RU2682372C2 - Передающее устройство и способ существенного уменьшения мертвых зон индукционной бесконтактной мобильной платежной системы - Google Patents

Передающее устройство и способ существенного уменьшения мертвых зон индукционной бесконтактной мобильной платежной системы Download PDF

Info

Publication number
RU2682372C2
RU2682372C2 RU2016142313A RU2016142313A RU2682372C2 RU 2682372 C2 RU2682372 C2 RU 2682372C2 RU 2016142313 A RU2016142313 A RU 2016142313A RU 2016142313 A RU2016142313 A RU 2016142313A RU 2682372 C2 RU2682372 C2 RU 2682372C2
Authority
RU
Russia
Prior art keywords
inductors
inductor
transmitter
signal
reader
Prior art date
Application number
RU2016142313A
Other languages
English (en)
Other versions
RU2016142313A (ru
RU2016142313A3 (ru
Inventor
Джордж Уоллнер
Original Assignee
Самсунг Электроникс Ко., Лтд.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Самсунг Электроникс Ко., Лтд. filed Critical Самсунг Электроникс Ко., Лтд.
Publication of RU2016142313A publication Critical patent/RU2016142313A/ru
Publication of RU2016142313A3 publication Critical patent/RU2016142313A3/ru
Application granted granted Critical
Publication of RU2682372C2 publication Critical patent/RU2682372C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q20/00Payment architectures, schemes or protocols
    • G06Q20/30Payment architectures, schemes or protocols characterised by the use of specific devices or networks
    • G06Q20/34Payment architectures, schemes or protocols characterised by the use of specific devices or networks using cards, e.g. integrated circuit [IC] cards or magnetic cards
    • G06Q20/341Active cards, i.e. cards including their own processing means, e.g. including an IC or chip
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07GREGISTERING THE RECEIPT OF CASH, VALUABLES, OR TOKENS
    • G07G1/00Cash registers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/20Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by the transmission technique; characterised by the transmission medium
    • H04B5/24Inductive coupling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/77Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for interrogation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • H01F2038/143Inductive couplings for signals

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • Strategic Management (AREA)
  • Accounting & Taxation (AREA)
  • Theoretical Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Near-Field Transmission Systems (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

Изобретение относится к технологиям безопасной магнитной передачи данных. Технический результат изобретения заключается в увеличении непрерывной зоны действия сигнала, на протяжении которой передаваемый сигнал находится выше порога чувствительности считывателя. Передатчик, генерирующий сигнал для считывания считывателем, включает в себя пусковую цепь и по меньшей мере два индуктора, подключенных к пусковой цепи. Пусковая цепь управляет пропуском потока тока через упомянутые по меньшей мере два индуктора, тем самым генерируя сигнал. Каждый индуктор имеет две зоны действия, в которых уровень генерируемого сигнала превышает порог чувствительности считывателя для каждого из индукторов, и мертвую зону между ними, в которой уровень сигнала ниже порога чувствительности считывателя. Индукторы расположены таким образом, чтобы вдоль упомянутой оси мертвые зоны упомянутых индукторов не перекрывались друг с другом, а зоны действия перекрывались друг с другом вдоль упомянутой оси, причем общая непрерывная зона сигнала вдоль упомянутой оси обладает уровнем сигнала, превышающим уровень сигнала любой из зон действия и упомянутый порог чувствительности. 3 н. и 19 з.п. ф-лы, 13 ил.

Description

ССЫЛКИ НА СООТВЕТСТВУЮЩИЕ ЗАЯВКИ
Настоящая заявка испрашивает приоритет по заявке США под номером 14/627,958, поданной 20 февраля 2015 года, которая испрашивает приоритет по предварительной заявке США под номером 62/103.237, поданной 14 января 2015 года, содержание которой полностью включено в настоящую заявку посредством ссылки.
ПРЕДПОСЫЛКИ ИЗОБРЕТЕНИЯ
Передача данных с магнитной полосы изначально осуществляется при проведении магнитной карты через считыватель магнитных полос (СМП) для активации платежа, идентификации (ID) и доступа к функциям управления. Взаимодействие приложений «Мобильный кошелек» на смартфонах и планшетах с существующими POS-терминалами или прочими устройствами, оборудованными СМП, вызывало затруднения. POS-терминалы с бесконтактными считывателями (как правило, использующие, например, стандарт ISO 14443) не настолько распространены, чтобы принимать бесконтактные платежи или NFC-платежи. Замена миллионов POS-терминалов продавцов (или дверных замков), которые принимают только магнитные карты с целью обеспечения взаимодействия с телефонами c NFC или прочими средствами передачи данных, например, со штрих-кодами, потребует значительных финансовых и временных затрат.
В последние годы были разработаны устройства, системы и способы, использующие устройства для сбора, хранения и передачи данных магнитной полосы в сочетании с приложениями «Мобильный кошелек» с целью сбора, хранения и передачи данных магнитных карт на POS-терминалы продавцов и прочие устройства с СМП или расчетных систем в физической и виртуальной среде. Данные системы обеспечивают удобство совершения платежей покупателями и защиту транзакций для продавцов и, в некоторых случаях, передачу дополнительных данных на СМП с целью использования программ лояльности, идентификации и доступа к функциям контроля.
Одна из систем, разработанная LoopPay Inc. (Берлингтон, Массачусетс) для безопасного сбора, хранения и передачи данных магнитной платежной карты, включает в себя мобильное устройство связи и мобильное приложение, а также донгл передатчика данных магнитной полосы. Донгл передатчика данных магнитной полосы состоит из микропроцессора, передатчика магнитного поля, включающего в себя драйвер и индуктор, способные вырабатывать переменные магнитные поля, батарею, зарядную цепь, СМП, память или элемент безопасности, аудио -джек и коммуникационный интерфейс (например, USB-интерфейс, 30- или 9-контактный интерфейс Apple, Bluetooth и пр.), работающие совместно с мобильным устройством покупателя и приложением «Мобильный кошелек» с целью считывания данных магнитной платежной карты, их защищенного хранения и передачи на POS-терминалы продавцов или расчетные системы в физической и виртуальной среде.
Технология безопасной магнитной передач данных (БМП) переносит эмулируемые данные магнитной полосы на СМП POS-терминала 101 на расстоянии от 30 до 40 мм. Магнитное поле переменной полярности 102 генерируется при пропускании тока переменной полярности через индуктор подходящей конструкции. Считывающая головка СМП, которая включает в себя индуктор, принимает магнитные импульсы и преобразует их в импульсы напряжения, которые, в свою очередь, расшифровываются и обрабатываются считывающей системой и терминалом. Данный процесс схематически представлен на ФИГ. 1.
При этом в действительности индукторы, в том числе индукторы с NFC, не имеют изотропных полей. К примеру, плоские индукторы, как правило, характеризуются наличием полей тороидальной формы. Другие индукторы генерируют поля других форм.
Перекрывающиеся поля индуктора БМП передатчика и индуктора считывающей головки создают так называемые мертвые зоны - узкие участки, в пределах которых передача сигнала не осуществляется. В зависимости от топологии индуктора, эти участки могут располагаться либо на центральной линии считывающей головки, либо вдоль краев по сторонам. Мертвые зоны снижают надежность передачи данных карты. Прежде чем пользователь определит, в каком положении его устройство LoopPay Inc. лучше всего работает, ему придется несколько раз повторить попытку, что создает неудобства. Когда БМП передатчик интегрирован в смартфон, размеры которого превышают размеры устройства LoopPay Inc., его корректное размещение менее вероятно, и, таким образом, первое использование БМП не всегда успешно.
ОПИСАНИЕ ИЗОБРЕТЕНИЯ
В данном аспекте описывается передатчик, генерирующий сигнал для считывания считывателем. Передатчик включает в себя пусковую цепь и по меньшей мере два индуктора, соединенных с пусковой цепью. Пусковая цепь управляет пропуском потока тока через индуктор, и ток генерирует сигнал, уровень которого превышает порог чувствительности считывателя для каждого из индукторов, которые могут иметь по крайней мере одну мертвую зону. Кроме того, индукторы располагаются таким образом, чтобы мертвые зоны не перекрывались друг с другом.
В некоторых вариантах исполнения индукторы располагаются таким образом, чтобы формировать области с уровнем сигнала, превышающим порог чувствительности считывателя, обеспечивая должное считывание данных.
В некоторых вариантах исполнения передатчик имеет только два индуктора.
В некоторых вариантах исполнения передатчик имеет по меньшей мере один индуктор, являющийся индуктором режима L, а в других вариантах исполнения - по меньшей мере один индуктор, являющийся индуктором режима Х.
В некоторых вариантах исполнения индуктор режима L содержит проводящий материал. Проводящий материал может быть выбран из группы материалов, включающих в себя металлическую проволоку, печатную плату и листовые штампованные элементы. Проводящий материал может быть покрыт эмалью, акриловым или пластиковым покрытием. В других вариантах, проводящий материал может быть выполнен в сложнопрофильной, круглой, многоугольной, прямоугольной, квадратной или треугольной форме.
В некоторых вариантах исполнения индуктор режима Х дополнительно содержит сердечник, который может быть выполнен из феррита. В других вариантах исполнения поперечное сечение сердечника имеет сложнопрофильную, круглую, многоугольную, прямоугольную, квадратную или треугольную форму.
В некоторых вариантах по меньшей мере один индуктор является индуктором режима L, и по меньшей мере один - индуктором режима Х. В других вариантах все индукторы являются индукторами режима L, либо все индукторы являются индукторами режима Х.
В некоторых вариантах исполнения по меньшей мере один индуктор не имеет мертвой зоны с уровнем сигнала ниже порога чувствительности считывателя, располагающегося над считывателем.
В некоторых вариантах исполнения зоны индуктора с уровнем сигнала выше порога чувствительности считывателя являются непрерывными и увеличивают общую площадь зоны, в которой уровень сигнала выше порога чувствительности считывателя. В некоторых вариантах исполнения пусковая цепь одновременно направляет ток через несколько индукторов. В других вариантах исполнения пусковая цепь направляет ток через несколько индукторов в разное время.
В другом аспекте описывается способ пуска передатчика, подразумевающий наличие пусковой цепи и по меньшей мере двух индукторов, подключенных к пусковой цепи, при этом каждый из них имеет по меньшей мере одну мертвую зону с уровнем сигнала ниже порога чувствительности считывателя, в которой пусковая цепь управляет пропуском потока тока через индуктор, что приводит к появлению сигнала. Указанный способ состоит из следующих этапов:
а) размещение по меньшей мере двух индукторов в передатчике таким образом, чтобы мертвые зоны индукторов не перекрывались друг с другом;
б) пропуск тока через по меньшей мере два индуктора с целью формирования составного сигнала.
В некоторых вариантах исполнения способ пуска передатчика включает пропуск тока только через один из индукторов в заданный момент времени. В некоторых других вариантах исполнения составной сигнал имеет мертвую зону с уровнем сигнала ниже порога чувствительности считывателя. В некоторых вариантах исполнения составной сигнал характеризуется смещением в направлении одной из сторон считывателя. В некоторых вариантах исполнения мертвые зоны составного сигнала находятся в особых местах, где отсутствует перекрытие с мертвыми зонами отдельных индукторов передатчика.
В некоторых вариантах исполнения способ пуска передатчика включает пропуск тока по меньшей мере через два индуктора. Пропуск тока также характеризуется чередованием фазы, в которой ток протекает через несколько индукторов в заданный момент времени, и фазы, когда ток проходит только через один индуктор в заданный момент времени. В некоторых вариантах исполнения протекание тока через по меньшей мере два индуктора характеризуется одинаковым направлением тока во всех индукторах. В некоторых других вариантах исполнения протекание тока через по меньшей мере два индуктора характеризуется наличием по меньшей мере одного индуктора, в котором ток течет в направлении, противоположном движению тока во всех остальных индукторах.
В одном аспекте передатчик имеет один индуктор, подключенный к пусковой цепи. Пусковая цепь регулирует ток, протекающий через индуктор, что вызывает его передачу, и пусковая цепь пропускает ток через индуктор множество раз пока индуктор перемещается, изменяя свое положение относительно движущейся головки считывателя. По крайней мере в одной из множества позиций, которые проходит индуктор, он генерирует сигнал передачи, уровень которого превышает порог чувствительности считывателя, обеспечивая должное считывание данных.
В одном аспекте указанный способ подразумевает многократное прохождение тока, регулируемое пусковой цепью, через передатчик, оснащенный одинарным индуктором, что позволяет генерировать сигнал для передачи пока индуктор перемещается, изменяя свое положение относительно движущейся головки считывателя. По крайней мере в одной из множества позиций, которые проходит индуктор, он генерирует сигнал передачи, уровень которого превышает порог чувствительности считывателя, обеспечивая должное считывание данных.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Фигуры представлены исключительно в качестве иллюстраций и не являются ограничивающими.
ФИГ. 1 - схема системы безопасной передачи магнитных данных (БМП), нашедшей применение в настоящем изобретении.
ФИГ. 2 - схема передатчика согласно настоящему изобретению.
ФИГ. 3 - схема электрических импульсов, индуцируемых плоским горизонтальным индуктором, размещенным в головке считывателя карт рядового POS-терминала, в различных положениях относительно слота считывателя карт.
ФИГ. 4 - магнитное сопряжение индуктора передатчика БМП (ФИГ. 2), и индуктора головки СМП для передачи смоделированных данных магнитной полосы на POS-терминал 403, где магнитное сопряжение является незначительным или нулевым 401 и порог чувствительности считывателя не достигается, в результате чего передача не удается.
ФИГ. 5А и 5В - два примера индуктора режима L, используемого в передатчике (ФИГ. 2), с медной проволокой в качестве проводящий материала, обмотанной в форме прямоугольника.
ФИГ. 6А и 6В - два примера индуктора режима Х, используемого в передатчике (ФИГ. 2) с медной проволокой в качестве проводящий материала и сердечником с круглым и прямоугольным сечениями соответственно.
ФИГ. 7А - вариант исполнения настоящего изобретения с передатчиком, представленным на ФИГ. 2, включая три индуктора, один из которых является индуктором режима L, а два остальных - индукторами режима X.
ФИГ. 7B - вариант исполнения настоящего изобретения с передатчиком, представленным на ФИГ. 2, включая два индуктора, каждый из которых является индуктором режима L.
ФИГ. 7С - вариант исполнения настоящего изобретения с передатчиком, представленным на ФИГ. 2, включая два индуктора, каждый из которых является индуктором режима Х.
ФИГ. 8 - схема эксцентрического индуктора, использующегося в передатчике (ФИГ. 2), в котором центры индукторов находятся на расстоянии от 1 до 2 см.
ФИГ. 9 - схема двух уровней индуцируемых сигналов 901 и 902 двух индукторов А и В со смещенными центрами.
ФИГ. 10 - схема с тремя уровнями сигнала, существование которой возможно при наличии у передатчика (ФИГ. 2) двух индукторов, которые работают по отдельности или совместно.
ФИГ. 11 - мостовая схема управления пуска Н, которая может обеспечить пропуск тока через индукторы.
ФИГ. 12A - пример прямого чередования фаз при протекании тока в передатчике (ФИГ. 2) в одном и том же направлении в обоих индукторах А и В.
ФИГ. 12В - пример обратного чередования фаз при протекании тока в передатчике (ФИГ. 2) в противоположном направлении в обоих индукторах А и В.
ФИГ. 13 - формы составных полей индукторов А и В, используемых в передатчике (ФИГ. 2) с прямым и обратным чередованием фаз.
ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
Ниже описывается передатчик 200, генерирующий сигнал для считывания считывателем. Передатчик 200 состоит из пусковой цепи и по меньшей мере двух индукторов 201 и 202, подключенных к пусковой цепи 203 и 204 соответственно. Пусковая цепь регулирует протекание тока через индукторы, и за счет чего создаются магнитные поля. Магнитные поля имеют области с уровнем сигнала ниже порога чувствительности считывателя для каждого из индукторов 201 и 202, тем самым формируя по меньшей мере одну мертвую зону. Кроме того, индукторы 201 и 202 располагаются таким образом, чтобы мертвые зоны не перекрывались друг с другом.
ФИГ. 2 демонстрирует схему передатчика 200 согласно настоящему изобретению. Индукторы А 201 и В 202 приводятся в действие пусковыми цепями А 203 и 204 соответственно.
Электрические импульсы, индуцируемые плоским горизонтальным индуктором 301, размещенным в головке считывателя карт 302 рядового POS-терминала с различных положений относительно слота считывателя карт показаны на ФИГ. 3. Передача сигнала 303 на обе стороны головки 302 является сильной, однако, чем ближе она находится к центру головки 302, тем сигнал становится слабее, а непосредственно за центром головки уровень сигнала равен нулю. Мертвая зона 304 формируется там, где индуцируемый сигнал ниже порога чувствительности считывателя 305. Мертвые зоны могут составлять от 5 до 20 мм в ширину. Если пользователь удерживает устройство БМП в мертвой зоне, передача не удается и требует второй и третьей попытки, чтобы успешно считать данные.
Ширина мертвых зон зависит от размера индуктора, интенсивности тока, проходящего через индуктор, и чувствительности считывателя карт POS-терминала. Мертвая зона может быть сужена за счет более интенсивного пропускания тока через индуктор, при этом полностью устранить ее не удастся, хотя при правильной конструкции индуктора мертвую зону можно значительно уменьшить и таким образом снизить ее влияние на работу устройства.
БМП использует магнитное сопряжение индуктора 301 передатчика БМП и индуктора головки СМП 302 для переноса смоделированных данных магнитной полосы на POS-терминал. Сопряжение индукторов зависит от их физических свойств и положения относительно друг друга. Существуют некоторые положения индукторов, в которых сопряжение будет крайне низким или вообще нулевым. Такие положения, называемые мертвыми зонами, влияют на надежность системы и вынуждают пользователей совершать многочисленные попытки передачи данных. Схожие проблемы касаются и приложений, использующих NFC-чипы. Способ, реализуемый в настоящем изобретении, при работе с NFC-передатчиками позволяет успешно бороться с мертвыми зонами, создаваемыми NFC-индукторами.
ФИГ. 4 демонстрирует мертвую зону 401, сформированную в процессе испытания на модели, когда на один и тот же индуктор непрерывно подается квадратичная волна, при этом индуктор перемещается вдоль слота считывателя карт (ось X), а уровень сигнала 402, принимаемого считывающей головкой 403, отображается на оси Y. В левой крайней точке индуктор находится слишком далеко от головки для принятия ею генерируемого сигнала. С перемещением индуктора в направлении головки считывателя (центра) сигнал усиливается и достигает пикового значения на расстоянии приблизительно в 2 см от головки. При продолжении движения индуктора в направлении головки, сигнал падает ниже порога чувствительности считывателя 404, устанавливая границу первой зоны действия 405. С продолжением движения в направлении вперед вправо уровень сигнала 402 продолжает падать и становится равным нулю при достижении центра головки 403. Уровень сигнала 402 вновь увеличивается с удалением индуктора от головки 403 (вправо). Вторая зона действия 406 формируется, когда уровень сигнала 402 превышает порог чувствительности считывателя 404. Между двумя зонами действия находится мертвая зона. Каждая зона действия имеет ширину порядка 4 см.
Индуктор передатчика является индуктором режима L и может содержать проводящий материал. Проводящий материал выбирают из группы материалов, включающих в себя металлическую проволоку, печатную плату и штампованные металлические листовые элементы. Проводящий материал также может быть покрыт металлом. В некоторых вариантах исполнения проводящий материал может быть покрыт эмалью, акрилом или пластиком. В других вариантах исполнения проводящий материал может быть выполнен в сложнопрофильной, круглой, многоугольной, прямоугольной, квадратной или треугольной форме. ФИГ. 5А и 5В демонстрируют два примера индуктора режима L, в которых в качестве проводящего материала используется медная проволока, обмотанная в форме прямоугольника.
В некоторых вариантах исполнения передатчика по меньшей мере один из индукторов является индуктором режима Х. Индуктор режима Х может иметь ферритовый сердечник. В некоторых вариантах исполнения поперечное сечение сердечника имеет сложнопрофильную, круглую, многоугольную, прямоугольную, квадратную или треугольную форму. ФИГ. 6A и 6B демонстрируют два примера индуктора режима Х, в которых в качестве проводящего материала используется медная проволока, а сердечник имеет круглое сечение и прямоугольное сечение соответственно.
В некоторых вариантах исполнения по меньшей мере один индуктор является индуктором режима L, и по меньшей мере один - индуктором режима Х. ФИГ. 7А демонстрирует вариант исполнения изобретения с тремя индукторами, где один из индукторов является индуктором режима L, а остальные два - индукторами режима Х. Если в передатчике только два индуктора, один из них может быть индуктором режима L, а второй - индуктором режима Х. В других вариантах исполнения все индукторы являются индукторами режима L. ФИГ. 7В демонстрирует вариант исполнения с двумя индукторами, оба из которых являются индукторами режима L. Все индукторы также могут быть индукторами режима Х. ФИГ. 7С демонстрирует вариант исполнения с двумя индукторами, оба из которых являются индукторами режима Х.
В одном варианте исполнения передатчик включает в себя два эксцентрических индуктора А и В, которые приводятся в действие по отдельности или вместе. ФИГ. 8 демонстрирует схему эксцентрического индуктора, в котором центры индукторов А 801 и В 802 находятся на расстоянии от 1 до 2 см. ФИГ. 9 демонстрирует схему двух индуцированных уровней сигнала 901 и 902 двух индукторов А 801 и В 802 со смещенными центрам после взаимодействия с головкой считывателя 903. Смещение центров индукторов приводит к формированию мертвых зон, в которых уровни сигнала 901 и 902 находятся ниже порога чувствительности считывателя 904 применительно к индукторам 801 и 802, которые смещены.
Индукторы, чьи мертвые зоны не перекрываются друг с другом, могут использоваться двумя способами:
1) по отдельности, когда индукторы используются в разное время для передачи одних и тех же данных карты, и если один индуктор находится в мертвой зоне, где считыватель не может считать данные, по крайней мере еще один индуктор со смещенной мертвой зоной будет доступен для считывания.
2) совместно, когда через индукторы проходит надлежащим образом последовательный ток, создающий составное поле и систему, в которой поля, сгенерированные индукторами, усиливают друг друга в желаемом направлении или заглушают друг друга в ином направлении.
ФИГ. 10 демонстрирует три уровня сигнала, существование которых возможно при наличии у передатчика двух индукторов, работающих по отдельности или совместно. Индивидуальные и комбинированные области сигналов от индукторов А и В, соответственно, смещенные примерно на 1 см, показаны линиями А 1001 и В 1002. Кривая A+B 1003 отображает сигнал комбинации индукторов A+B с надлежащей настройкой по фазе. Можно увидеть, что поле, генерируемое комбинацией сигналов А+В, значительно интенсивней с одной из своих сторон. Такая конфигурация является типичной для взаимодействия со считывателем POS-терминала 1004. Порог чувствительности 1005 также представлен на ФИГ. 10.
ФИГ. 11 демонстрирует мостовую схему управления Н в вариантах А и В 1101 и 1102, которая может использоваться для пропуска тока сквозь индукторы А 1103 и В 1104. Специалист в данной области поймет, что использование других пусковых цепей для контроля протекания тока в системе также допускается.
В некоторых вариантах исполнения протекание тока через по меньшей мере два индуктора характеризуется одинаковым направлением тока во всех индукторах. Это называется чередованием прямой фазы. В некоторых других вариантах исполнения протекание тока через по меньшей мере два индуктора характеризуется наличием по меньшей мере одного индуктора, в котором ток течет в направлении, противоположном движению тока во всех остальных индукторах. Это называется чередованием обратной фазы.
ФИГ. 12A демонстрирует пример прямого чередования фаз при протекании тока в одинаковом направлении в обоих индукторах А 1201 и В 1202.
ФИГ. 12В демонстрирует пример обратного чередования фаз при протекании тока в разных направлениях в индукторах А 1201 и В 1202.
ФИГ. 13 демонстрирует формы сложных полей, генерируемых индукторами А 1201 и В 1202 с прямым чередованием фаз 1301 и обратным чередованием фаз 1302. ФИГ. 13 демонстрирует, что при прямом чередовании фаз образуется более интенсивное магнитное поле, в то время как при обратном чередовании фаз образуется более широкое поле. Мертвая зона 1303 при прямом чередовании фаз не совпадает с мертвыми зонами обоих индукторов А и В. Следует отметить, что в режиме прямого чередования мертвая зона всегда будет иметь место, а обратное чередование может сделать мертвую зону 1304 менее глубокой, как показано на ФИГ. 13. На практике мертвая зона может быть устранена путем регулировки тока индуктора с помощью последовательно включенного резистора. Тем не менее, устраняя мертвую зону в режиме обратного чередования фаз, мы получаем более слабый сигнал в остальной части системы.
Передатчик в настоящем изобретении использует по меньшей мере два индуктора с многократной передачей сигнала, что исключает влияние мертвых зон индуктора. Два индуктора могут использоваться как по отдельности, так и в одно и то же время. Во втором случае индукторы настраиваются по фазе для создания сложного магнитного поля, что позволяет увеличить эффективность устройства за счет смещения мертвых зон и увеличения площади охвата сигналом.
В одном аспекте передатчик имеет одинарный индуктор, подключенный к пусковой цепи. Пусковая цепь регулирует ток, протекающий через индуктор, что вызывает передачу, и пусковая цепь пропускает ток через индуктор множество раз пока индуктор перемещается, изменяя свое положение относительно перемещающейся головки считывателя. По крайней мере в одной из множества позиций, занимаемых индуктором, он генерирует сигнал передачи, уровень которого превышает порог чувствительности считывателя, обеспечивая должное считывание данных.
В одном аспекте указанный способ подразумевает многократное прохождение тока, регулируемое пусковой цепью, через передатчик, оснащенный одинарным индуктором, что позволяет генерировать магнитный сигнал для дальнейшей передачи пока индуктор перемещается, изменяя свое положение относительно головки считывателя. По крайней мере в одной из множества позиций, занимаемых индуктором, он генерирует сигнал передачи, уровень которого превышает порог чувствительности считывателя, обеспечивая должное считывание данных.
Специалистам в данной области будет ясно, что все описанные параметры и конфигурации приводятся в качестве иллюстративного примера, и что фактические параметры и конфигурации будут зависеть от конкретных условий эксплуатации, в которых находят применение системы и способы, представленные в рамках данного изобретения. Специалистам в данной области будет несложно подтвердить или установить эмпирически в ходе стандартных испытаний, что у конкретных вариантов исполнения настоящего изобретения, описанных в настоящем документе, имеется множество эквивалентов. Поэтому следует понимать, что указанные выше варианты исполнения приведены всего лишь в качестве примера, в то время как практическое воплощение настоящего изобретения может отличаться от приведенного здесь описания. Настоящее изобретение охватывает каждый отдельный признак, систему или способ, описанные в настоящем документе. Кроме того, комбинации двух и более признаков, систем или способов, если такие признаки, системы или способы не являются несовместимыми, также включены в объем настоящего изобретения.

Claims (32)

1. Передатчик, генерирующий сигнал для считывания считывателем, включающий в себя:
пусковую цепь; и
по меньшей мере два индуктора, подключенных к пусковой цепи;
в котором пусковая цепь управляет пропуском потока тока через упомянутые по меньшей мере два индуктора, тем самым генерируя сигнал;
в котором вдоль оси во время пропускания тока каждый индуктор имеет две зоны действия, в которых уровень сигнала превышает порог чувствительности считывателя, и мертвую зону между ними, в которой уровень сигнала ниже порога чувствительности считывателя; и
в котором индукторы расположены таким образом, чтобы вдоль упомянутой оси мертвые зоны упомянутых по меньшей мере двух индукторов не перекрывались друг с другом, а зоны действия перекрывались друг с другом вдоль упомянутой оси, причем общая непрерывная зона сигнала вдоль упомянутой оси обладает уровнем сигнала, превышающим уровень сигнала любой из зон действия и превышающим упомянутый порог чувствительности.
2. Передатчик по п. 1, в котором упомянутые по меньшей мере два индуктора являются двумя единственными индукторами.
3. Передатчик по п. 1, в котором по меньшей мере один индуктор из упомянутых по меньшей мере двух индукторов является индуктором режима L.
4. Передатчик по п. 1, в котором по меньшей мере один индуктор из упомянутых по меньшей мере двух индукторов является индуктором режима Х.
5. Передатчик по п. 1, в котором индуктор из упомянутых по меньшей мере двух индукторов содержит проводящий материал, выбираемый из группы, состоящей из металлической проволоки, печатной платы и штампованных металлических листовых элементов.
6. Передатчик по п. 1, в котором индуктор из упомянутых по меньшей мере двух индукторов содержит имеющий покрытие проводящий материал.
7. Передатчик по п. 1, в котором индуктор из упомянутых по меньшей мере двух индукторов содержит проводящий материал, покрытый материалом, выбираемым из группы, состоящей из эмали, акрила или пластика.
8. Передатчик по п. 1, в котором каждый индуктор из упомянутых по меньшей мере двух индукторов содержит проводящий материал, выполненный в форме, выбираемой из группы, состоящей из сложнопрофильной, круглой, многоугольной, прямоугольной, квадратной или треугольной формы.
9. Передатчик по п. 3, в котором индуктор режима X включает в себя сердечник.
10. Передатчик по п. 9, в котором сердечник выполнен из феррита.
11. Передатчик по п. 9, в котором поперечное сечение сердечника выполнено в форме, выбираемой из группы, состоящей из сложнопрофильной, круглой, многоугольной, прямоугольной, квадратной или треугольной формы.
12. Передатчик по п. 1, в котором первый индуктор из упомянутых по меньшей мере двух индукторов является индуктором режима L, а второй индуктор из упомянутых по меньшей мере двух индукторов является индуктором режима Х.
13. Передатчик по п. 1, в котором каждый индуктор из упомянутых по меньшей мере двух индукторов является индуктором режима L.
14. Передатчик по п. 1, в котором каждый индуктор из упомянутых по меньшей мере двух индукторов является индуктором режима Х.
15. Передатчик по п. 1, в котором пусковая цепь направляет ток через упомянутые по меньшей мере два индуктора в одно и то же время.
16. Передатчик по п. 1, в котором пусковая цепь направляет ток через упомянутые по меньшей мере два индуктора в разное время.
17. Способ пуска передатчика по п. 1, содержащий этап, на котором пропускают ток только через один индуктор из по меньшей мере двух индукторов в некоторый момент времени.
18. Способ передачи сигнала считывателю сигнала, причем способ содержит:
обеспечение передатчика, выполненного с возможностью передачи сигнала считывателю сигнала, причем передатчик содержит пусковую цепь и по меньшей мере два индуктора, подключенные к пусковой цепи, при этом каждый индуктор из упомянутых по меньшей мере двух индукторов имеет, во время приведения его в действие, две зоны действия, в которых уровень сигнала превышает уровень сигнала мертвой зоны, расположенной между упомянутыми двумя зонами действия, при этом мертвые зоны упомянутых по меньшей мере двух индукторов не перекрываются друг с другом вдоль оси;
размещение упомянутых по меньшей мере двух индукторов передатчика вблизи считывателя сигнала; и
пропуск тока посредством пусковой цепи через упомянутые по меньшей мере два индуктора, чтобы сформировать составной сигнал,
при этом во время пропуска тока и при размещении вблизи передатчика каждая из зон действия обладает уровнем сигнала, превышающим порог чувствительности считывателя сигнала, и каждая из мертвых зон обладает уровнем сигнала, который ниже упомянутого порога чувствительности, и
зоны действия перекрываются друг с другом вдоль упомянутой оси для формирования составного сигнала, общая непрерывная зона составного сигнала вдоль упомянутой оси обладает уровнем сигнала, превышающим уровень сигнала любой из зон действия и превышающим упомянутый порог чувствительности.
19. Способ по п. 18, в котором составной сигнал обладает уровнем сигнала, смещенным в направлении одной стороны считывателя сигнала.
20. Способ по п. 18, в котором этап пропуска тока через упомянутые по меньшей мере два индуктора содержит чередование между пропуском тока через упомянутые по меньшей мере два индуктора в заданный момент времени и пропуском тока только через один индуктор из упомянутых по меньшей мере двух индукторов в некоторый момент времени.
21. Способ по п. 18, в котором этап пропуска тока через упомянутые по меньшей мере два индуктора происходит в одинаковом направлении во всех индукторах из упомянутых по меньшей мере двух индукторов.
22. Способ по п. 18, в котором этап пропуска тока через упомянутые по меньшей мере два индуктора содержит пропуск тока через первый индуктор из упомянутых по меньшей мере двух индукторов в направлении, противоположном направлению пропуска тока во втором индукторе из упомянутых по меньшей мере двух индукторов.
RU2016142313A 2015-01-14 2015-12-31 Передающее устройство и способ существенного уменьшения мертвых зон индукционной бесконтактной мобильной платежной системы RU2682372C2 (ru)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201562103237P 2015-01-14 2015-01-14
US62/103,237 2015-01-14
US14/627,958 US9864985B2 (en) 2015-01-14 2015-02-20 Transmitter and method for substantially reducing dead zones in an inductive contactless mobile payment system
US14/627,958 2015-02-20
PCT/US2015/068277 WO2016114935A1 (en) 2015-01-14 2015-12-31 Transmitter and method for substantially reducing dead zones in an inductive contactless mobile payment system

Publications (3)

Publication Number Publication Date
RU2016142313A RU2016142313A (ru) 2018-04-27
RU2016142313A3 RU2016142313A3 (ru) 2018-08-27
RU2682372C2 true RU2682372C2 (ru) 2019-03-19

Family

ID=56367819

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016142313A RU2682372C2 (ru) 2015-01-14 2015-12-31 Передающее устройство и способ существенного уменьшения мертвых зон индукционной бесконтактной мобильной платежной системы

Country Status (11)

Country Link
US (1) US9864985B2 (ru)
EP (1) EP3078009A4 (ru)
JP (1) JP2017509243A (ru)
KR (1) KR20160138288A (ru)
CN (1) CN106104644A (ru)
AU (1) AU2015367821B2 (ru)
CA (1) CA2935067C (ru)
HK (1) HK1226188A1 (ru)
RU (1) RU2682372C2 (ru)
SG (1) SG11201605748QA (ru)
WO (1) WO2016114935A1 (ru)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016100809A1 (de) * 2015-04-14 2016-10-20 Samsung Electronics Co. Ltd. Nahfeldkommunikationsbaugruppe und tragbare Vorrichtung, welche dieselbe enthält
US10360485B2 (en) * 2016-08-29 2019-07-23 Integrated Device Technology, Inc. Circuits and systems for low power magnetic secure transmission
KR102395069B1 (ko) * 2017-06-19 2022-05-09 삼성전자주식회사 Mst 장치 및 그것을 포함하는 전자 장치
KR102323560B1 (ko) 2017-08-08 2021-11-08 삼성전자주식회사 전류의 피크 세기를 조절하도록 구성되는 회로를 포함하는 전자 장치
KR102444088B1 (ko) * 2019-12-19 2022-09-16 한국전자통신연구원 자기장 통신 시스템의 자기장 송수신 장치 및 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020109636A1 (en) * 2001-01-16 2002-08-15 Johnson Daniel L. Omnidirectional RFID antenna
JP2004266549A (ja) * 2003-02-28 2004-09-24 Toshiba Tec Corp アンテナ装置
US20040212542A1 (en) * 2003-04-25 2004-10-28 Mobile Aspects Antenna arrangement and system
US20100176924A1 (en) * 2009-01-09 2010-07-15 Mu-Gahat Holdings Inc. RFID System with Improved Tracking Position Accuracy
RU2009131342A (ru) * 2007-01-24 2011-02-27 Юнайтед Сикьюрити Эпликейшнс Айди, Инк. (Us) Универсальный блок отслеживания

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5834756A (en) 1996-06-03 1998-11-10 Motorola, Inc. Magnetically communicative card
US6362739B1 (en) * 1999-09-22 2002-03-26 Garry L. Burton Passive security device for detecting ferromagnetic objects
US20030001739A1 (en) * 2001-06-29 2003-01-02 Robert Clucas Electronic article surveillance antenna for attachment to a vertical structure
EP1573442A2 (en) * 2002-04-03 2005-09-14 First Data Corporation Systems and methods for performing transactions at a point-of-sale
US7357319B1 (en) 2005-01-24 2008-04-15 Vivotech, Inc. External adapter for magnetic stripe card reader
WO2007058619A1 (en) * 2005-11-19 2007-05-24 Agency For Science, Technology And Research Antenna for radio frequency identification system
JP4239205B2 (ja) 2006-06-08 2009-03-18 ソニー・エリクソン・モバイルコミュニケーションズ株式会社 携帯通信端末装置
US7892858B2 (en) * 2008-03-05 2011-02-22 Stats Chippac, Ltd. Semiconductor package with stacked semiconductor die each having IPD and method of reducing mutual inductive coupling by providing selectable vertical and lateral separation between IPD
US9170086B1 (en) * 2009-12-07 2015-10-27 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Inductive position sensor
ITTO20110295A1 (it) 2011-04-01 2012-10-02 St Microelectronics Srl Dispositivo ad induttore integrato ad elevato valore di induttanza, in particolare per l'uso come antenna in un sistema di identificazione a radiofrequenza
JP5639607B2 (ja) * 2012-02-27 2014-12-10 三智商事株式会社 無線icタグ
US9165293B2 (en) 2012-03-30 2015-10-20 Mastercard International Incorporated Systems and methods for waveform transmission of transaction card data

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020109636A1 (en) * 2001-01-16 2002-08-15 Johnson Daniel L. Omnidirectional RFID antenna
JP2004266549A (ja) * 2003-02-28 2004-09-24 Toshiba Tec Corp アンテナ装置
US20040212542A1 (en) * 2003-04-25 2004-10-28 Mobile Aspects Antenna arrangement and system
RU2009131342A (ru) * 2007-01-24 2011-02-27 Юнайтед Сикьюрити Эпликейшнс Айди, Инк. (Us) Универсальный блок отслеживания
US20100176924A1 (en) * 2009-01-09 2010-07-15 Mu-Gahat Holdings Inc. RFID System with Improved Tracking Position Accuracy

Also Published As

Publication number Publication date
RU2016142313A (ru) 2018-04-27
AU2015367821B2 (en) 2017-05-25
WO2016114935A1 (en) 2016-07-21
CA2935067A1 (en) 2016-07-14
US9864985B2 (en) 2018-01-09
CN106104644A (zh) 2016-11-09
EP3078009A1 (en) 2016-10-12
CA2935067C (en) 2019-03-05
HK1226188A1 (zh) 2017-09-22
JP2017509243A (ja) 2017-03-30
US20160203472A1 (en) 2016-07-14
AU2015367821A1 (en) 2016-07-28
SG11201605748QA (en) 2016-08-30
RU2016142313A3 (ru) 2018-08-27
KR20160138288A (ko) 2016-12-02
EP3078009A4 (en) 2018-02-14

Similar Documents

Publication Publication Date Title
RU2682372C2 (ru) Передающее устройство и способ существенного уменьшения мертвых зон индукционной бесконтактной мобильной платежной системы
KR101761590B1 (ko) 베이스밴드 근접장 자기 스트라이프 데이터 송신기용 시스템 및 방법
KR101783716B1 (ko) 멀티 마그네틱 카드
Fischer NFC in cell phones: The new paradigm for an interactive world [Near-Field Communications]
RU2668720C2 (ru) Система и способ для передатчика данных магнитной полосы в ближнем поле
TW516284B (en) Noncontact communications media and noncontact communications systems
CN103427879A (zh) 通过接近姿态移动检测确定 nfc 设备场境
WO2019085869A1 (en) Two-way communication between electronic card and touchscreen device
US9619796B2 (en) Enabling card and method and system using the enabling card in a P.O.S
CN104820923A (zh) 一种智能钱包及支付方法
Lathiya et al. Near-field communications (NFC) for wireless power transfer (WPT): An overview
EP2874111B1 (en) Wireless power supply to enable payment transaction
US11829977B2 (en) Enabling card and method and system using the enabling card in a POS
Yang et al. RFID and contactless technology
US11010743B2 (en) Enabling card and method and system using the enabling card in a POS
EP2797025B1 (en) Mobile proximity coupling device with display
Mayes et al. RFID and contactless technology
EP2797024B1 (en) Mobile proximity coupling device
US10747964B2 (en) Card reader device
Chopra Physics behind RFID smart card security in context of privacy
Rosa RFID Security
CN114519580A (zh) 近距离通信的请求支付方法、支付方法、终端及存储介质
JP2011039947A (ja) 非接触情報媒体の通信システム
Pugh Paypass security and risk
KR20150014715A (ko) 양면 무선통신 태그

Legal Events

Date Code Title Description
HE9A Changing address for correspondence with an applicant
HZ9A Changing address for correspondence with an applicant