RU2675670C1 - Радиометрический измеритель коэффициента отражения в широкой полосе частот - Google Patents

Радиометрический измеритель коэффициента отражения в широкой полосе частот Download PDF

Info

Publication number
RU2675670C1
RU2675670C1 RU2017140736A RU2017140736A RU2675670C1 RU 2675670 C1 RU2675670 C1 RU 2675670C1 RU 2017140736 A RU2017140736 A RU 2017140736A RU 2017140736 A RU2017140736 A RU 2017140736A RU 2675670 C1 RU2675670 C1 RU 2675670C1
Authority
RU
Russia
Prior art keywords
input
output
meter
pass filter
radiometric
Prior art date
Application number
RU2017140736A
Other languages
English (en)
Inventor
Александр Владимирович Филатов
Николай Александрович Филатов
Сергей Евгеньевич Тарасов
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Томский государственный университет систем управления и радиоэлектроники" (ТУСУР)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Томский государственный университет систем управления и радиоэлектроники" (ТУСУР) filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Томский государственный университет систем управления и радиоэлектроники" (ТУСУР)
Priority to RU2017140736A priority Critical patent/RU2675670C1/ru
Application granted granted Critical
Publication of RU2675670C1 publication Critical patent/RU2675670C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

Изобретение относится к области радиотехники и может использоваться при определении отражательных свойств искусственных и естественных покрытий и материалов различных конструкций. Радиометрический измеритель коэффициента отражения содержит антенну, подключенную к первому входу направленного ответвителя, последовательно соединенные радиометрический приемник, синхронный фильтр низких частот, фильтр высоких частот, компаратор, блок управления, причем второй вход компаратора соединен с общей шиной радиометра, первый выход блока управления является выходной шиной радиометра, его второй выход подключен к управляющему входу синхронного фильтра низких частот и объединен с управляющим входом СВЧ-переключателя, вход которого подключен к последовательно соединенным источнику тока и генератору шума, а первый и второй его выходы соединены соответственно с согласованной нагрузкой и вторым входом направленного ответвителя. При этом в измеритель введен регулируемый аттенюатор, входом подключенный к третьему выходу СВЧ-переключателя, а выходом - к третьему входу направленного ответвителя, выход которого соединен с входом радиометрического приемника. Технический результат заключается в упрощении устройства и повышение точности измерений с учетом реальных характеристик используемых элементов во входном тракте измерителя. 3 ил.

Description

Изобретение относится к области радиотехники и может использоваться при определении отражательных свойств искусственных и естественных покрытий и материалов различных конструкций, в ходе калибровки тепловых широкоапертурных излучателей для обеспечения единства измерений радио-яркостных температур космических и земных объектов, для оценки параметров трехкомпонентной среды кожа-жир-мышцы биологической ткани в медицинских приложениях и т.д.
Известен радиометрический измеритель коэффициента отражения, выбранный в качестве прототипа [Пат. 2439595 РФ, G01R 29/08. Радиометрический измеритель коэффициента отражения / Филатов А.В., Убайчин А.В., Розина Е.И. - Заявка 2010 132 764/28. - Приоритет от 04.08.2010. - БИ. 2012. №1], в состав которого входят (фиг. 1) антенна 1, первый 2 и второй 4 направленные ответвители, СВЧ- переключатель 5, генератор шума 6, источник тока 7. Измерительный канал состоит из радиометрического приемника 8, синхронного фильтра низких частот 9, фильтра высоких частот 10, компаратора 11, блока управления 12, с первого выхода которого сигнал поступает на выходную шину 13.
Опорный сигнал генератора шума 6 через СВЧ- переключатель 5 поступает на вторые входы идентичных направленных ответвителей. Включение первого 2 и второго 4 направленных ответвителей выполнено так, что для первого ответвителя сигнал генератора шума поступает на антенну 1, для второго - на вход радиометрического приемника 8. Опорный сигнал вырабатывается полупроводниковым генератором шума с применением лавинно-пролетного диода, через активную зону которого протекает ток источника 7. СВЧ-переключатель 5 состоит из трех высокочастотных ключей. Переключатель работает в режиме селектора. В зависимости от управляющих сигналов коммутируется только один ключ и тем самым сигнал генератора шума поступает только на один из трех выходов СВЧ- переключателя. В промежутки времени, когда сигнал генератора шума не должен поступать в направленные ответвители, через третий ключ СВЧ-переключателя выход генератора шума коммутируется на согласованную нагрузку 3.
На входе измерительного канала установлен радиометрический широкополосный приемник 8 с линейной передаточной характеристикой, включающий высокочастотный усилитель, полосовой фильтр, квадратичный детектор, выделяющий огибающую сигналов модуляции, усилитель низких частот. Следующий элемент измерительного канала, синхронный фильтр низких частот 9 производит предварительную фильтрацию сигнала, уменьшает флуктуационную компоненту в продетектированной огибающей и тем самым исключает перегрузку компаратора 11. Фильтр высоких частот 10 собран по схеме однозвенного фильтра первого порядка (представляет собой разделительную CR-цепь) с частотой среза много меньшей частоты модуляции в радиометре, и предназначен для устранения в сигнале постоянной составляющей. В результате на выходе фильтра выделяется переменная составляющая сигнала с минимальными искажениями формы импульсов.
В измерителе синхронно выполняются два вида импульсной модуляции: амплитудная и широтная. Для этого в цифровом блоке управления 12 формируются два управляющих логических сигнала с длительностями tаим и tшим. Сигнал для амплитудно-импульсной модуляции длительностью tаим имеет форму меандра, сигнал для широтно-импульсной модуляции длительностью tшим изменяется от нуля до tаим. Модуляции подвергается сигнал генератора шума с эффективной температурой шумов Tгш. Автоматической регулировкой длительности широтного сигнала в измерителе настраивается нулевой баланс на входе радиометрического приемника:
Figure 00000001
где β - коэффициент переходного ослабления направленного ответвите-ля, R - коэффициент отражения по мощности в месте приложения антенны к объекту исследования; k - постоянная Больцмана; Δf - полоса рабочих частот измерителя. В это равенство не входят сигналы, первый из которых поступает через антенну от объекта исследования, а второй формируется из собственных шумов измерителя. Они не подвергаются модуляции и в ходе дальнейшей последетекторной обработки исключаются.
Из (1) определяем коэффициент отражения на границе антенны с объектом, который связан с длительностью широтно-импульсного сигнала линейным соотношением:
Figure 00000002
Когда измеритель сбалансирован на измерения не влияют изменения коэффициента передачи радиометрического приемника (нулевой баланс) и его показания не зависят от дрейфа и низкочастотных флуктуаций сигнала генератора шума. Основное требование к этому сигналу заключается в том, что он должен сохранять свои параметры на периоде амплитудно-импульсной модуляции.
При выводе (2) использовался метод абстрагирования, когда элементы, используемые во входном узле измерителя, такие как антенна, направленные ответвители, считались идеальными и пренебрегались потери, возникающие в соединении антенны с направленным отвевителем. Поэтому, к достоинству данной схемы измерителя коэффициента отражения (прототипа) можно отнести то, что после изготовления он не требует калибровки, а к недостатку -использование во входном узле прецизионных элементов (ответвители с высокой степенью направленности, соединение антенны с ответвителем с низкими потерями, широкополосную антенну с высоким коэффициентом полезного действия). Снижение требований к узлам приведет к росту погрешности. К другому недостатку можно отнести требование высокой идентичности двух направленных ответвителей в широкой полосе частот.
Предлагаемым изобретением решается задача упрощения устройства и повышение точности измерений с учетом реальных характеристик используемых элементов во входном тракте измерителя.
Для достижения этого технического результата в радиометрический измеритель коэффициента отражения, содержащий антенну, подключенную к первому входу направленного ответвителя, последовательно соединенные радиометрический приемник, синхронный фильтр низких частот, фильтр высоких частот, компаратор, блок управления, причем второй вход компаратора соединен с общей шиной радиометра, первый выход блока управления является выходной шиной радиометра, его второй выход подключен к управляющему входу синхронного фильтра низких частот и объединен с управляющим входом СВЧ- переключателя, вход которого подключен к последовательно соединенным источнику тока и генератору шума, а первый и второй его выходы соединены соответственно с согласованной нагрузкой и вторым входом направленного ответвителя, введен регулируемый аттенюатор, входом подключенный к третьему выходу СВЧ- переключателя, а выходом - к третьему входу направленного ответвителя, выход которого соединен с входом радиометрического приемника.
На фиг. 1 показана структурная схема прототипа.
На фиг. 2 представлена структурная схема предлагаемого измерителя коэффициента отражения.
На фиг. 3 приведена упрощенная схема входного блока измерителя с параметрами элементов входящих в него узлов.
В состав радиометрического измерителя коэффициента отражения входят (фиг. 2) антенна 1, направленный ответвитель 2, СВЧ-переключатель 5 не отражающего типа, генератор шума 6, источник тока 7. Измерительный канал состоит из приемника 8, синхронного фильтра низких частот 9, фильтра высоких частот 10, компаратора 11, блока управления 12, с первого выхода которого сигнал поступает на выходную шину 13.
Сигнал генератора шума 6 через СВЧ- переключатель 5 проходит на второй и третий входы направленного ответвителя. На второй вход непосредственно, а на третий вход через регулируемый аттенюатор 14. Аттенюатор введен в измеритель для настройки его передаточной характеристики в процессе калибровки, которая будет описана ниже.
Ответвитель противонаправленного типа имеет симметричную структуру. При поступлении сигнала генератора шума на вход 2 ответвителя, далее этот сигнал распространяется в сторону антенны. В это время вход 3 ответвителя согласован на выходном сопротивлении аттенюатора. Если сигнал генератора шума через аттенюатор 14 поступает на вход 3 направленного ответвителя, далее он распространяется в сторону радиометрического приемника. При этом другой вход ответвителя (вход 2) согласован на выходном сопротивлении СВЧ-переключателя не отражающего типа.
Измерительный канал и блок управления измерителя полностью идентичны прототипу.
На фиг. 3 приведена упрощенная структурная схема входного блока измерителя коэффициента отражения, на которой нанесены параметры входящих в блок узлов, учитывающие конечную направленность ответвителя, потери в соединении антенны с направленным ответвителем и в самой антенне аппликаторного типа, расположенной непосредственно на объекте исследования. Эти элементы вносят основную погрешность в измерения.
Принцип работы измерителя, также, как и в прототипе, заключается в синхронном выполнении двух видов импульсной модуляции: амплитудной и широтной. В результате, в измерителе устанавливается нулевой баланс, определяемый соотношением:
Figure 00000003
где β и β1 - коэффициенты переходного ослабления противонаправленного ответвителя при поступлении сигнала генератора шума Тгш из основного канала во вспомогательный в прямом и обратном направлениях, β>β1 (для идеального направленного ответвителя β1=0); α - коэффициент затухания сигнала в линии, соединяющей антенну с направленным ответвителем, равен единице в случае отсутствия потерь в линии и нулю при полном ослаблении сигнала; η - коэффициент полезного действия антенны, характеризующий возникающие в ней активные потери; γ - коэффициент ослабления сигнала генератора шума в аттенюаторе.
Откуда коэффициент отражения в месте приложения антенны к объекту исследования равен:
Figure 00000004
В ходе анализа равенства (4) установлено, что максимальные погрешности измерения R возникают на краях диапазона. Причем, для максимальной границы, то есть для R=1, погрешность имеет положительный знак, а для минимальной, R=0, - отрицательный.
Соответственно, с учетом погрешности коэффициент отражения на границах шкалы измерений будет равен:
Figure 00000005
Figure 00000006
Коэффициент затухания аттенюатора входит в (6) для R(1). Следовательно, настройкой γ (в процессе калибровки) можно получить R(1)=1, то есть устранить погрешность измерений для максимальной границы шкалы. Подставляя в (6) вместо R(1) единицу и решая равенство относительно коэффициента ослабления сигнала аттенюатором получим:
Figure 00000007
Для примера, задаваясь значениями α=0,891 (- 0,5 дБ), η=0,95, β=0,1, β1=0,005 получим γ=0,694. Таким образом, настроив аттенюатор на полученное значение коэффициента ослабления сигнала генератора шума, тем самым устраним погрешность в конце шкалы преобразования. Регулировка аттенюатора осуществляется в процессе калибровки. Для этого к антенне прикладывается идеальный отражатель (гладкий металлический лист) и длительность широтно-импульсного сигнала устанавливается равной длительности импульса амплитудно-импульсной модуляции, tшим=tаим. Регулировку производят до установления нулевого баланса на входе радиометрического приемника
Figure 00000008
который фиксируется на выходе компаратора 11. На этом выходе в момент наступления нулевого баланса будут случайные переходы между состояниями логического нуля и единицы.
Погрешность в начале шкалы преобразования имеет отрицательный знак, не зависит от у и, как следует из (5), определяется только отношением коэффициентов переходного ослабления ответвителя в прямом и обратном направлениях (степенью развязки в ответвителе). Модуль этого отношения равен:
Figure 00000009
Рассмотрим пример. Если принять погрешность в начале измерительной шкалы равной 0,1, тогда для двух значений β, равных 0,1 (- 10 дБ) и 0,05 (- 13 дБ) из (13) получим β1=0,0072 (- 21,43 дБ) и β1=0,0036 (- 24,45 дБ). Для другого значения погрешности, например, 0,05 при тех же значениях коэффициента переходного ослабления β, получим для β1 0,0036 и 0,0018, что соответственно составляет - 24,43 и- 27,47 дБ. Таким образом, погрешность в начале шкалы преобразования определяется величиной развязки в направленном ответвителе и при ее увеличении (уменьшении Pi) снижается.
В радиометрическом измерителе высокочастотные пассивные устройства выполнены на микрополосковых волноведущих структурах. СВЧ-переключатель создан с использованием выпускаемых фирмой NEC ключей на три направления (SP3T), таких как UPG2227T5F. В литературе достаточно полно описаны конструкции СВЧ-узлов, направленные ответвители, переключатели, полосовые фильтры и методы их расчетов [например, Мазепова О.И., Мещанов В.П., Прохорова Н.Н. и др. Под ред. Фельдштейна А.А. Справочник по элементам полосоковой техники. - М.: Связь, 1979. - 336 с.]. В приемнике применены транзисторные усилители.
Таким образом, в отличие от прототипа, схема предлагаемого радиометрического измерителя коэффициента отражения имеет более простую структуру (вместо двух идентичных направленных ответвителей используется один), упрощена конструкция. В измерителе выполняется одноточечная калибровка с использованием введенного в схему регулируемого аттенюатора, что позволяет свести погрешность в конце шкалы преобразования к нулю и тем самым повысить точность измерений.

Claims (1)

  1. Радиометрический измеритель коэффициента отражения, содержащий антенну, подключенную к первому входу направленного ответвителя, последовательно соединенные радиометрический приемник, синхронный фильтр низких частот, фильтр высоких частот, компаратор, блок управления, причем второй вход компаратора соединен с общей шиной радиометра, первый выход блока управления является выходной шиной радиометра, его второй выход подключен к управляющему входу синхронного фильтра низких частот и объединен с управляющим входом СВЧ-переключателя, вход которого подключен к последовательно соединенным источнику тока и генератору шума, а первый и второй его выходы соединены соответственно с согласованной нагрузкой и вторым входом направленного ответвителя, отличающийся тем, что в измеритель введен регулируемый аттенюатор, входом подключенный к третьему выходу СВЧ-переключателя, а выходом - к третьему входу направленного ответвителя, выход которого соединен с входом радиометрического приемника.
RU2017140736A 2017-11-22 2017-11-22 Радиометрический измеритель коэффициента отражения в широкой полосе частот RU2675670C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017140736A RU2675670C1 (ru) 2017-11-22 2017-11-22 Радиометрический измеритель коэффициента отражения в широкой полосе частот

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017140736A RU2675670C1 (ru) 2017-11-22 2017-11-22 Радиометрический измеритель коэффициента отражения в широкой полосе частот

Publications (1)

Publication Number Publication Date
RU2675670C1 true RU2675670C1 (ru) 2018-12-21

Family

ID=64753592

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017140736A RU2675670C1 (ru) 2017-11-22 2017-11-22 Радиометрический измеритель коэффициента отражения в широкой полосе частот

Country Status (1)

Country Link
RU (1) RU2675670C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110661539A (zh) * 2019-09-20 2020-01-07 锐捷网络股份有限公司 一种数据接收电路、方法、装置、设备及介质
RU2715350C1 (ru) * 2019-05-30 2020-02-26 Виктор Вячеславович Стерлядкин Бескалибровочный радиометрический способ измерения комплексной диэлектрической проницаемости по отражению от поверхности раздела в безэховой камере

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1105832A1 (ru) * 1981-04-29 1984-07-30 Специальное Конструкторское Бюро Ордена Трудового Красного Знамени Института Радиотехники И Электроники Ан Ссср Модул ционный радиометр СВЧ -диапазона
SU1626210A1 (ru) * 1986-07-03 1991-02-07 Институт Радиотехники И Электроники Ан Ссср Модул ционный радиометр
RU2093845C1 (ru) * 1992-08-05 1997-10-20 Читинский институт природных ресурсов СО РАН Нулевой радиометр
RU2439595C1 (ru) * 2010-08-04 2012-01-10 Государственное образовательное учреждение высшего профессионального образования Томский государственный университет систем управления и радиоэлектроники (ТУСУР) Радиометрический измеритель коэффициента отражения

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1105832A1 (ru) * 1981-04-29 1984-07-30 Специальное Конструкторское Бюро Ордена Трудового Красного Знамени Института Радиотехники И Электроники Ан Ссср Модул ционный радиометр СВЧ -диапазона
SU1626210A1 (ru) * 1986-07-03 1991-02-07 Институт Радиотехники И Электроники Ан Ссср Модул ционный радиометр
RU2093845C1 (ru) * 1992-08-05 1997-10-20 Читинский институт природных ресурсов СО РАН Нулевой радиометр
RU2439595C1 (ru) * 2010-08-04 2012-01-10 Государственное образовательное учреждение высшего профессионального образования Томский государственный университет систем управления и радиоэлектроники (ТУСУР) Радиометрический измеритель коэффициента отражения

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2715350C1 (ru) * 2019-05-30 2020-02-26 Виктор Вячеславович Стерлядкин Бескалибровочный радиометрический способ измерения комплексной диэлектрической проницаемости по отражению от поверхности раздела в безэховой камере
CN110661539A (zh) * 2019-09-20 2020-01-07 锐捷网络股份有限公司 一种数据接收电路、方法、装置、设备及介质
CN110661539B (zh) * 2019-09-20 2021-09-14 锐捷网络股份有限公司 一种数据接收电路、方法、装置、设备及介质

Similar Documents

Publication Publication Date Title
RU2675670C1 (ru) Радиометрический измеритель коэффициента отражения в широкой полосе частот
CN109687087B (zh) 一种精确高效的太赫兹分支波导定向耦合器建模方法
CN104515907A (zh) 一种散射参数测试系统及其实现方法
RU2619841C1 (ru) Нулевой радиометр
CN110474631B (zh) 一种自适应射频滤波器及其自适应射频滤波系统
US10887027B2 (en) Dynamic passive intermodulation reference signal generator
CN109951244B (zh) 一种应用于信道模拟器的功率测量及射频接收增益控制方法
CN107370471B (zh) 一种pxi总线可编程放大/衰减器及其校准方法
RU2439594C1 (ru) Нулевой радиометр
RU2642475C2 (ru) Нулевой радиометр
CN108490333B (zh) 一种非线性s参数检验装置
CN108051655B (zh) 一种低驻波比高灵敏度毫米波检波器
RU2393502C1 (ru) Двухканальный нулевой радиометр
RU2460081C2 (ru) Многоканальный нулевой радиометр
CN104660186A (zh) 一种匹配电路确定方法及负载牵引系统
CN109412621B (zh) 一种四通道独立稳幅式本振功分装置和方法
CN203800907U (zh) 一种w波段脉冲行波管大功率合成系统
US11953535B2 (en) Active noise source design
CN218976678U (zh) 一种基于捷变频技术的并行超多通道辐射计接收机
CN216599558U (zh) 一种agc温度补偿电路
CN111628742A (zh) 一种毫米波信号幅度的稳定系统及方法
CN103929158A (zh) 一种w波段脉冲行波管大功率合成系统
CN217953684U (zh) 一种宽动态Ka频段直接检波辐射计接收机
RU2093845C1 (ru) Нулевой радиометр
RU2763694C1 (ru) Радиотермометр

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20201123