RU2680809C2 - Способ получения наноразмерной фитосомальной системы - Google Patents

Способ получения наноразмерной фитосомальной системы Download PDF

Info

Publication number
RU2680809C2
RU2680809C2 RU2016150141A RU2016150141A RU2680809C2 RU 2680809 C2 RU2680809 C2 RU 2680809C2 RU 2016150141 A RU2016150141 A RU 2016150141A RU 2016150141 A RU2016150141 A RU 2016150141A RU 2680809 C2 RU2680809 C2 RU 2680809C2
Authority
RU
Russia
Prior art keywords
phytosomes
minutes
ethanol
quercetin
ultrasound
Prior art date
Application number
RU2016150141A
Other languages
English (en)
Other versions
RU2016150141A (ru
RU2016150141A3 (ru
Inventor
Анна Игоревна Марахова
Парфэ Кезимана
Ярослав Михайлович Станишевский
Борис Семенович Швитко
Дильда Смагулова
Original Assignee
федеральное государственное автономное образовательное учреждение высшего образования "Российский университет дружбы народов" (РУДН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by федеральное государственное автономное образовательное учреждение высшего образования "Российский университет дружбы народов" (РУДН) filed Critical федеральное государственное автономное образовательное учреждение высшего образования "Российский университет дружбы народов" (РУДН)
Priority to RU2016150141A priority Critical patent/RU2680809C2/ru
Publication of RU2016150141A publication Critical patent/RU2016150141A/ru
Publication of RU2016150141A3 publication Critical patent/RU2016150141A3/ru
Application granted granted Critical
Publication of RU2680809C2 publication Critical patent/RU2680809C2/ru

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/35Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
    • A61K31/352Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline 
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/48Fabaceae or Leguminosae (Pea or Legume family); Caesalpiniaceae; Mimosaceae; Papilionaceae
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D11/00Solvent extraction
    • B01D11/02Solvent extraction of solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Nanotechnology (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Medical Informatics (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Botany (AREA)
  • Biotechnology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines Containing Plant Substances (AREA)
  • Saccharide Compounds (AREA)
  • Pyrane Compounds (AREA)

Abstract

Изобретение относится к фармацевтической промышленности, а именно к способу получения фитосом, содержащих кверцетин. Способ получения фитосом, содержащих кверцетин, с размером частиц фитосом 2-12 нм, включает экстракцию 2 г семян сои 50 мл смеси хлороформ-этанол, взятых в соотношении 1:1, под воздействием в течение 20 мин ультразвуком с частотой 22 кГц, кипячение полученного экстракта в течение 20 мин, после остывания добавление в полученный экстракт 50 мл 1%-ного раствора кверцетина в 95%-ном этиловом спирте и последующее отделение этанольного слоя, на который воздействуют ультразвуком частотой 44 кГц в течение 20-30 мин. Вышеописанный способ позволяет упростить и ускорить процесс получения наноразмерной фитосомальной системы, содержащей кверцетин с высокой однородностью по размерам. 2 ил.

Description

Изобретение относится к фармации, а точнее к технологии получения новой лекарственной формы - фитосомы.
Фитосомы относятся к инновационным способам доставки лекарственных средств. В этих структурах водорастворимые растительные компоненты вступают в реакцию с фосфолипидами, при достижении равновесия между гидрофильными и гидрофобными радикалами, увеличивается способность преодоления липидного слоя клеточных мембран и растворения в желудочно-кишечных жидкостях. Особый интерес представляют фитосомы с флавоноидами из-за широкого спектра фармакологической активности этих соединений. Однако гидрофильность данного класса существенно снижает их проницаемость через кожный барьер и всасывание в желудочно-кишечный тракт, следовательно, снижается биодоступность флавоноидов и оказываемый эффект. В связи с этим актуальным является вопрос разработки простого и быстрого способа получения фитосомы, состоящей из активного компонента - кверцетина и фосфолипидов сои.
На сегодняшний день известны фитосомы с экстрактами гинкго билоба, расторопши, виноградных косточек, боярышника, зеленого чая и женьшеня (An overview of phytosomes as an advanced herbal drug delivery system / Jagruti Patela, et al. / Asian journal of pharmaceutical sciences. - 2009. - 4(6). - p. 363-371.).
Известны комплексы индивидуальных флавоноидов с фосфотидилхолином или фосфатидилсерином таких как кверцетин, рутин, гиперозид. В литературе присутствуют данные о фитосомах, включающих силимарин и соевый лецитин; экстракт расторопши пятнистой с экстрактом эхинацеи с липидной частью, представленной фосфатидилхолином или ресвератролом с фосфотидилхолин (Phytosomes - a review / Nagasamy Venkatesh Dhandapani, et al. // International journal of pharma sciences. - 2014. - Vol. 4. - №4. - p. 622-625).
Технология получения фитосом предполагает включение фосфолипидов (таких как фосфатидилхолин, фосфатидилэтаноламин, фосфатидилсерин) в стандартизованные растительные экстракты (Phytosome and liposome: the beneficial encapsulation systems in drug delivery and food application / Nayyer Karimi, et al. // Applied food biotechnology. - 2015. - 2(3). P. 17-27).
Известен следующий способ получения фитосомы. Фитосомы получают реакцией взаимодействия между 1-2 молями фосфолипида с 1 молем активного растительного компонента (флавоноиды или терпеноиды) в апротонном растворителе (диоксан, ацетон, метиленхлорид, этилацетат). Затем комплекс выделяют путем выпаривания растворителя в вакууме или осаждением с реагентом, таким как алифатические углеводороды, путем лиофилизации, или методом распылительной сушки. Наиболее оптимальное соотношение компонентов в фитосоме 1:1 [5, 10, 16].
В литературе встречается ряд методик получения фитосом. Например, для образования комплекса силимарина с соевым фосфатидилхолином 1:1 поступают следующим образом: к раствору 5 г силимарина в 100 мл ацетона добавляют 8 г реактива "Липоид S 100 (R)", при перемешивании при комнатной температуре. После полной солюбилизации, реакционную смесь концентрируют в вакууме до объема 30 мл и приливают к 300 мл лигроина, при перемешивании. Осадок отстаивают в течение ночи, затем его отделяют фильтрованием, промывают лигроином и сушат в вакууме при 40°С. Выход составляет 11,2 г комплекса. При изучении спектральных характеристик полученного фитосомального комплекса было установлено, что удельный показатель поглощения составляет 170,2 при 288 нм (растворитель - метанол) (Bombardelli, Ezlo Via Ripamonti. Pharmaceutical and cosmetic compositions containing complexes of flavanolignans with phospholipids European Patent, no. 0300282 B1, 1992.).
Вторым примером может служить методика получения фитосомы силибина с соевым фосфатидилхолином в соотношении 1:2. К суспензии, содержащей 4,82 г (0,010 моль) силибина в 75 мл диоксана добавляют при перемешивании 15,4 г (0,020 моль) "Липоид S 100 (R)". Через 4 часа реакционную смесь лиофилизируют. Выход составил 20 г комплекса светло-желтого цвета с удельным показателем поглощения равным 106 при 288 нм в растворе метанола (Bombardelli, Ezlo Via Ripamonti. Pharmaceutical and cosmetic compositions containing complexes of flavanolignans with phospholipids European Patent, no. 0300282 B1, 1992.)..
Для получения комплекс силибин с соевого фосфатидилхолина 1:0,3 раствор силибина в диоксане (2,41 г (0,005 моль) силибина на 100 мл диоксана) обрабатывают при 60°С реактивом "Липоид S 100 (R)" массой 0,770 г (0,001 моль) в течение 1 часа. Реакционную смесь упаривают досуха в вакууме и остаток переносят в 100 мл хлороформа. Избыток силибина, присутствующий в виде осадка, удаляют фильтрованием, а маточный раствор, содержащий комплекс выпаривают досуха в вакууме. Полученный остаток, сушат при 30°С под вакуумом. Выход составляет 2,3 г комплекса, в виде белого желтоватого порошка. Удельный показатель поглощения метанольного раствора полученного комплекса равен 300 при 288 нм (СН3ОН) (Bombardelli, Ezlo Via Ripamonti. Pharmaceutical and cosmetic compositions containing complexes of flavanolignans with phospholipids European Patent, no. 0300282 B1, 1992.).
Методика получения фитосомы экстракта гинкго билоба с соевым фосфатидилсерином заключается в следующем: 1,87 кг 20% фосфатидилсерина суспендируют в 17,5 л этилацетата при комнатной температуре. Добавляют сухой экстракт гинкго билоба (0,65 кг) и перемешивают. Суспензию выдерживают в течение 1 часа при перемешивании при кипячении с обратным холодильником, затем фильтруют при 70-75°С и концентрируют при давлении окружающей среды до получения мягкого осадка. Осадок сушат при 40°С в течение 48 часов. Выход продукта: 2,23 кг комплекса экстракт гинкго билоба-фосфатидилсерин (Патент №2006127272/15, 27.09.2009. Мораццони Паоло, Петрини Орландо, Скоули Эндрю, Кеннеди Дэвид. Применение комплексов гинкго для усиления когнитивных функций и снижения умственного утомления // Патент России №2368385. 2005.).
Интерес представляют фитосомы с индивидуальными флавоноидами, поскольку из-за разнообразия фармакологических эффектов этих соединений, можно существенно расширить ассортимент лекарственных средств, обладающих хорошей биодоступностью.
Описан способ получения фитосомы кверцетина с фофотидилхолином и холестерином с использованием метода тонкослойной гидратации с различным молярным отношением кверцетина, фосфатидилхолина и холестерина. Кверцетин и фосфотидилхолин растворяют в метаноле, а холестерин - в дихлорметане. Смесь помещают в круглодонную колбу и упаривают на роторном испарителе при 45°С до образования пленки. Затем с помощью вакуумной сушки полностью удаляют органические растворители. Дополнительно готовый липидый тонкий слой подвергают воздействию потока газообразного азота и выдерживают в течение ночи при комнатной температуре, чтобы обеспечить полное удаление органических растворителей. Пленку увлажняют дистиллированной водой в роторном аппарате при 45°С. Для уменьшения размера фитосомы применяют: диспергирование в ультразвуковой ванне с при 45°С, гомогенизацию в центрифуге с 20000 оборотов в минуту и метод ультразвуковой обработки (Malay K Das. Design and evaluation of phyto-phospholipid complexes (phytosomes) of rutin for transdermal application / Malay K Das, Bhupen Kalita // Journal of applied pharmaceutical science. - 2014. - Vol. 4. - (10). p. 51-570); (Nano phytosomes of quercetin: a promising formulation for fortification of food products with antioxidants / Solmaz Rasaie, et al. // Pharmaceutical sciences. - 2014. - 20. - p. 96-101).
Все перечисленные способы требуют задействования большого числа устройств и реактивов; они длительны и трудоемки; нет данных, подтверждающих достаточную однородность по размерам получаемых фитосом.
Техническим результатом предложенного изобретения является упрощение и ускорение процесса получения наноразмерной фитосомальной системы, содержащей кверцетин с высокой однородностью по размерам.
Технический результат достигается тем, что способ получения наноразмерной фитосомальной системы с узким распределением частиц по размерам включает экстракцию семян сои в смеси хлороформ-этанол при воздействии в течение 20 минут ультразвуком с частотой 22 кГц, кипячение полученного экстракта, после остывания добавление в полученный экстракт 1% раствора кверцетина в 95% этиловом спирте и последующее отделение этанольного слоя, на который воздействуют ультразвуком частотой 44 кГц в течение 20-30 минут.
Способ осуществляется следующим образом.
Точную навеску воздушно-высушенных семян сои массой около 2 г помещают в коническую колбу, приливают 50 мл смеси хлороформ - этанол 1:1 и экстрагируют в течение 20 минут под действием ультразвука частотой 22 кГц. Обработка ультразвуком обеспечивает разрушение клеточных стенок и облегчает в последующем выделение фосфолипидов, а также сокращает время экстракции. При дальнейшем увеличении времени экспонирования ультразвуком выход продукта не повышается. Затем колбу соединяют с обратным холодильником и содержимое кипятят, поддерживая слабое кипение в течение 20 мин для более полной экстракции фосфолипидов. После остывания, полученный экстракт помещают в делительную воронку, приливают 50 мл 1% раствора кверцетина в спирте этиловом с концентрацией 95% и интенсивно встряхивают. Отделяют этанольный слой, который подвергают воздействию ультразвуком частотой 44 кГц в течение 20 минут. За это время в результате ультразвукового дробления получают частицы с узким распределением по размерам.
Пример. Точную навеску воздушно- высушенных семян сои массой 2,0822 г поместили в коническую колбу, прилили 50 мл смеси хлороформ - этанол 1:1 и экстрагировали в течение 20 минут под действием ультразвука частотой 22 кГц. Затем колбу соединили с обратным холодильником и кипятили, поддерживая слабое кипение в течение 20 минут для более полной экстракции фосфолипидов. После остывания, полученный экстракт помещали в делительную воронку, приливали 50 мл 1% раствора кверцетина в спирте этиловом с концентрацией 95% и интенсивно встряхивали. Этанольный слой отделяли и подвергали воздействию ультразвуком частотой 44 кГц в течение 20 минут.
На фиг. 1 показаны абсорбционные спектры фитосомальной наносистемы 1 и липидного экстракта 2. На фиг 2 представлена кривая распределения фитосом по размерам.
Анализ спектров поглощения раствора, содержащего фитосомы 1 и раствора липидной фракции 2 (фиг. 1) показал, что при длине волны 254 нм на спектре поглощения липидного экстракта 2 имеется максимум поглощения, свойственный сложно-эфирным группам. После получения фитосомальной наносистемы 1 этот максимум поглощения исчезает (А=0), что свидетельствует об образовании комплекса между фосфатидилхолином и флавоноидами.
Средний размер полученных фитосом, определенный методом динамического рассеяния (кросс- корреляции фотонов), равен 5 нм. Распределение частиц по размерам - от 2 до 12 нм. Это подтверждает то, что полученные фитосомы относятся к наночатицам (фиг. 2).
Согласно данным литературы нано- и микроразмерные формы отличаются большей биодоступностью.
Предложенный способ позволяет ускорить и упростить процесс получения наноразмерной фитосомальной системы и обеспечивает высокую однородность получаемых частиц по размерам.

Claims (1)

  1. Способ получения фитосом, содержащих кверцетин, с размером частиц фитосом 2-12 нм, включающий экстракцию 2 г семян сои 50 мл смеси хлороформ-этанол, взятых в соотношении 1:1, под воздействием в течение 20 мин ультразвуком с частотой 22 кГц, кипячение полученного экстракта в течение 20 мин, после остывания добавление в полученный экстракт 50 мл 1%-ного раствора кверцетина в 95%-ном этиловом спирте и последующее отделение этанольного слоя, на который воздействуют ультразвуком частотой 44 кГц в течение 20-30 мин.
RU2016150141A 2016-12-20 2016-12-20 Способ получения наноразмерной фитосомальной системы RU2680809C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016150141A RU2680809C2 (ru) 2016-12-20 2016-12-20 Способ получения наноразмерной фитосомальной системы

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016150141A RU2680809C2 (ru) 2016-12-20 2016-12-20 Способ получения наноразмерной фитосомальной системы

Publications (3)

Publication Number Publication Date
RU2016150141A RU2016150141A (ru) 2018-06-21
RU2016150141A3 RU2016150141A3 (ru) 2018-10-29
RU2680809C2 true RU2680809C2 (ru) 2019-02-27

Family

ID=62713330

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016150141A RU2680809C2 (ru) 2016-12-20 2016-12-20 Способ получения наноразмерной фитосомальной системы

Country Status (1)

Country Link
RU (1) RU2680809C2 (ru)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0300282A1 (en) * 1987-07-10 1989-01-25 INDENA S.p.A. Pharmaceutical and cosmetic compositions containing complexes of flavanolignans with phospholipids
RU2368385C2 (ru) * 2004-01-29 2009-09-27 Индена С.П.А. Применение комплексов гинкго для усиления когнитивных функций и снижения умственного утомления

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0300282A1 (en) * 1987-07-10 1989-01-25 INDENA S.p.A. Pharmaceutical and cosmetic compositions containing complexes of flavanolignans with phospholipids
RU2368385C2 (ru) * 2004-01-29 2009-09-27 Индена С.П.А. Применение комплексов гинкго для усиления когнитивных функций и снижения умственного утомления

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SOLMAZ RASAIE et al. Nano phytosomes of quercetin: a promising formulation for fortification of food products with antioxidants //Pharmaceutical sciences, 2014, 20, p.96-101. *
А.С. БУЯНОВА и др. Исследование влияния ультразвука на отдельные стадии в технологии культуры ратсительных клеток и тканей in vitro. IVю Биосинтез липидов сои //Химия растительного сырья, 2012, N3, с.167-171. *

Also Published As

Publication number Publication date
RU2016150141A (ru) 2018-06-21
RU2016150141A3 (ru) 2018-10-29

Similar Documents

Publication Publication Date Title
Zhu et al. Improved oral bioavailability of capsaicin via liposomal nanoformulation: preparation, in vitro drug release and pharmacokinetics in rats
Kumar et al. Phytosomes: A modernistic approach for novel herbal drug delivery-enhancing bioavailability and revealing endless frontier of phytopharmaceuticals
CN107213467A (zh) 一种姜黄素磷脂复合物的制备方法
Udapurkar et al. Diosmin Phytosomes: development, optimization and physicochemical characterization
CN102935236A (zh) 一种具有p-糖蛋白抑制功能的抗肿瘤前药
RU2680809C2 (ru) Способ получения наноразмерной фитосомальной системы
Sharma et al. Phytosomes is a novel drug delivery system based herbal formulation: An review
Maryana et al. Phytosome containing silymarin for oral administration: Formulation and physical evaluation
Pande et al. Preparation and evaluation of phytosomes of pomegrane peels
RU2635996C2 (ru) Способ получения водорастворимых полисахаридов из корней одуванчика лекарственного
Kattyar et al. Phytosomes and recent research on phytosomal drugs
RU2530501C1 (ru) Способ получения водорастворимых полисахаридов из листьев подорожника большого
CN108524471B (zh) 奥利司他纳米微球及其在制备治疗肥胖症药物中的用途
Ravi et al. Phytosomes: a novel molecular nano complex between phytomolecule and phospholipid as a value added herbal drug delivery system
Cao et al. Enhanced oral bioavailability of oleanolic acid in rats with phospholipid complex
CN106265681B (zh) 一种三萜化合物在制备糖苷酶抑制剂药物中的应用
Stasiłowicz-Krzemień et al. Co-Dispersion Delivery Systems with Solubilizing Carriers Improving the Solubility and Permeability of Cannabinoids (Cannabidiol, Cannabidiolic Acid, and Cannabichromene) from Cannabis sativa (Henola Variety) Inflorescences
Kaur et al. Phytosomes: Preparations, Characterization, and Future Uses
RU2656398C1 (ru) Способ получения водорастворимых полисахаридов из листьев лопуха большого
CN110615891B (zh) 一类茄呢基硫代水杨酸化合物、其制备方法及应用
Keshwani et al. Phytosomes: a promising system of herbal drug delivery
Vadnere et al. Phytosomes: A Mini Review
Khalil Phytosomes: a novel approach for delivery of herbal constituents
Gharia et al. Phytosomes: Enhancing Bioavailability of Phytomedicine
Kumar et al. Phytosomes as an innovative technique in novel drug delivery system: a comprehensive review

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20191221