RU2679186C1 - Преобразователь уровня напряжения - Google Patents

Преобразователь уровня напряжения Download PDF

Info

Publication number
RU2679186C1
RU2679186C1 RU2018112884A RU2018112884A RU2679186C1 RU 2679186 C1 RU2679186 C1 RU 2679186C1 RU 2018112884 A RU2018112884 A RU 2018112884A RU 2018112884 A RU2018112884 A RU 2018112884A RU 2679186 C1 RU2679186 C1 RU 2679186C1
Authority
RU
Russia
Prior art keywords
transistors
voltage level
voltage
type
output
Prior art date
Application number
RU2018112884A
Other languages
English (en)
Inventor
Владимир Владимирович Шубин
Original Assignee
Владимир Владимирович Шубин
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Владимир Владимирович Шубин filed Critical Владимир Владимирович Шубин
Priority to RU2018112884A priority Critical patent/RU2679186C1/ru
Application granted granted Critical
Publication of RU2679186C1 publication Critical patent/RU2679186C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0175Coupling arrangements; Interface arrangements
    • H03K19/0185Coupling arrangements; Interface arrangements using field effect transistors only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/003Modifications for increasing the reliability for protection
    • H03K19/00369Modifications for compensating variations of temperature, supply voltage or other physical parameters
    • H03K19/00384Modifications for compensating variations of temperature, supply voltage or other physical parameters in field effect transistor circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0175Coupling arrangements; Interface arrangements
    • H03K19/0185Coupling arrangements; Interface arrangements using field effect transistors only
    • H03K19/018507Interface arrangements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/02Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
    • H03K19/08Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices
    • H03K19/094Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices using field-effect transistors
    • H03K19/09432Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices using field-effect transistors with coupled sources or source coupled logic
    • H03K19/09436Source coupled field-effect logic [SCFL]

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Power Engineering (AREA)
  • Logic Circuits (AREA)

Abstract

Изобретение относится к вычислительной технике и может быть использовано для построения быстродействующих преобразователей уровня напряжения, в том числе при сопряжении элементов электронных систем с несколькими источниками питания. Технический результат заключается в том, что предложенный преобразователь уровня напряжения имеет более высокое быстродействие преобразования напряжения высокого уровня и возврата к низкому уровню напряжения. Схема Преобразователя уровня напряжения содержит: шесть полевых транзисторов Р-типа (1-6) и восемь N-типа (7-14), два инвертора, входы прямого IN и инверсноговходных сигналов, вывод питания высокого уровня напряжения VDD, вывод питания низкого уровня напряжения (GND) и выходы прямой OUT и инверсный. 1 ил.

Description

Предлагаемое изобретение относится к цифровой вычислительной технике и может быть использовано при согласовании схем, имеющих различные уровни напряжений источников питания и внутренних сигналов.
Известен Преобразователь уровня напряжения [1]. Это устройство предназначено для преобразования уровня напряжения сигнала (например, при сопряжении ТТЛ- и КМДП логических элементов).
Недостатком указанной выше схемы является низкое быстродействие. Низкое быстродействие схемы вызвано ограничением появления напряжения высокого уровня на входах выходных инверторах по цепи низкой проводимости, вплоть до подключения транзистора с высокой проводимостью, шунтирующего низко-проводящую цепь, которое задерживается на время распространения сигнала, необходимое на последовательное переключение двух вентилей.
Задачей предлагаемого изобретения является повышение быстродействия Преобразователя уровня напряжения.
Поставленная задача достигается тем, что в Преобразователь уровня напряжения, содержащий полевые транзисторы Р-типа с первого по шестой и N-типа - с седьмого по десятый, входы прямого IN и инверсного
Figure 00000001
входных сигналов, соединенные с затворами, соответственно, седьмого и восьмого транзисторов, стоки которых соединены, соответственно, седьмого - со стоком шестого и затвором пятого транзисторов, а восьмого - со стоком пятого и затвором шестого транзисторов, и истоки транзисторов пятого и шестого соединены, пятого - со стоками транзисторов первого и второго, а шестого - со стоками третьего и четвертого, вывод питания высокого уровня напряжения VDD, соединенный с истоками транзисторов с первого по четвертый, вывод питания низкого уровня напряжения GND, соединенный с истоками транзисторов девятого и десятого и затворами транзисторов первого и четвертого, прямой выход OUT, соединенный с затвором второго транзистора и инверсный выход
Figure 00000002
, соединенный с затвором третьего транзистора, введены полевые транзисторы N-типа с одиннадцатого по четырнадцатый и Первый и Второй инверторы, входы которых соединены, соответственно, Первого инвертора - со стоками пятого, восьмого и одиннадцатого транзисторов, и Второго - стоками шестого, седьмого и двенадцатого транзисторов, а выходы, соответственно, Первого инвертора - с инверсным выходом
Figure 00000003
и затвором десятого транзистора, сток которого соединен с истоком седьмого, и Второго инвертора - с прямым выходом OUT и затвором девятого транзистора, сток которого соединен с истоком восьмого, причем затворы одиннадцатого и двенадцатого транзисторов соединены с выводом питания высокого уровня напряжения VDD, а истоки, соответственно, со стоками тринадцатого и четырнадцатого транзисторов, истоки которых соединены с выводом питания низкого уровня напряжения GND, а затворы, соответственно, с входами прямого IN и инверсного
Figure 00000004
входных сигналов.
Таким образом, в предлагаемой схеме Преобразователя уровня напряжения, вследствие отличий от известного устройства, описанных выше, в любом установившемся статическом режиме в парах цепочек транзисторов высокой проводимости, состоящих из транзисторов Р-типа второго и пятого, третьего и шестого, и N-типа седьмого и десятого, восьмого и девятого, один из транзисторов всегда закрыт.Схема подключения элементов в предлагаемом Преобразователе уровня напряжения исключает протекание тока во время переходных процессов одновременно по цепочкам высокой проводимости Р- и N-типа. Поэтому переходные процессы по перезаряду узловых емкостей триггера, к которым подключены выходные первый и второй инверторы, всегда протекают по цепочкам транзисторов высокой проводимости одного типа и цепочкам транзисторов низкой проводимости противоположного типа.
На чертеже приведена схема предлагаемого Преобразователя уровня напряжения.
Предлагаемый Преобразователь уровня напряжения, содержит полевые транзисторы Р-типа с первого по шестой (1-6) и N-типа с седьмого по четырнадцатый (7-14), вход прямого входного сигнала IN, соединенный с затворами транзисторов седьмого (7) и четырнадцатого (14) и вход инверсного входного сигнала
Figure 00000005
, соединенный с затворами транзисторов восьмого (8) и тринадцатого (13), вывод питания высокого уровня напряжения VDD, соединенный с истоками транзисторов с первого по четвертый (1-4) и затворами транзисторов одиннадцатого (11) и двенадцатого (12), вывод питания низкого уровня напряжения GND, соединенный с истоками транзисторов девятого (9), десятого (10), тринадцатого (13), четырнадцатого (14) и затворами транзисторов первого (1) и четвертого (4), причем стоки транзисторов первого (1) и второго (2) соединены с истоком пятого (5), третьего (3) и четвертого (4) - с истоком шестого (6), а стоки транзисторов девятого (9), десятого (10), тринадцатого (13) и четырнадцатого (14) - с истоками, соответственно, восьмого (8), седьмого (7), одиннадцатого (11) и двенадцатого (12). Стоки транзисторов пятого (5), восьмого (8) и одиннадцатого (11) соединены с затвором шестого (6) транзистора и входом Первого инвертора, выход которого является инверсным выходом
Figure 00000006
Преобразователя уровня напряжения, а стоки транзисторов шестого (6), седьмого (7) и двенадцатого (12) соединены с затвором пятого (5) транзистора и входом Второго инвертора, выход которого является прямым выходом OUT Преобразователя уровня напряжения.
Предлагаемый Преобразователь уровня напряжения представляет собой цифровое логическое устройство, предназначенное для преобразования входного напряжения логической единицы «1*» (VCC), в напряжение логической «1», соответствующее напряжению питания высокого уровня напряжения VDD и работает следующим образом.
Исходное состояние. На вывод питания GND и на вход IN подано напряжение низкого уровня, соответствующее напряжению логического «0», на вывод VDD - высокого («1»), а на вход
Figure 00000007
- напряжение логической единицы «1*» (VCC). Транзисторы низкой проводимости Р-типа 1 и 4 и N-типа 11 и 12 открыты всегда, т.к. их затворы подключены, соответственно, 1 и 4 - к источнику питания низкого уровня напряжения GND («0»), а 11 и 12 - к источнику питания высокого уровня напряжения VDD («1»). На затворы транзисторов N-типа 7 и 14 с входа IN поступает напряжение низкого уровня GND («О»), а на затворы транзисторов N-типа 8 и 13 с входа
Figure 00000008
поступает напряжение логической единицы VCC («1*»). Поэтому транзисторы 7 и 14 закрыты, а транзисторы 8 и 13 открыты. Кроме того, в результате действия предыдущего регенеративного цикла транзисторы 2, 6 и 10 открыты, а транзисторы 3, 5, 7 и 9 закрыты. На входе первого инвертора установлено напряжение низкого уровня GND («0»), и, следовательно, на выходе
Figure 00000009
Преобразователя уровня напряжения - напряжение высокого уровня VDD («1»), а на входе второго инвертора - напряжение высокого уровня VDD («1»), и, следовательно, на выходе OUT Преобразователя уровня напряжения - напряжение низкого уровня GND («0»).
В режиме преобразования высокого напряжения логической единицы «1*» (VCC) в напряжение высокого уровня VDD на выходе OUT, а на выходе
Figure 00000010
напряжения низкого уровня GND, на вход IN, и следовательно, на затворы транзисторов N-типа 7 и 14, поступает напряжение логической единицы «1*» (VCC), а на вход
Figure 00000011
, и, следовательно, на затворы транзисторов N-типа 8 и 13, - напряжение низкого уровня GND, в результате чего транзисторы 7 и 14 открываются, а транзисторы 8 и 13 - закрываются. Через открытые транзисторы 10 и 7, на затвор транзистора 5 и на вход второго инвертора поступает напряжение низкого уровня GND. Поэтому транзистор Р-типа 5 открывается, а на выходе второго инвертора формируется напряжение высокого уровня VDD. Одновременно через открытые транзисторы Р-типа 2 и 5 напряжение высокого уровня VDD поступает на затвор транзистора 6 и вход первого инвертора. Поэтому транзистор Р-типа 6 закрывается, а на выходе первого инвертора формируется напряжение низкого уровня GND. Напряжение высокого уровня VDD с выхода второго инвертора поступает на затворы транзисторов 2 и 9 и прямой выход OUT Преобразователя уровня напряжения. Поэтому транзистор Р-типа 2 закрывается, N-типа 9 открывается, а на прямом выходе OUT Преобразователя уровня напряжения устанавливается напряжение высокого уровня VDD. Одновременно, напряжение низкого уровня GND с выхода первого инвертора поступает на затворы транзисторов 3 и 10 и инверсный выход
Figure 00000012
Преобразователя уровня напряжения. Поэтому транзистор Р-типа 3 закрывается, N-типа 10 открывается, а на инверсном выходе
Figure 00000013
Преобразователя уровня напряжения устанавливается напряжение низкого уровня GND. Таким образом, в парах цепочек транзисторов высокой проводимости Р-типа 2 и 5, 3 и 6, и N-типа 7 и 10, 8 и 9, один из транзисторов (в данном режиме 2, 6, 8 и 10) закрыт, и на инверсном выходе
Figure 00000014
Преобразователя уровня напряжения установлено напряжение низкого уровня GND («0»), а на прямом выходе OUT Преобразователя уровня напряжения - напряжение высокого уровня VDD («1»), полученное преобразованием входного высокого напряжения логической единицы «1*» (VCC). В то же время на входе Первого инвертора по цепи низкой проводимости, образованной транзисторами Р-типа 1 и 5, удерживается напряжение высокого уровня VDD («1»), а на входе Второго инвертора по цепи низкой проводимости, образованной транзисторами N-Типа 12 и 14, - напряжение низкого уровня GND («0»).
При переходе Преобразователя уровня напряжения в исходное состояние и режим формирования на выходе OUT напряжения низкого уровня GND, а на выходе
Figure 00000015
напряжения высокого уровня VDD, на вход IN, и следовательно, на затворы транзисторов N-типа 7 и 14, поступает напряжение низкого уровня GND, а на вход
Figure 00000011
, и, следовательно, на затворы транзисторов N-типа 8 и 13, - напряжение логической единицы «1*» (VCC), в результате чего транзисторы 7 и 14 закрываются, а транзисторы 8 и 13 - открываются. Через открытые транзисторы 8 и 9, на затвор транзистора 6 и на вход Первого инвертора поступает напряжение низкого уровня GND. Поэтому на выходе Первого инвертора формируется напряжение высокого уровня VDD («1») и транзистор Р-типа 6 открывается. Одновременно через открытые транзисторы Р-типа 3 и 6 напряжение высокого уровня VDD поступает на затвор транзистора 5 и вход Второго инвертора. Поэтому на выходе Второго инвертора формируется напряжение низкого уровня GND («0»), а транзистор Р-типа 5 закрывается. Напряжение низкого уровня GND с выхода Второго инвертора поступает на затворы транзисторов 2 и 9 и прямой выход OUT Преобразователя уровня напряжения. Поэтому транзистор Р-типа 2 открывается, N-типа 9 закрывается, а на прямом выходе OUT Преобразователя уровня напряжения устанавливается напряжение низкого уровня GND («0»). Одновременно, напряжение высокого уровня VDD с выхода Первого инвертора поступает на затворы транзисторов 3 и 10 и инверсный выход
Figure 00000016
Преобразователя уровня напряжения. Поэтому транзистор Р-типа 3 открывается, N-типа 10 закрывается, а на инверсном выходе
Figure 00000017
Преобразователя уровня напряжения устанавливается напряжение высокого уровня VDD («1»). Таким образом, в парах цепочек транзисторов высокой проводимости Р-типа 2 и 5, 3 и 6, и N-типа седьмого 7 и 10, 8 и 9, один из транзисторов (в данном режиме 3, 5, 7 и 9) закрыт, и на инверсном выходе
Figure 00000018
Преобразователя уровня напряжения установлено напряжение высокого уровня VDD («1»), полученное преобразованием входного высокого напряжения логической единицы «1*» (VCC), а на прямом выходе OUT Преобразователя уровня напряжения - напряжение низкого уровня GND («0»). Схема Преобразователя уровня напряжения возвращается в исходное состояние. При этом на входе Первого инвертора по цепи низкой проводимости, образованной транзисторами N-типа 11 и 13, удерживается напряжение низкого уровня GND («0»), а на входе Второго инвертора по цепи низкой проводимости, образованной транзисторами Р-Типа 4 и 6, - напряжение высокого уровня VDD («1»),
Таким образом, в предлагаемом Преобразователе уровня напряжения исключено протекание тока во время переходных процессов одновременно по цепочкам высокой проводимости Р- и N-типа. Поэтому формирование выходных сигналов высокого уровня VDD («1») на выходах прямом OUT или инверсном
Figure 00000019
проходит в переходном процессе противостояния тока, протекающего через цепи транзисторов высокой проводимости с цепями транзисторов низкой проводимости, что существенно ускоряет время этих переходных процессов по перезаряду выходных емкостей триггера, и, тем самым, повышает общее быстродействие работы схемы.
Литература
1. Патент на изобретение №2604054, «Преобразователь уровня напряжения», / В.В. Шубин // Бюллетень №34 от 10.12.2016.

Claims (1)

  1. Преобразователь уровня напряжения, содержащий полевые транзисторы Р-типа с первого по шестой и N-типа - с седьмого по десятый, входы прямого IN и инверсного
    Figure 00000020
    входных сигналов, соединенные с затворами, соответственно, седьмого и восьмого транзисторов, стоки которых соединены, соответственно, седьмого - со стоком шестого и затвором пятого транзисторов, а восьмого - со стоком пятого и затвором шестого транзисторов, и истоки транзисторов пятого и шестого соединены, пятого - со стоками транзисторов первого и второго, а шестого - со стоками третьего и четвертого, вывод питания высокого уровня напряжения VDD, соединенный с истоками транзисторов с первого по четвертый, вывод питания низкого уровня напряжения GND, соединенный с истоками транзисторов девятого и десятого и затворами транзисторов первого и четвертого, прямой выход OUT, соединенный с затвором второго транзистора, и инверсный выход
    Figure 00000021
    , соединенный с затвором третьего транзистора, отличающийся тем, что в него введены полевые транзисторы N-типа с одиннадцатого по четырнадцатый и Первый и Второй инверторы, входы которых соединены, соответственно, Первого инвертора - со стоками пятого, восьмого и одиннадцатого транзисторов, и Второго – со стоками шестого, седьмого и двенадцатого транзисторов, а выходы, соответственно, Первого инвертора - с инверсным выходом OUT и затвором десятого транзистора, сток которого соединен с истоком седьмого, и Второго инвертора - с прямым выходом
    Figure 00000021
    и затвором девятого транзистора, сток которого соединен с истоком восьмого, причем затворы одиннадцатого и двенадцатого транзисторов соединены с выводом питания высокого уровня напряжения VDD, а истоки, соответственно, со стоками тринадцатого и четырнадцатого транзисторов, истоки которых соединены с выводом питания низкого уровня напряжения GND, а затворы, соответственно, с входами прямого IN и инверсного
    Figure 00000020
    входных сигналов.
RU2018112884A 2018-04-09 2018-04-09 Преобразователь уровня напряжения RU2679186C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018112884A RU2679186C1 (ru) 2018-04-09 2018-04-09 Преобразователь уровня напряжения

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018112884A RU2679186C1 (ru) 2018-04-09 2018-04-09 Преобразователь уровня напряжения

Publications (1)

Publication Number Publication Date
RU2679186C1 true RU2679186C1 (ru) 2019-02-06

Family

ID=65273751

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018112884A RU2679186C1 (ru) 2018-04-09 2018-04-09 Преобразователь уровня напряжения

Country Status (1)

Country Link
RU (1) RU2679186C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2712422C1 (ru) * 2019-02-26 2020-01-28 Акционерное общество "Новосибирский завод полупроводниковых приборов с ОКБ" Высоковольтный преобразователь уровня напряжения
RU2739487C1 (ru) * 2020-06-15 2020-12-24 Владимир Владимирович Шубин Преобразователь уровня напряжения
RU2787930C1 (ru) * 2022-04-21 2023-01-13 Владимир Владимирович Шубин Элемент входного регистра

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4616189A (en) * 1985-04-26 1986-10-07 Triquint Semiconductor, Inc. Gallium arsenide differential amplifier with closed loop bias stabilization
US20060220682A1 (en) * 2005-03-29 2006-10-05 Youichi Satou Voltage level converter circuit and semiconductor integrated circuit device
WO2016057088A1 (en) * 2014-10-06 2016-04-14 Xilinx, Inc. Circuits for and methods of providing voltage level shifting in an integrated circuit device
RU2604054C1 (ru) * 2016-01-22 2016-12-10 Владимир Владимирович Шубин Преобразователь уровня напряжения

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4616189A (en) * 1985-04-26 1986-10-07 Triquint Semiconductor, Inc. Gallium arsenide differential amplifier with closed loop bias stabilization
US20060220682A1 (en) * 2005-03-29 2006-10-05 Youichi Satou Voltage level converter circuit and semiconductor integrated circuit device
WO2016057088A1 (en) * 2014-10-06 2016-04-14 Xilinx, Inc. Circuits for and methods of providing voltage level shifting in an integrated circuit device
RU2604054C1 (ru) * 2016-01-22 2016-12-10 Владимир Владимирович Шубин Преобразователь уровня напряжения

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2712422C1 (ru) * 2019-02-26 2020-01-28 Акционерное общество "Новосибирский завод полупроводниковых приборов с ОКБ" Высоковольтный преобразователь уровня напряжения
RU2739487C1 (ru) * 2020-06-15 2020-12-24 Владимир Владимирович Шубин Преобразователь уровня напряжения
RU2787930C1 (ru) * 2022-04-21 2023-01-13 Владимир Владимирович Шубин Элемент входного регистра

Similar Documents

Publication Publication Date Title
RU2604054C1 (ru) Преобразователь уровня напряжения
Cunha et al. Quaternary look-up tables using voltage-mode CMOS logic design
US9432002B2 (en) High-speed voltage level shifter circuit
RU2679186C1 (ru) Преобразователь уровня напряжения
Sharma et al. Low power 8-bit ALU design using full adder and multiplexer
RU2380739C1 (ru) Сумматор
RU2702979C1 (ru) Высоковольтный преобразователь уровня напряжения
Kamsani et al. A low power multiplexer based pass transistor logic full adder
RU2667798C1 (ru) Преобразователь уровня напряжения
RU2712422C1 (ru) Высоковольтный преобразователь уровня напряжения
RU2632567C1 (ru) Преобразователь уровня напряжения
RU2642416C1 (ru) Преобразователь логического уровня напряжения
RU2756445C1 (ru) Преобразователь уровня напряжения
RU2739487C1 (ru) Преобразователь уровня напряжения
US11025237B1 (en) Zero static high-speed, low power level shifter
Singh et al. Analysis and design guidelines for customized logic families in CMOS
RU2664014C1 (ru) Схема формирователя управляющих сигналов
Hang et al. Novel CMOS ternary flip-flops using double pass-transistor logic
RU2438234C1 (ru) Функционально-полный толерантный элемент
RU2408922C1 (ru) Одноразрядный двоичный сумматор
RU2771447C1 (ru) Элемент входного регистра
RU2814896C1 (ru) Кмоп логический вентиль исключающее-или
Kumre Power and delay analysis of one bit adders
RU2802665C1 (ru) Логический вентиль исключающее-или
Hajare et al. Design of Gates in Multiple Valued Logic

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20200410