RU2676779C2 - Автоматизированный комплекс инжекции раствора ингибитора коррозии для скважин - Google Patents

Автоматизированный комплекс инжекции раствора ингибитора коррозии для скважин Download PDF

Info

Publication number
RU2676779C2
RU2676779C2 RU2017142832A RU2017142832A RU2676779C2 RU 2676779 C2 RU2676779 C2 RU 2676779C2 RU 2017142832 A RU2017142832 A RU 2017142832A RU 2017142832 A RU2017142832 A RU 2017142832A RU 2676779 C2 RU2676779 C2 RU 2676779C2
Authority
RU
Russia
Prior art keywords
metering pump
corrosion inhibitor
solution
inhibitor
wells
Prior art date
Application number
RU2017142832A
Other languages
English (en)
Other versions
RU2017142832A (ru
RU2017142832A3 (ru
Inventor
Владимир Васильевич Кожакин
Андрей Геннадиевич Екотов
Анатолий Георгиевич Свиридов
Дмитрий Константинович Панащенко
Виталий Евгеньевич Родованов
Original Assignee
Общество с ограниченной ответственностью "Газпром добыча Астрахань" (ООО "Газпром добыча Астрахань")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Газпром добыча Астрахань" (ООО "Газпром добыча Астрахань") filed Critical Общество с ограниченной ответственностью "Газпром добыча Астрахань" (ООО "Газпром добыча Астрахань")
Priority to RU2017142832A priority Critical patent/RU2676779C2/ru
Publication of RU2017142832A publication Critical patent/RU2017142832A/ru
Publication of RU2017142832A3 publication Critical patent/RU2017142832A3/ru
Application granted granted Critical
Publication of RU2676779C2 publication Critical patent/RU2676779C2/ru

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B37/00Methods or apparatus for cleaning boreholes or wells
    • E21B37/06Methods or apparatus for cleaning boreholes or wells using chemical means for preventing, limiting or eliminating the deposition of paraffins or like substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D3/00Arrangements for supervising or controlling working operations
    • F17D3/12Arrangements for supervising or controlling working operations for injecting a composition into the line

Abstract

Изобретение относится к газодобывающей промышленности и может быть применено для дозированной подачи ингибиторов коррозии и метанола в технологические трубопроводы газоконденсатных скважин и в магистральные газопроводы. Комплекс содержит локальную систему управления, построенную на промышленном контроллере, технологическую емкость для ингибитора с датчиком уровня и индикатором уровня, фильтр тонкой очистки, насос-дозатор, выкидная линия которого оснащена обратным клапаном, манометром, датчиками давления и расхода. Регулирование насоса-дозатора основано на регулировании дозируемого объема изменением длины хода плунжера насоса-дозатора отдельно установленным электрическим приводом плунжера и управлении производительностью насоса-дозатора за счет изменения частоты вращения электродвигателя посредством частотного преобразователя. Управление осуществляют распределенной системой, построенной на контроллере автоматизированной системы управления технологическими процессами и на локальном промышленном контроллере, обмен информацией между которыми осуществляют по оптоволоконной линии связи, что позволяет организовать дистанционный контроль и диагностику комплекса. Повышается эффективность использования ингибитора коррозии и надежность работы. 6 з.п. ф-лы, 1 ил.

Description

Изобретение относится к газодобывающей промышленности и может быть применено для дозированной подачи ингибиторов коррозии и метанола в технологические трубопроводы газоконденсатных скважин и в магистральные газопроводы.
Известна установка для дозированной подачи реагента (патент РФ №2238393, E21B 37/06, опубликовано 20.10.2004). Она содержит емкость для ингибитора, насос-дозатор, соединенный с ней посредством трубопровода через вентили, дополнительную емкость для ингибитора, устройство тонкой фильтрации, установленное непосредственно перед всасывающей частью насоса-дозатора, уровнемер, установленный в трубопроводе, соединяющем емкость для ингибитора и насос-дозатор. На трубопроводе, соединяющем емкость для ингибитора и насос-дозатор, установлены электроконтактный манометр, отсекающий вентиль и обратный клапан. Обратный клапан предотвращает обратное движение ингибитора при отсутствии в трубопроводе давления, создаваемого насосом-дозатором.
К недостаткам данного устройства следует отнести отсутствие дистанционного контроля технологических параметров и дистанционного управления установкой. В частности, отсутствие расходомера и возможности дистанционного управления производительностью насоса не позволяет регулировать подачу ингибиторов в технологические трубопроводы в зависимости от расхода среды, что приведет к нарушению технологического режима ингибирования.
Наиболее близким к заявленному техническому решению (прототипом), является установка для дозированной подачи жидкого химического реагента (патент РФ №2312208, E21B 37/06, опубликовано 10.12.2007), в состав которой входит технологическая емкость, соединенный с ней через запорный элемент насос-дозатор (основной и резервный), вмонтированный на линии подачи жидкости, выкидная линия которого соединена с технологической линией, снабженной расходомером, линия заправки технологической емкости, фильтр тонкой очистки, вентили, обратный клапан, манометр и указатель уровня.
Недостатками данного технического решения являются: применение частотного преобразователя для управления производительностью насоса -дозатора без дополнительных устройств, позволяющих адаптировать частотный преобразователь для работы на низких расходах, что приводит к перегрузкам электрического привода на низкой частоте вращения; отсутствие контроля раздела фаз и плотности реагента не позволяет контролировать его качество и соответственно контролировать технологический процесс в полном объеме; отсутствие контроля исправности сильфона, температуры двигателя и температуры насоса - дозатора не позволяет осуществлять контроль состояния и дистанционную диагностику насосного агрегата; отсутствие в выкидной линии насоса - дозатора гасителя пульсаций приведет к ложным срабатываниям электроконтактного манометра; применение косвенного метода измерения расхода подачи реагента не является достоверным; в примененном методе диагностики расходной характеристики насоса - дозатора отсутствует ограничение по минимальному времени откачки реагента и в случае повышенного расхода, из-за появления утечек, система управления не обнаружит аварийной ситуации и продолжит управление в штатном режиме; не предусмотрен сбор жидкости при возможных утечках в насосе и дистанционная сигнализация о появлении утечек; система круговой циркуляции, предназначенная для перемешивания, неэффективна в связи с возможностью ее использования только при прекращении основного процесса подачи и неправильной организацией забора, так как расслоение наиболее ярко выражено в верхней части емкости, а перемешивание производится только в ее нижней части.
Задача, на решение которой направлено заявляемое техническое решение, заключается в расширении арсенала технических средств в данной области, а также повышении надежности работы автоматизированного комплекса инжекции раствора ингибитора коррозии для подачи растворов в трубопроводы скважины под высоким давлением и эффективности использования ингибитора коррозии.
Поставленная задача решается тем, что автоматизированный комплекс инжекции раствора ингибитора коррозии для скважин, включающий в себя локальную систему управления, построенную на промышленном контроллере, технологическую емкость для ингибитора, оборудованную датчиком уровня и индикатором уровня для его визуальной оценки, соединенный с ней через фильтр тонкой очистки и запорную арматуру насос-дозатор, выкидная линия которого оснащена обратным клапаном, манометром, датчиками давления и расхода.
Новым является то, что, с целью осуществления регулирования производительности насоса-дозатора от 0 до 100% рабочего диапазона и предотвращения перегрузок электрического двигателя плунжера насоса-дозатора на низких частотах вращения, обеспечивается комбинированным методом управления, основанным на регулировании дозируемого объема за счет изменения длины хода плунжера насоса-дозатора отдельно установленным электрическим приводом плунжера и управлении производительностью насоса-дозатора за счет изменения частоты вращения электродвигателя посредством частотного преобразователя, причем управление частотным преобразователем и электрическим приводом плунжера насоса-дозатора осуществляют распределенной системой управления, построенной на контроллере автоматизированной системы управления технологическими процессами (далее - АСУ ТП) и на локальном промышленном контроллере автоматизированного комплекса инжекции раствора ингибитора коррозии для скважин, обмен информацией между которыми осуществляют по оптоволоконной линии связи, при этом на базе локальной системы автоматизации автоматизированного комплекса инжекции раствора ингибитора коррозии для скважин организуют систему сбора и передачи диагностической информации с оборудования, поддерживающего HART протокол (Highway Addressable Remote Transducer - Адресуемый дистанционный магистральный преобразователь), а насос-дозатор оборудуют датчиками исправности сильфона, температуры насоса-дозатора и температуры двигателя для контроля состояния и дистанционной диагностики насоса-дозатора.
Дополнительно автоматизированный комплекс инжекции раствора] ингибитора коррозии для скважин оснащен предохранительным клапаном для защиты оборудования от превышения максимально допустимого давления, гасителем пульсаций для стабилизации показаний манометра, массовым расходомером и датчиком давления, установленными в выкидной линии насоса - дозатора, при этом для перемешивания раствора ингибитора при его расслоении предусмотрен насос перемешивания, автоматически включающийся при обнаружении датчиком уровня раздела фаз жидкости, осуществляющий забор жидкости после фильтра тонкой очистки в подающем трубопроводе, и возвращающий жидкость в верхнюю часть технологической емкости для ингибитора, а также дренажной емкостью с сигнализатором предельного уровня, ручным перекачивающим насосом и дыхательным клапаном для сбора возможных утечек с насоса-дозатора, индикатора уровня, датчика давления и манометра.
Техническим результатом является повышение эффективности использования ингибитора коррозии и повышение надежности работы автоматизированного комплекса инжекции раствора ингибитора коррозии для скважин в целом, за счет применения комбинированного метода управления, основанного на регулировании дозируемого объема изменением длины хода плунжера насоса-дозатора отдельно установленным электрическим приводом плунжера и управлении производительностью j насоса-дозатора за счет изменения частоты вращения электродвигателя посредством частотного преобразователя, позволяющего осуществлять управление производительностью во всем рабочем диапазоне насоса-дозатора с повышенной точностью, которую обеспечивает массовый расходомер, установленный в выкидной линии насоса-дозатора.
Представленный чертеж поясняет сущность изобретения, где схематически изображен заявляемый автоматизированный комплекс инжекции раствора ингибитора коррозии для скважин (фиг.).
Автоматизированный комплекс инжекции раствора" ингибитора коррозии для скважин включает технологическую емкость для ингибитора 1, оборудованную индикатором уровня 2 с запорной арматурой 3, 4, 5, и датчиком уровня и раздела фаз 6, дыхательным клапаном 7, линией закачки ингибитора 8 с установленной на ней задвижкой. 9, дренажом с запорной арматурой 10, а также насосом перемешивания 11 с запорной арматурой 12 и обратным клапаном 13. Линия подачи раствора ингибитора 14 в технологический трубопровод 53 оснащена запорной арматурой 15, 16, фильтром тонкой очистки 17, насосом-дозатором 18 с дренажным вентилем 19, предохранительным клапаном 20, гасителем пульсаций 21, манометром 22 с приборным вентилем 23, датчиком давления 24 с приборным вентилем 25, датчиком расхода 26, обратным клапаном 27. Линия подачи раствора ингибитора 14 через запорную арматуру 28 соединяется с дренажной емкостью 29, оборудованной сигнализатором предельного уровня 30, ручным перекачивающим насосом 31 с запорной арматурой 32, дыхательным клапаном 33 и дренажным вентилем 34. В состав автоматизированного комплекса инжекции раствора ингибитора коррозии для скважин входит локальная система управления 35, построенная на базе промышленного контроллера, которая обменивается информаций с контроллером скважины 36, и управляет производительностью насоса-дозатора 18 посредством частотного преобразователя 37 и электрического привода плунжера 38. Насос-дозатор 18 оснащен датчиком температуры двигателя 39, датчиком температуры насоса-дозатора 40, датчиком исправности сильфона 41, информация с которых поступает в локальную систему управления 35 и передается через конвертеры FX/TX 42, 43 по оптоволоконной линии 44 в АСУ ТП 45, элементы которого находятся в боксе управления 52. В шкафу управления 46 организована система сбора и передачи диагностической информации 47 с оборудования, поддерживающего HART протокол, для передачи данных через конвертеры FX/TX 48, 49 по оптоволоконной линии 50 в систему дистанционной диагностики и мониторинга КИП и А 51.
Автоматизированный комплекс инжекции раствора ингибитора коррозии для скважин работает следующим образом.
Заполнение технологической емкости для ингибитора 1 осуществляется обслуживающим персоналом с помощью специализированного автотранспорта, запорная арматура 3, 4, 9 находится в открытом состоянии, контроль уровня в технологической емкости для ингибитора 1 при заправке осуществляется визуально по индикатору уровня 2, при этом запорная арматура 5, 10, 28, 32, 34 закрыта. После заполнения технологической емкости для ингибитора 1 запорная арматура 9 переводится в закрытое состояние и ингибитор коррозии через фильтр 17 поступает на вход насоса-дозатора 18. Для пуска установки необходимо открыть запорную арматуру 12, 15, 16, 19, 23, 25 и подать команду на пуск со шкафа управления 46, находящегося на территории скважины во взрывоопасной зоне, или с АСУ ТП 45, элементы которого находятся в боксе управления 52, расположенном в безопасной зоне вне территории скважины. В соответствии с заданной производительностью насос-дозатор 18 подает ингибитор коррозии в технологический трубопровод 53 через обратный клапан 27 и открытую запорную арматуру 16. В выкидной линии насоса-дозатора 18 установлен предохранительный клапан 20, который в случае отказа автоматической системы защиты предотвратит повреждение технологического оборудования от превышения давления. Установленный после предохранительного клапана 20 гаситель пульсаций 21 позволит компенсировать пульсации в выкидной линии насоса-дозатора 18 и стабилизировать показания манометра 22, датчика давления 24 и датчика расхода 26. Для организации перемешивания жидкости в технологической емкости для ингибитора 1 предусмотрен насос перемешивания 11, который включается автоматически в случае обнаружения датчиком уровня и раздела фаз 6 расслоения ингибитора коррозии, насос перемешивания 11 осуществляет забор жидкости через запорную арматуру 12, установленную после фильтра тонкой очистки 17, и подает ее в верхнюю часть, емкости через обратный клапан 13.
Для организации сбора утечек, возникающих при обслуживании автоматизированного комплекса инжекции раствора ингибитора коррозии для скважин или в случае возникновения нештатных утечек в насосе-дозаторе 18, предусмотрена дренажная емкость 19, в которую поступает ингибитор коррозии через запорную арматуру 5, 19, 23, 25, 28. При заполнении дренажной емкости 29 срабатывает сигнализатор предельного уровня 30 и формирует предупредительный сигнал о необходимости откачки ингибитора, который отображается на пульте локальной системы управления 35 и передается в систему АСУ ТП 45. Ингибитор коррозии из дренажной емкости 29 откачивается ручным перекачивающим насосом 31 в верхнюю часть технологической емкости для ингибитора 1 через запорную арматуру 32.
Информация с датчика уровня и раздела фаз 6, сигнализатора предельного уровня 30, датчика давления 24, датчика расхода 26, датчика температуры двигателя 39, датчика температуры насоса-дозатора 40, датчика исправности сильфона 41 поступает в локальную систему управления 35, которая на основании полученных данных формирует управляющие воздействия на электроприводы в соответствии с алгоритмами аварийной защиты, транслирует данные через конвертеры FX/TX 42, 43 по оптоволоконной линии 44 в АСУ ТП 45, а также управляет производительностью насоса-дозатора 18 на основании норм расхода ингибитора коррозии в зависимости от расхода продукции скважин.
Данные о расходе продукции поступают в локальную систему управления 35 с контроллера скважины 36, контроллер локальной системы управления 35 рассчитывает необходимое количество ингибитора коррозии и формирует управляющие воздействия комбинированным способом на электрический привод плунжера 38 насоса-дозатора 18 и частотный преобразователь 37 в зависимости от измеренного мгновенного расхода ингибитора коррозии.
Управление производительностью насоса-дозатора 18 комбинированным способом необходимо для осуществления регулирования от 0 до 100% рабочего диапазона и предотвращения перегрузок электрического двигателя насоса-дозатора 18 на низких частотах вращения. Комбинированный способ заключается в управлении производительностью насоса-дозатора 18 посредством частотного преобразователя 37 в диапазоне от 25 до 50 Гц подаваемого напряжения на электрический двигатель насоса-дозатора 18. При необходимости осуществлять регулирование производительности в более низком диапазоне (ниже 25 Гц), локальная система управления 35 производит регулировку впрыскиваемого объема (в сторону уменьшения) за счет изменения длины хода плунжера насоса-дозатора 18 отдельно установленным электрическим приводом плунжера 38, таким образом, чтобы частота электропитания электрического двигателя насоса-дозатора 18 находилась в диапазоне регулирования от 25 до 50 Гц. Например, при максимальном расходе насоса-дозатора 18 длина хода плунжера насоса-дозатора 18 составляет 100%, частота электропитания 50 Гц. При уменьшении расхода и достижении частоты 25 Гц электрический привод плунжера 38 изменяет длину хода плунжера на 50%, что соответствует половине максимальной производительности насоса-дозатора 18, а частотный преобразователь 37 повышает частоту электропитания электрического двигателя насоса-дозатора 18 от 25 до 50 Гц. В результате насос-дозатор 18 остается в нужном диапазоне регулирования расхода при частоте электропитания электрического двигателя насоса-дозатора 18 в диапазоне от 25 до 50 Гц.
АСУ ТП 45 осуществляет диагностику работоспособности локальной системы управления 35 и в случае появления критических неисправностей контроллер скважины 36 берет управление подачей ингибитора коррозии на себя и управляет частотным преобразователем 37 по табличным зависимостям «дебит скважины» / «частота электропитания электрического двигателя насоса-дозатора 18».
Для дистанционного контроля и диагностики состояния интеллектуального оборудования, поддерживающего HART протокол, в шкафу управления 46 организована система сбора и передачи диагностической информации 47, которая передает данные в систему дистанционной диагностики и мониторинга КИП и А 51 через конвертеры FX/TX 48, 49 по оптоволоконной линии 50.

Claims (7)

1. Автоматизированный комплекс инжекции раствора ингибитора коррозии для скважин, включающий локальную систему управления, построенную на промышленном контроллере, технологическую емкость для ингибитора, оборудованную датчиком уровня и индикатором уровня для его визуальной оценки, соединенный с ней через фильтр тонкой очистки и запорную арматуру насос-дозатор, выкидная линия которого оснащена обратным клапаном, манометром, датчиками давления и расхода, отличающийся тем, что регулирование производительности насоса-дозатора от 0% до 100% рабочего диапазона и предотвращение перегрузок электрического двигателя насоса-дозатора на низких частотах вращения обеспечивается комбинированным методом управления, основанным на регулировании дозируемого объема за счет изменения длины хода плунжера насоса-дозатора отдельно установленным электрическим приводом плунжера и управлении производительностью насоса-дозатора за счет изменения частоты вращения электродвигателя посредством частотного преобразователя, причем управление частотным преобразователем и электрическим приводом плунжера насоса-дозатора осуществляют распределенной системой управления, построенной на контроллере автоматизированной системы управления технологическими процессами (АСУ ТП) и на локальном промышленном контроллере автоматизированного комплекса инжекции раствора ингибитора коррозии для скважин, обмен информацией между которыми осуществляют по оптоволоконной линии связи, при этом на базе локальной системы автоматизации автоматизированного комплекса инжекции раствора ингибитора коррозии для скважин организуют систему сбора и передачи диагностической информации с оборудования, поддерживающего HART протокол (Highway Addressable Remote Transducer -Адресуемый дистанционный магистральный преобразователь), а насос-дозатор оборудуют датчиками исправности сильфона, температуры насоса-дозатора и температуры двигателя для контроля состояния и дистанционной диагностики насоса-дозатора.
2. Автоматизированный комплекс инжекции раствора ингибитора коррозии для скважин по п. 1, отличающийся тем, что для защиты оборудования от превышения максимально допустимого давления применяют предохранительный клапан.
3. Автоматизированный комплекс инжекции раствора ингибитора коррозии для скважин по п. 1, отличающийся тем, что для стабилизации показаний манометра, массового расходомера и датчика давления выкидную линию насоса-дозатора оснащают гасителем пульсаций.
4. Автоматизированный комплекс инжекции раствора ингибитора коррозии для скважин по п. 1, отличающийся тем, что для организации учета подачи жидкости в выкидной линии насоса устанавливают массовый расходомер.
5. Автоматизированный комплекс инжекции раствора ингибитора коррозии для скважин по п. 1, отличающийся тем, что для алгоритма защиты и дистанционного контроля на линии подачи раствора ингибитора после насоса-дозатора устанавливают датчик давления.
6. Автоматизированный комплекс инжекции раствора ингибитора коррозии для скважин по п. 1, отличающийся тем, что для перемешивания раствора ингибитора при его расслоении устанавливают насос перемешивания, автоматически включающийся при обнаружении датчиком уровня раздела фаз жидкости, осуществляющий забор жидкости после фильтра тонкой очистки в подающем трубопроводе и возвращающий жидкость в верхнюю часть технологической емкости для ингибитора.
7. Автоматизированный комплекс инжекции раствора ингибитора коррозии для скважин по п. 1, отличающийся тем, что для сбора возможных утечек с насоса-дозатора, индикатора уровня, датчика давления и манометра устанавливают дренажную емкость, оснащенную сигнализатором предельного уровня, ручным перекачивающим насосом и дыхательным клапаном.
RU2017142832A 2017-06-21 2017-06-21 Автоматизированный комплекс инжекции раствора ингибитора коррозии для скважин RU2676779C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017142832A RU2676779C2 (ru) 2017-06-21 2017-06-21 Автоматизированный комплекс инжекции раствора ингибитора коррозии для скважин

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017142832A RU2676779C2 (ru) 2017-06-21 2017-06-21 Автоматизированный комплекс инжекции раствора ингибитора коррозии для скважин

Publications (3)

Publication Number Publication Date
RU2017142832A RU2017142832A (ru) 2018-12-24
RU2017142832A3 RU2017142832A3 (ru) 2018-12-24
RU2676779C2 true RU2676779C2 (ru) 2019-01-11

Family

ID=64752951

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017142832A RU2676779C2 (ru) 2017-06-21 2017-06-21 Автоматизированный комплекс инжекции раствора ингибитора коррозии для скважин

Country Status (1)

Country Link
RU (1) RU2676779C2 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2747601C1 (ru) * 2019-12-23 2021-05-11 Общество с ограниченной ответственностью "Газпром Уренгой" Способ ингибиторной обработки трубопровода
RU220506U1 (ru) * 2022-12-08 2023-09-18 Общество С Ограниченной Ответственностью "Газпром Добыча Надым" Установка для дозированной подачи химического реагента в газовую скважину

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109798104A (zh) * 2019-03-05 2019-05-24 重庆科技学院 一种页岩气远程采气监测及地面管线防腐系统及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2312208C1 (ru) * 2006-05-24 2007-12-10 Ренат Саниахметович Хазиахметов Установка для дозированной подачи жидкого химического реагента
RU78516U1 (ru) * 2008-06-02 2008-11-27 Открытое акционерное общество "Татнефть" имени В.Д. Шашина Система автоматического регулирования подачи жидких химических реагентов в продуктопровод
RU128894U1 (ru) * 2012-12-07 2013-06-10 Общество с ограниченной ответственностью "Макс Инжиниринг" Многофункциональная автоматическая комплексная станция интеллектуальной скважины
RU137327U1 (ru) * 2013-09-02 2014-02-10 Борис Иванович Павлов Установка для подачи химического реагента в скважину или продуктопровод
CN205532495U (zh) * 2016-04-26 2016-08-31 大庆市华禹石油机械制造有限公司 计量间集中加药装置
WO2017089846A1 (en) * 2015-11-24 2017-06-01 Farkas Pál Process for feeding an inhibitor into a gas pipeline for preventing gas hydrate formation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2312208C1 (ru) * 2006-05-24 2007-12-10 Ренат Саниахметович Хазиахметов Установка для дозированной подачи жидкого химического реагента
RU78516U1 (ru) * 2008-06-02 2008-11-27 Открытое акционерное общество "Татнефть" имени В.Д. Шашина Система автоматического регулирования подачи жидких химических реагентов в продуктопровод
RU128894U1 (ru) * 2012-12-07 2013-06-10 Общество с ограниченной ответственностью "Макс Инжиниринг" Многофункциональная автоматическая комплексная станция интеллектуальной скважины
RU137327U1 (ru) * 2013-09-02 2014-02-10 Борис Иванович Павлов Установка для подачи химического реагента в скважину или продуктопровод
WO2017089846A1 (en) * 2015-11-24 2017-06-01 Farkas Pál Process for feeding an inhibitor into a gas pipeline for preventing gas hydrate formation
CN205532495U (zh) * 2016-04-26 2016-08-31 大庆市华禹石油机械制造有限公司 计量间集中加药装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2747601C1 (ru) * 2019-12-23 2021-05-11 Общество с ограниченной ответственностью "Газпром Уренгой" Способ ингибиторной обработки трубопровода
RU220506U1 (ru) * 2022-12-08 2023-09-18 Общество С Ограниченной Ответственностью "Газпром Добыча Надым" Установка для дозированной подачи химического реагента в газовую скважину

Also Published As

Publication number Publication date
RU2017142832A (ru) 2018-12-24
RU2017142832A3 (ru) 2018-12-24

Similar Documents

Publication Publication Date Title
CA2805524C (en) Sound-velocity dewatering system
RU103841U1 (ru) Установка взрывозащищенного типа для дозирования химического реагента
EA031408B1 (ru) Устройство подачи реагентов и способ для дозирования и регулирования количества реагентов
CN216319701U (zh) 水灭火设施和用于其的控制装置和危害警报中心
RU2676779C2 (ru) Автоматизированный комплекс инжекции раствора ингибитора коррозии для скважин
RU2312208C1 (ru) Установка для дозированной подачи жидкого химического реагента
RU2637245C1 (ru) Система автоматической подачи ингибитора гидратообразования в шлейфы газового промысла
CN114961675B (zh) 智能在线检测注入设备
EP0954509B1 (en) Forecourt fuel pumps
CN106931148A (zh) 变速箱润滑油加注系统及无人机
JP2005054699A (ja) ピストンポンプ
WO2020077056A1 (en) System condition detection using inlet pressure
CA2691228C (en) Control system for a chemical injection pump
CN112814882B (zh) 一种可自动调节流量的电动化学药剂注入系统
RU78516U1 (ru) Система автоматического регулирования подачи жидких химических реагентов в продуктопровод
CN209444543U (zh) 一种悬臂式掘进机轴向柱塞变量泵的监测系统
CN115306333B (zh) 一种基于物联网的远程泥浆罐状态监测系统及控制方法
RU80031U1 (ru) Устройство для регулирования расхода одоранта
CN219816156U (zh) 一种带液位监测的自动加药装置
CN108798771A (zh) 井下水泵排水装置
CN219754771U (zh) 一种给水管路水泵保护装置
RU2758287C1 (ru) Система управления параметрами закачиваемых в скважину жидкостей
CN114413178B (zh) 自动供液系统
CN115268517A (zh) 一种化学药剂注入量智能监测调节系统及监测调节方法
CN216561466U (zh) 一种消防泵房监控系统