеволодовна Зрелова
Original Assignee
федеральное государственное автономное бюджетное образовательное учреждение высшего образования "Российский государственный университет нефти и газа (национальный исследовательский университет) имени И.М. Губкина"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by федеральное государственное автономное бюджетное образовательное учреждение высшего образования "Российский государственный университет нефти и газа (национальный исследовательский университет) имени И.М. Губкина" filed Critical федеральное государственное автономное бюджетное образовательное учреждение высшего образования "Российский государственный университет нефти и газа (национальный исследовательский университет) имени И.М. Губкина"
Priority to RU2018116064A priority Critical patent/RU2682570C1/ru
Application granted granted Critical
Publication of RU2682570C1 publication Critical patent/RU2682570C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/90Plate chromatography, e.g. thin layer or paper chromatography

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

Изобретение относится к области хроматографического анализа веществ и может быть использовано при разделении, идентификации и количественном определении серо- и азотсодержащих соединений органических соединений. Способ определения серо- и азотсодержащих веществ в жидких углеводородных топливах заключается в том, что пробу анализируемого топлива и эталонные пробы групп серо- и азотсодержащих веществ и индивидуальных веществ в составе групп приводят в контакт с хроматографической пластиной со слоем адсорбента - силикагеля, пластину после контактирования помещают в хроматографическую камеру, насыщенную системой растворителей, в качестве которой используют смесь гептана и ацетона с содержанием гептана 50-99 об.%, ацетона 1-50 об.%, или гексана и ацетона с содержанием гексана 50-99 об.%, ацетона 1-50 об.%, или гептана и толуола с содержанием гептана 50-99 об.%, толуола 1-50 об.%, далее пластину равномерно опрыскивают насыщенным раствором хлоранила в хлороформе, высушивают, после чего, путем сопоставления спектров анализируемой пробы и эталонных проб, проводят идентификацию серо- и азотсодержащих соединений по профилям спектров, об их количественном содержании судят по интенсивности аналитического сигнала в каналах цветности. Техническим результатом является упрощение способа определения серо- и азотсодержащих веществ в жидких углеводородных топливах и повышение достоверности идентификации и количественного определения. 6 ил.

Description

Изобретение относится к способам анализа материалов химическими и инструментальными способами с помощью химических индикаторов и портативных приборов, в частности к способу определения серо- и азотсодержащих веществ в жидких углеводородных топливах, в частности автомобильных бензинах, дизельных топливах, топливах для реактивных двигателей.
Серосодержащие органические соединения являются природными компонентами сырой нефти. В процессе переработки нефти эти соединения попадают в нефтепродукты в различных концентрациях. Основными органическими серосодержащими соединениями, присутствующими в нефтепродуктах являются: меркаптаны R-SH, сульфиды и тиоэфиры R-S-R, тиофен C4H4S и его производные, производные тиофана, бициклические и полициклические серосодержащие соединения. Продукты горения этих соединений могут вызывать коррозию оборудования и загрязнять атмосферу, создавая экологические проблемы. Кроме того, присутствующие в топливах серосодержащие соединения, такие как меркаптаны (тиолы) и сероводород, отравляют каталитические нейтрализаторы автомобилей.
Природными компонентами нефти являются и некоторые азотсодержащие органические соединения. В связи с наличием у этой группы соединений антидетонационных свойств, их часто добавляют в топлива в виде присадок. Наиболее распространенное азотсодержащее соединение в автомобильном бензине - N-метиланилин (монометиланилин, ММА), который является антидетонационной присадкой и позволяет достичь значительного увеличения октанового числа. Однако, данное вещество обладает отрицательными свойствами: тормозит процесс горения топлива, что приводит к снижению экономичности двигателя, вызывает повышенные отложения в двигателе и износ деталей, повышает токсичность отработанных газов. По данным причинам содержание N-метиланилина в топливах и бензинах жестко нормируется и его количество необходимо контролировать.
Существуют стандартные методы определения серы путем сжигания в бомбе (ГОСТ 3877-88) или лампе (ГОСТ Р 51859-2002, ГОСТ 19121-73).
В первом методе навеску испытуемого продукта сжигают в калориметрической бомбе, заполненной сжатым кислородом. Получающуюся при сгорании двуокись серы поглощают предварительно залитой в бомбу щелочью, окисляют образовавшиеся сульфиты до сульфатов и затем определяют серу гравиметрически осаждением хлористым барием в виде BaSO4.
Недостаток данного метода заключается в невозможности использования последнего при анализе продуктов, содержащих элементы, при сжигании соединений которых образуются нерастворимые сульфаты, выделяющиеся на стадии осаждения. Этими элементами могут быть железо, алюминий, кальций, кремний, свинец, а также сульфид молибден. Нижний предел определения содержаний массовой доли серы составляет 0,1%. Так как максимальная навеска испытуемого образца не может быть более 0,8 г, в случае низкого содержания серы при определении последней могут быть допущены значительные ошибки.
В ламповом методе (ГОСТ Р 51859-2002) образец сжигают в замкнутой системе, используя лампу с хлопчатобумажным фитилем, в искусственной атмосфере, содержащей 30% об. кислорода и 70% об. углекислого газа для предотвращения образования окислов азота, которые вносят положительную погрешность в определение с использованием титриметрического метода. Образовавшуюся двуокись серы поглощают и окисляют до серной кислоты обработкой перекисью водорода. Раствор продувают воздухом для удаления растворенной двуокиси углерода. Серу определяют в виде сульфата титрованием стандартным раствором гидроокиси натрия, либо гравиметрически осаждением в виде BaSO4.
Недостатками указанного метода являются длительность и трудоемкость проведения анализа, а также наличие кислотобразующих соединений.
Инструментальный метод энергодисперсионной рентгенофлуоресцентной спектрометрии (ГОСТ Р 51947-2002) обеспечивает быстрое и точное определение общей серы в нефтепродуктах, не требуя длительной пробоподготовки образца. Данный метод позволяет определить содержание серы от 0,015% до 5,00% в дизельном топливе, нафте, керосине, сырой нефти, бензине (неэтилированном) и других дистиллятных нефтепродуктах. При содержании в анализируемой пробе серы в количестве более 5%, данную пробу разбавляют таким образом, чтобы количество серы составляло 0,015%-5%. Недостатки метода заключаются в необходимости использования дорогостоящего оборудования и в невозможности использования последнего в точках отбора проб, например на АЗС.
Для определения N-метиланилина используют, в основном, газовую хроматографию (ГОСТ Р 32515-2013 Бензины автомобильные. Определение N-метиланилина методом капиллярной газовой хроматографии). Недостатки известного метода также заключаются в необходимости использования дорогостоящего оборудования и в невозможности использования последнего в точках отбора проб.
Известны способы качественного и количественного определения N-метиланилина с помощью тест-средств по изменению цвета индикатора (RU 2425366, 2011; RU 2489715, 2013). Недостатки этих методов заключаются в низкой чувствительности, а также в применении агрессивного реагента - соляной кислоты и дополнительной трудоемкой подготовке используемых в способах индикаторных полосок.
Общим недостатком всех перечисленных методов является отсутствие возможности одновременного определения в жидких углеводородных топливах серо- и азотсодержащих соединений.
Наиболее близким к описываемому изобретению является экспресс-метод определения содержания присадки N-метиланилина в углеводородных топливах с использованием тонкослойной хроматографии (Кузнецова О.Ю., Балак Г.М., Приваленко А.Н., Орешенков А.В. Новый экспресс-метод определения содержания присадки монометиланилин в углеводородных топливах с использованием тонкослойной хроматографии. Фундаментальные исследования, 2016, №8-1, с. 45-49).
Метод основан на отделении N-метиланилина от остальных компонентов топлив на пластине для тонкослойной хроматографии и последующем проявлении в УФ-свете или парами йода. Качественную идентификацию монометиланилина осуществляют по величине Rf=0,38±0,35, причем, по утверждению авторов, отклонение от заявленной величины Rf составляет почти 100% ((0,35/0,38)×100), что позволяет усомниться в достоверности идентификации. Кроме того, данный метод применим только для определения N-метиланилина в углеводородных топливах и не позволяет определять серосодержащие вещества. Описанный метод не может быть использован для групповой идентификации серо- и азотсодержащих веществ, а образующиеся продукты взаимодействия с йодом не содержат селективных признаков, позволяющих идентифицировать индивидуальные соединения. При количественном определении в известном способе используют хроматограмму, проявленную в парах йода, которую подвергают сканированию на планшетном сканере. В программе GIMP2.8 обработки изображений измеряют площадь прямоугольных фрагментов, описывающих пятна N-метиланилина, полученные при хроматографировании растворов известной концентрации. Градуировочную зависимость строят, используя зависимость площадей выделенных фрагментов от концентрации. При этом не ясно, вписанный в эллипс пятна или описанный вокруг эллипса прямоугольник используют для построения градуировочной зависимости. Недостаток метода также заключается в том, что он не позволяет одновременно проводить определение органических серо- и азотсодержащих соединений при их совместном присутствии в жидких углеводородных топливах. Используемые для идентификации соединений этим методом значения коэффициентов удерживания (Rf) могут меняться в зависимости от состава пробы. Так как у жидких топлив нет стандартизованного состава, данные изменения могут носить несистематический характер, что приводит к снижению достоверности полученных данных. Таким образом, известный способ недостаточно эффективен.
Технической проблемой, на решение которой направлено предлагаемое изобретение является упрощение способа определения серо- и азотсодержащих веществ в жидких углеводородных топливах за счет обеспечения одновременной идентификации и количественного определения как групп серо- и азотосодержащих соединений, так и индивидуальных веществ в составе групп в углеводородных топливах, повышение достоверности идентификации и количественного определения.
Указанная проблема решается описываемым способом определения серо- и азотсодержащих веществ в жидких углеводородных топливах, заключающимся в том, что пробу анализируемого топлива и эталонные пробы групп серо- и азотсодержащих веществ и индивидуальных веществ в составе групп приводят в контакт с хроматографической пластиной со слоем адсорбента - силикагеля, пластину после контактирования помещают в хроматографическую камеру, насыщенную системой растворителей, в качестве которой используют смесь гептана и ацетона с содержанием гептана 50-99% об., ацетона 1-50% об., или гексана и ацетона с содержанием гексана 50-99% об., ацетона 1-50% об., или гептана и толуола с содержанием гептана 50-99% об., толуола 1-50% об., далее пластину равномерно опрыскивают насыщенным раствором хлоранила в хлороформе, высушивают, после чего, путем сопоставления спектров анализируемой пробы и эталонных проб, проводят идентификацию серо- и азотсодержащих соединений по профилям спектров, а об их количественном содержании судят по интенсивности аналитического сигнала в каналах цветности.
Достигаемый технический результат заключается в оптимизации состава используемых растворителей и сочетании видов оптического детектирования.
Сущность способа заключается в следующем.
Пробу анализируемого топлива, а также эталонные пробы групп серо-и азотсодержащих веществ и индивидуальных веществ в составе групп приводят в контакт с хроматографической пластиной со слоем адсорбента -силикагеля.
Пластину после контактирования помещают в хроматографическую камеру, насыщенную системой растворителей, в качестве которой используют смесь гептана и ацетона с содержанием гептана 50-99% об., ацетона 1-50% об., или гексана и ацетона с содержанием гексана 50-99% об., ацетона 1-50% об., или гептана и толуола с содержанием гептана 50-99% об., толуола 1-50% об..
Далее пластину равномерно опрыскивают насыщенным раствором хлоранила в хлороформе, высушивают, после чего, путем сопоставления спектров анализируемой пробы и эталонных проб, проводят идентификацию серо- и азотсодержащих соединений по профилям спектров при помощи портативного спектрофотометра, например ilPro («GretagMacbeth», Швейцария).
Количественное определение серо- и азотсодержащих веществ в жидких углеводородных топливах проводят по интенсивности аналитических сигналов в каналах цветности при помощи сканера, например CanoScan LIDE 500F («Сапоп»).
При размерах пятен, меньших, чем апертура спектрофотометра, идентификацию и количественное определение производят по координатам цвета, сравнивая значения, полученные при исследовании проб и эталонов.
При размерах пятен, перекрывающих диаметр апертуры спектрофотометра, сравнению подвергают непосредственно профили спектров и их амплитудные значения в максимумах поглощения. По положению максимумов поглощения относительно шкалы длин волн проводят идентификацию соединений, а по сравнению величин амплитудных значений проб и эталонов определяют количество вещества в пробе.
Для разделения, идентификации и количественного определения азотсодержащих и серосодержащих органических соединений в жидких углеводородных топливах используют систему растворителей - смесь гептана и ацетона с содержанием гептана 50-99% об., преимущественно 92% об., ацетона 1-50% об., преимущественно 8% об. или смесь гексана и ацетона с содержанием гексана 50-99% об., преимущественно 96% об., ацетона 1-50% об., преимущественно 4% об., или смесь гептана и толуола с содержанием гептана 50-99% об., преимущественно 87% об., толуола 1-50% об., преимущественно 13% об..
Преимущество описываемого способа заключается также в возможности его использования в местах отбора проб исследуемого топлива.
Ниже приведены примеры, иллюстрирующие изобретение, но не ограничивающие его.
Пример 1. Разделение, идентификация и количественное определение серосодержащих и азотсодержащих органических соединений в жидких углеводородных топливах - дизельном топливе с использованием разделительной системы гептан-ацетон.
Для проведения измерений готовят модельные растворы серо- и азотсодержащих органических соединений в гексане с различными концентрациями. Известное количество серо- и азотсодержащих соединений растворяют в гексане, после чего путем разбавления готовят смеси с меньшими концентрациями. Для построения идентификационного ряда и градуировки готовят растворы с концентрациями серосодержащих соединений, % мас: 0,001; 0,0025; 0,005; 0,0075; 0,01 и концентрациями азотсодержащих соединений, % об.: 0,01; 0,03; 0,05; 0,08; 0,1.
Затем приготовленные растворы эталонных проб объемом 1-50 мкл с известными концентрациями серо- или азотсодержащих соединений, а также пробу исследуемого дизельного топлива объемом 1-50 мкл наносят отдельными пятнами на стартовую линию пластины ТСХ.
Для осуществления процесса разделения пластины с нанесенными образцами погружают нижним краем в хроматографическую камеру, на дно которой помещена используемая смесь гептана и ацетона с содержанием гептана 50-99% об., ацетона 1-50% об. (объем камеры должен быть насыщен парами растворителей) и хроматографируют. После высушивания элюента на воздухе пластины равномерно опрыскивают насыщенным раствором хлоранила в хлороформе, высушивают и после проявления пятен измеряют профили спектров и их амплитудные значения в максимумах светопоглощения при помощи портативного спектрофотометра, например ilPro («GretagMacbeth», Швейцария).
Далее измеряют интенсивность окраски пятен по интенсивности аналитического сигнала в каналах цветности в системе RGB при помощи сканера, например CanoScan LIDE 500F («Сапоп»). Сканируют хроматографические пластины со следующими параметрами сканирования: разрешение 1200 dpi, 48 бит/пиксель RGB. Полученные сканированием изображения окрашенных пятен анализируют по интенсивности в координатах R (красный), G (зеленый), В (синий). Для этого файлы открывают в графическом редакторе AdobePhotoshopCS6 Extended, выделяют овальный равномерно окрашенный участок пятна, выбирают команду «Гистограмма» и получают усредненное значение интенсивности для каждого из каналов «R», «G», «В». Например, значения абсолютной интенсивности окраски пятен дибензотиофена концентрацией 0,001%мас.составляют: R=240, G=216, В=199.
Значения измерений окрашенных пятен пробы исследуемого топлива, полученные цветометрическим и спектрофотометрическим методами, сопоставляют с градуировочными зависимостями эталонных проб, полученными аналогичными методами. Для количественного определения сопоставляют значения интенсивности определяемого соединения в исследуемом топливе со значениями интенсивности окраски пятен эталонных проб в каналах цветности RGB на хроматограммах.
Фиг. 1 иллюстрирует положение окрашенных пятен соединений на хроматорамме: N-монометиланилин (1), N,N-диметиланилин (2), додекантиол (3), метилфенилсульфид (4), дибензотиофен (5) с использованием системы растворителей - смесь гептана и ацетона, с содержанием гептана 96% об, ацетона 4% об.
Фиг. 2 иллюстрирует разделение окрашенных пятен метилфенилсульфида (1), дибензотиофена (2), N,N-диметиланилина (3) и N-метиланилина (4) на хроматорамме с использованием системы растворителей - смесь гептана и ацетона, с содержанием гептана 96% об., ацетона 4 об.%.
Фиг. 3 иллюстрирует профили спектров светопоглощения продуктов взаимодействия метилфенилсульфида с хлоранилом на поверхности сорбента пластины, зарегистрированные портативным спектрофотометром ilPro. Содержание общей серы, мг/кг: 100 (1); 75 (2); 50 (3); 25 (4); 10 (5).
Суммарное содержание серо- и азотсодержащих веществ при их разделении в виде окрашенных пятен равно сумме значений, найденных по градуировочным графикам индивидуальных веществ.
Максимальное светопоглощение пятен окрашенного соединения додекантиола с хлоранилом наблюдается при длине волны 530 нм вне зависимости от концентрации.
Пример 2. Разделение, идентификация и количественное определение серосодержащих и азотсодержащих органических соединений в жидких углеводородных топливах с использованием разделительной системы гексан-ацетон. В качестве указанного топлива используют бензин.
Пробы объемом 1-50 мкл приготовленных модельных растворов эталонных серо- и азотсодержащих органических соединений в гексане с различными концентрациями и исследуемого бензина наносят на стартовую линию пластины ТСХ аналогично примеру 1.
Для осуществления процесса разделения пластины с нанесенными образцами погружают нижним краем в хроматографическую камеру, на дно которой помещена используемая смесь гексана и ацетона с содержанием гексана 50-99% об., ацетона 1-50% об. (объем камеры должен быть насыщен парами растворителей) и хроматографируют.После высушивания элюента на воздухе пластины равномерно опрыскивают насыщенным раствором хлоранила в хлороформе, высушивают.
После проявления пятен для идентификации серо- и азотсодержащих веществ измеряют профили спектров продуктов реакции хлоранила с исследуемыми веществами спектрофотометрическим методом и их количественное содержание цветометрическим методом аналогично примеру 1. Например, значения абсолютной интенсивности окраски пятен N-метиланилина концентрацией 0,01% мае. составляют: R=114, G=95, В=88.
На фиг. 4 представлена хроматограмма разделения азот- и серосодержащих соединений в пробе бензина с использованием системы растворителей - смесь гексана и ацетона, с содержанием гексана 92% об., ацетона 8% об.: N-метиланилин (1), сумма серосодержащих соединений (2).
Фиг. 5 иллюстрирует профили спектров светопоглощения продуктов взаимодействия N-метиланилина с хлоранилом на поверхности сорбента пластины, зарегистрированные портативным спектрофотометром ilPro. Содержание N-метиланилина составляет, %масс: 0,1(1); 0,08 (2); 0,05 (3); 0. 03 (4); 0,01 (5).
Пример 3. Количественное определение азотсодержащих и серосодержащих органических соединений в углеводородном топливе с использованием разделительной системы гептан-толуол. В качестве углеводородного топлива используют бензин.
Пробы объемом 1-50 мкл приготовленных модельных растворов эталонных серо- и азотсодержащих органических соединений в гексане с различными концентрациями и исследуемого бензина наносят на стартовую линию пластины ТСХ аналогично примеру 1.
Для осуществления процесса разделения пластины с нанесенными образцами погружают нижним краем в хроматографическую камеру, на дно которой помещена используемая смесь гексана и ацетона с содержанием гептана 50-99% об., толуола 1-50% об. (объем камеры должен быть насыщен парами растворителей) и хроматографируют.После высушивания элюента на воздухе пластины равномерно опрыскивают насыщенным раствором хлоранила в хлороформе, высушивают.
После проявления пятен для идентификации серо- и азотсодержащих веществ измеряют профили спектров продуктов реакции хлоранила с исследуемыми веществами спектрофотометрическим методом и их количественное содержание цветометрическим методом аналогично примеру
1. Например, значения абсолютной интенсивности окраски пятен N,N-диметиланилина концентрацией 0,05% мае. составляют: R=203, G=215, В=237.
Фиг. 6 иллюстрирует положение окрашенных пятен соединений N-монометиланилина (1), N,N-диметиланилина (2), додекантиола (3), метилфенилсульфида (4), дибензотиофена (5) на хроматорамме с использованием системы растворителей - смеси гептана и толуола, с содержанием гептана 87 об%, ацетона 13 об%.
Проведение способа с использованием оговоренной системы растворителей в иных объемных соотношениях, входящих в заявленный интервал, приводят к аналогичным результатам.
Таким образом, из представленных данных следует, что описываемый способ обеспечивает одновременную идентификацию и количественное определение как групп серо- и азотосодержащих соединений, так и индивидуальных веществ в составе групп в углеводородных топливах, а также повышение достоверности идентификации и количественного определения.

Claims (1)

  1. Способ определения серо- и азотсодержащих веществ в жидких углеводородных топливах, заключающийся в том, что пробу анализируемого топлива и эталонные пробы групп серо- и азотсодержащих веществ и индивидуальных веществ в составе групп приводят в контакт с хроматографической пластиной со слоем адсорбента - силикагеля, пластину после контактирования помещают в хроматографическую камеру, насыщенную системой растворителей, в качестве которой используют смесь гептана и ацетона с содержанием гептана 50-99 об.%, ацетона 1-50 об.%, или гексана и ацетона с содержанием гексана 50-99 об.%, ацетона 1-50 об.%, или гептана и толуола с содержанием гептана 50-99 об.%, толуола 1-50 об.%, далее пластину равномерно опрыскивают насыщенным раствором хлоранила в хлороформе, высушивают, после чего, путем сопоставления спектров анализируемой пробы и эталонных проб, проводят идентификацию серо- и азотсодержащих соединений по профилям спектров, а об их количественном содержании судят по интенсивности аналитического сигнала в каналах цветности.
RU2018116064A 2018-04-27 2018-04-27 Способ определения серо- и азотсодержащих веществ в жидких углеводородных топливах RU2682570C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018116064A RU2682570C1 (ru) 2018-04-27 2018-04-27 Способ определения серо- и азотсодержащих веществ в жидких углеводородных топливах

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018116064A RU2682570C1 (ru) 2018-04-27 2018-04-27 Способ определения серо- и азотсодержащих веществ в жидких углеводородных топливах

Publications (1)

Publication Number Publication Date
RU2682570C1 true RU2682570C1 (ru) 2019-03-19

Family

ID=65805843

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018116064A RU2682570C1 (ru) 2018-04-27 2018-04-27 Способ определения серо- и азотсодержащих веществ в жидких углеводородных топливах

Country Status (1)

Country Link
RU (1) RU2682570C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2721894C1 (ru) * 2019-12-13 2020-05-25 Публичное акционерное общество «СИБУР Холдинг» Способ определения элементарной серы в углеводородных средах

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1436065A1 (ru) * 1987-04-03 1988-11-07 Филиал Всесоюзного Научно-Исследовательского Института Гигиены И Токсикологии Пестицидов,Полимерных И Пластических Масс Способ количественного определени производных пиразола в объектах биосферы
US5152177A (en) * 1990-09-07 1992-10-06 Conoco Inc. Process for the detection and quantitation of corrosion and scale inhibitors in produced well fluids
RU2489715C1 (ru) * 2012-09-18 2013-08-10 Федеральное автономное учреждение "25 Государственный научно-исследовательский институт химмотологии Министерства обороны Российской Федерации" (ФАУ "25 ГосНИИ химмотологии Минобороны России") Способ определения монометиланилина в автомобильном бензине индикаторным тестовым средством
RU2617053C1 (ru) * 2016-06-02 2017-04-19 Федеральное автономное учреждение "25 Государственный научно-исследовательский институт химмотологии Министерства обороны Российской Федерации" Способ определения содержания монометиланилина в углеводородных топливах
RU2649978C1 (ru) * 2017-03-17 2018-04-06 Алексей Георгиевич Дедов Индикатор на носителе для определения содержания серосодержащих соединений в автомобильном топливе, способ определения содержания серосодержащих соединений в автомобильном топливе и способ получения индикатора на носителе

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1436065A1 (ru) * 1987-04-03 1988-11-07 Филиал Всесоюзного Научно-Исследовательского Института Гигиены И Токсикологии Пестицидов,Полимерных И Пластических Масс Способ количественного определени производных пиразола в объектах биосферы
US5152177A (en) * 1990-09-07 1992-10-06 Conoco Inc. Process for the detection and quantitation of corrosion and scale inhibitors in produced well fluids
RU2489715C1 (ru) * 2012-09-18 2013-08-10 Федеральное автономное учреждение "25 Государственный научно-исследовательский институт химмотологии Министерства обороны Российской Федерации" (ФАУ "25 ГосНИИ химмотологии Минобороны России") Способ определения монометиланилина в автомобильном бензине индикаторным тестовым средством
RU2617053C1 (ru) * 2016-06-02 2017-04-19 Федеральное автономное учреждение "25 Государственный научно-исследовательский институт химмотологии Министерства обороны Российской Федерации" Способ определения содержания монометиланилина в углеводородных топливах
RU2649978C1 (ru) * 2017-03-17 2018-04-06 Алексей Георгиевич Дедов Индикатор на носителе для определения содержания серосодержащих соединений в автомобильном топливе, способ определения содержания серосодержащих соединений в автомобильном топливе и способ получения индикатора на носителе

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2721894C1 (ru) * 2019-12-13 2020-05-25 Публичное акционерное общество «СИБУР Холдинг» Способ определения элементарной серы в углеводородных средах

Similar Documents

Publication Publication Date Title
Kelly et al. Prediction of gasoline octane numbers from near-infrared spectral features in the range 660-1215 nm
Ruiz-Guerrero et al. Comparison of comprehensive two-dimensional gas chromatography coupled with sulfur-chemiluminescence detector to standard methods for speciation of sulfur-containing compounds in middle distillates
US5744702A (en) Method for analyzing total reactive sulfur
US11719684B2 (en) Elemental sulfur analysis in fluids
RU2682570C1 (ru) Способ определения серо- и азотсодержащих веществ в жидких углеводородных топливах
CN112782146A (zh) 一种基于拉曼光谱的汽油烯烃含量分析方法
US20160047789A1 (en) Detection of trace polar compounds by optical sensors
Cebolla et al. Quantitative applications of fluorescence and ultraviolet scanning densitometry for compositional analysis of petroleum products in thin-layer chromatography
Quimby et al. Improved measurement of sulfur and nitrogen compounds in refinery liquids using gas chromatography—atomic emission detection
CA2329818C (en) Method for analyzing total reactive sulfur
RU2310832C1 (ru) Способ определения октанового числа автомобильных бензинов
RU2304281C1 (ru) Способ определения количества присадки детерсол-140 в моторных маслах для автомобильной техники
RU2617053C1 (ru) Способ определения содержания монометиланилина в углеводородных топливах
Murillo et al. Determination of sulfur in crude oils and related materials with a Parr bomb digestion method and inductively coupled plasma atomic emission spectrometry
RU2548724C1 (ru) Способ определения содержания монометиланилина в углеводородных топливах индикаторным тестовым средством и индикаторное тестовое средство для его осуществления
Belyaeva et al. Colorimetric determination of N-methylaniline in hydrocarbon media
Navas et al. Chemiluminescent methods in petroleum products analysis
Insausti et al. Determination of 2-ethylhexyl nitrate in diesel oil using a single excitation emission fluorescence spectra (EEF) and chemometrics analysis
dos Santos et al. Fuel quality monitoring by color detection
RU2795820C1 (ru) Способ определения октановых чисел многокомпонентных углеводородных смесей
RU2721894C1 (ru) Способ определения элементарной серы в углеводородных средах
RU2315297C1 (ru) Способ определения сероводорода и меркаптанов в углеводородных газах для проведения технологического контроля
Hall Polarographic determination of dissolved oxygen in petroleum fractions
Almajidi New Coulometeric Method for Determination of the Chemical Compositions of Refinery Waste
CA2263109C (en) Method for analyzing total reactive sulfur