RU2675175C2 - Способ регулирования параметров компримированного газа и устройство для его осуществления - Google Patents

Способ регулирования параметров компримированного газа и устройство для его осуществления Download PDF

Info

Publication number
RU2675175C2
RU2675175C2 RU2016133146A RU2016133146A RU2675175C2 RU 2675175 C2 RU2675175 C2 RU 2675175C2 RU 2016133146 A RU2016133146 A RU 2016133146A RU 2016133146 A RU2016133146 A RU 2016133146A RU 2675175 C2 RU2675175 C2 RU 2675175C2
Authority
RU
Russia
Prior art keywords
pipe
compression
ejector
gas
compressor
Prior art date
Application number
RU2016133146A
Other languages
English (en)
Other versions
RU2016133146A3 (ru
RU2016133146A (ru
Inventor
Вячеслав Николаевич Игнатьев
Original Assignee
Вячеслав Николаевич Игнатьев
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Вячеслав Николаевич Игнатьев filed Critical Вячеслав Николаевич Игнатьев
Priority to RU2016133146A priority Critical patent/RU2675175C2/ru
Publication of RU2016133146A publication Critical patent/RU2016133146A/ru
Publication of RU2016133146A3 publication Critical patent/RU2016133146A3/ru
Application granted granted Critical
Publication of RU2675175C2 publication Critical patent/RU2675175C2/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Jet Pumps And Other Pumps (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

Группа изобретений относится к системам и способу выработки, распределения и потребления компримированного газа. В устройстве регулирования параметров компримированного газа, содержащем сжимающий элемент компрессора и регулирующий механизм, расположенный на трубопроводе компримированного газа по направлению его движения после сжимающего элемента компрессора и содержащий рабочий элемент, установленный с возможностью возвратно-поступательного перемещения, регулирующий механизм представляет собой эжектор. Технический результат - обеспечение возможности регулирования давления, выдаваемого потребителю компримированного газа, в широком диапазоне давлений с сохранением или увеличением количества компримированного газа в массовом выражении. 2 н. и 9 з.п. ф-лы, 16 ил.

Description

Группа изобретений относится к системам и способу выработки, распределения и потребления компримированного газа, в частности, сжатого воздуха, применяемым в централизованных газокомпрессорных станциях промышленных и газотранспортирующих предприятий, а также в отдельных компрессорных установках различного типа. Группа изобретений позволяет выдавать потребителю сжатый газ в необходимом объеме при широком диапазоне значений давления.
Известен способ регулирования расхода компримированного газа и устройство для его осуществления - патент РФ на изобретение №2246045, F04D 27/00, опубл. 10.02.2005.
Центробежный компрессор содержит рабочее колесо, радиальный безлопаточный диффузор, радиальный лопаточный диффузор и кольца регулирования проходного сечения. Способ регулирования заключается в изменении проходного сечения на выходе из рабочего колеса перед входом в радиальный лопаточный диффузор за счет перемещении регулирующих колец относительно рабочего колеса центробежного компрессора. Дополнительно производят изменение проходного сечения за радиальным лопаточным диффузором, при этом регулирование проходного сечения перед радиальным лопаточным диффузором и за радиальным лопаточным диффузором осуществляют поочередно.
Недостатком данного способа является то, что расход газа изменяется посредством перемещения регулирующих колец относительно рабочего колеса компрессора. При этом создается излишнее гидравлическое сопротивление на пути движения сжимаемого газа, что негативно сказывается на показателях энергоэффективности компрессора. Также недостатком способа по указанному патенту является то, что регулирование расхода сжатого газа происходит в меньшую сторону, что, для части потребителей, недопустимо. Поэтому применение указанного способа ограничено. Также данный способ подходит только для центробежных компрессоров и не может быть применен для компрессоров другого типа.
Известен также способ управления параметрами компримированного газа (патент РФ на изобретение №2570301, F04D 27/00, опубл. 10.12.2015), заключающийся в том, что в зависимости от необходимых параметров сжатого газа (давление, расход), выдаваемых потребителю, давление газа регулируется посредством дросселя, установленного после компрессора. Однако применение дросселя приводит к потере части энергии без получения полезного эффекта (совершения какой-либо работы, получения дополнительного объема сжатого газа).
В качестве прототипа выбран патент РФ на изобретение №2528768, F04D 27/00, опубл. 20.09.2014. Устройство регулирования параметров компримированного газа по этому патенту содержит сжимающий элемент компресса в виде турбины, из которого сжатый газ поступает в трубопровод, который далее соединен с регулирующим механизмом в виде перепускного клапана, рабочий элемент (в виде штока с нажимным диском, шток с диском вращения и т.п.) которого установлен с возможностью возвратно- поступательного перемещения. Недостатком данной конструкции является то, что из-за использования перепускного клапана происходит потеря части потенциальной энергии сжатого газа за счет превращения кинетической энергии движения молекул газа в тепловую энергию, которая не находит практического применения. Все вышеуказанное приводит к снижению энергоэффективности выработки сжатого газа. Недостатком устройства по упомянутому патенту является также наличие большого количества механического и электронного регулирования (впускной и/или перепускной клапаны, входной клапан, блок регулирования частоты вращения рабочего колеса компрессора), к тому же данное устройство может использоваться исключительно в компрессорах турбинного типа.
Способ регулирования параметров компримированного газа по упомянутому патенту осуществляется следующим образом. При снижении требуемого для потребителя давления сжатого газа осуществляют снижение частоты вращения и/или крутящего момента вала турбины. При этом происходит уменьшение давление газа на выходе из турбины, также уменьшается расход газа в массовом выражении. Для повышения давления сжатого газа осуществляют повышение частоты вращения и/или крутящего момента вала турбины. При этом происходит увеличение давления газа на выходе из турбины, также увеличивается расход газа в массовом выражении.
Недостатком данного способа регулирования расхода газа является то, что при уменьшении частоты вращения рабочего колеса компрессора, происходит не только снижение давления, но и снижение количества выдаваемого сжатого газа в массовом выражении. В некоторых случаях даже незначительное снижение расхода сжатого газа вызывает значительное снижение качества технологического продукта, например, в химических производствах недополучение необходимого количества сжатого газа приводит к увеличению удельного выхода нецелевого побочного продукта. Недостатком устройства по упомянутому патенту является наличие большого количества механического и электронного регулирования (впускной и/или перепускной клапаны, входной клапан, блок регулирования частоты вращения рабочего колеса компрессора), к тому же данное устройство может использоваться исключительно в компрессорах турбинного типа.
Способ регулирования параметров компримированного газа по упомянутому патенту имеет также недостаток, выраженный в том, что при снижении частоты и/или крутящего момента вала турбины происходит снижение электропотребления компрессорной установки, что негативно сказывается на других потребителях электроэнергии. Кроме того, из-за изменения частоты вращения и/или крутящего момента вала турбины меняется нагрузка на систему охлаждения компрессорной установки и компримированного газа, в результате чего потребитель может получать газ со слишком низкой температурой, при этом происходит быстрое старение узлов компрессорной установки.
Технический результат заявляемых изобретений - обеспечение возможности регулирования давления, выдаваемого потребителю компримированного газа, в широком диапазоне давлений с сохранением или увеличением количества компримированного газа в массовом выражении за счет установки эжектора после сжимающего элемента компрессора.
Технический результат достигается тем, что в устройстве регулирования параметров компримированного газа, содержащем сжимающий элемент компрессора и регулирующий механизм, расположенный на трубопроводе компримированного газа по направлению его движения после сжимающего элемента компрессора и содержащий рабочий элемент, установленный с возможностью возвратно-поступательного перемещения, регулирующий механизм представляет собой эжектор.
В первом случае эжектор имеет компрессионную трубу в форме цилиндра с прямой осью, входную трубу, представляющую собой рабочий элемент, обечайку и диффузор. Он может также дополнительно содержать патрубок подачи подсасываемого газа. При этом рабочий элемент выполнен с постоянной или меняющейся геометрией и установлен таким образом, что при его возвратно-поступательном перемещении расстояние между ним и компрессионной трубой является постоянным или переменным. Обечайка в месте соединения с компрессионной трубой имеет форму конуса. Угол конуса обечайки является величиной постоянной или переменной.
Во втором случае компрессионная труба эжектора имеет форму цилиндра с изогнутой осью, при этом эжектор содержит компрессионную трубу, патрубок подачи подсасываемого газа с запорной арматурой, представляющие собой рабочий элемент, установленный с возможностью возвратно-поступательного перемещения, и регулирующий привод.
Технический результат достигается также тем, что в способе регулирования параметров компримированного газа, заключающемся в том, что при снижении давления газа, требуемого для потребителя, относительно давления на выходе из сжимающего элемента компрессора осуществляют перемещение рабочего элемента регулирующего механизма до поступления подсасываемого газа в компрессионную трубу, а при повышении давления газа, требуемого для потребителя, относительно давления на выходе из сжимающего элемента компрессора осуществляют перемещение рабочего элемента регулирующего механизма до уменьшения поступления подсасываемого газа в компрессионную трубу, вплоть до полного его прекращения.
При этом при использовании эжектора в первом случае при снижении давления газа, требуемого для потребителя, относительно давления на выходе из сжимающего элемента компрессора рабочий элемент перемещают до получения зазора между ним и компрессионной трубой, а при повышении давления газа, требуемого для потребителя, относительно давления на выходе из сжимающего элемента компрессора рабочий элемент перемещают вплоть до полного устранения зазора.
А при использовании эжектора во втором случае при снижении давления газа, требуемого для потребителя, относительно давления на выходе из сжимающего элемента компрессора рабочий элемент перемещают с уменьшением расстояния между точкой врезки патрубка подачи подсасываемого газа в компрессионную трубу и началом компрессионной трубы и открывают запорную арматуру, а при повышении давления газа, требуемого для потребителя, относительно давления на выходе из сжимающего элемента компрессора рабочий элемент перемещают с увеличением расстояния между точкой врезки патрубка подачи подсасываемого газа в компрессионную трубу и началом компрессионной трубы и закрывают запорную арматуру.
Сущность технического решения поясняется чертежами.
Фиг. 1 - устройство регулирования параметров газа (давления, расхода) с помощью эжектора, установленное после сжимающего элемента компрессора.
Фиг. 2 - эжектор в разрезе с прямой образующей компрессионной трубы и патрубком подачи подсасываемого газа.
Фиг. 3 - эжектор в разрезе с прямой образующей компрессионной трубы без патрубка подачи подсасываемого газа.
Фиг. 4 - эжектор в разрезе с изогнутой образующей компрессионной трубы и патрубком подачи подсасываемого газа, с установленной на патрубке запорно-регулирующей арматурой.
Фиг. 5 - эжектор в разрезе с прямой образующей компрессионной трубы и патрубком подачи подсасываемого газа с небольшим углом конусности входной трубы без зазора между входной и компрессионной трубами.
Фиг. 6 - эжектор в разрезе с прямой образующей компрессионной трубы и патрубком подачи подсасываемого газа с большим углом конусности входной трубы без зазора между входной и компрессионной трубами.
Фиг. 7 - эжектор в разрезе с прямой образующей компрессионной трубы и патрубком подачи подсасываемого газа с небольшим углом конусности входной трубы с зазором между входной и компрессионной трубами.
Фиг. 8 - эжектор в разрезе с прямой образующей компрессионной трубы и патрубком подачи подсасываемого газа с большим углом конусности входной трубы с зазором между входной и компрессионной трубами.
Фиг. 9 - эжектор в разрезе с прямой образующей компрессионной трубы без патрубка подачи подсасываемого газа с небольшим углом конусности входной трубы без зазора между входным и компрессионной трубами.
Фиг. 10 - эжектор в разрезе с прямой образующей компрессионной трубы без патрубка подачи подсасываемого газа с большим углом конусности входной трубы без зазора между входным и компрессионной трубами.
Фиг. 11 - эжектор в разрезе с прямой образующей компрессионной трубы без патрубка подачи подсасываемого газа с небольшим углом конусности входной трубы с зазором между входным и компрессионной трубами.
Фиг. 12 - эжектор в разрезе с прямой образующей компрессионной трубы без патрубка подачи подсасываемого газа с большим углом конусности входной трубы с зазором между входной и компрессионной трубами.
Фиг. 13 - входная труба с изменяющейся геометрией для эжектора с компрессионной трубой с прямой образующей.
Фиг. 14 - входная труба с неизменяющейся геометрией для эжектора с компрессионной трубой с прямой образующей.
Фиг. 15 - эжектор в разрезе с компрессионной трубой с изогнутой образующей и патрубком подачи подсасываемого газа, содержащим запорно-регулирующую арматуру, со значительным расстоянием от точки врезки патрубка и входным концом компрессионной трубы.
Фиг. 16 - эжектор в разрезе с компрессионной трубой с изогнутой образующей и патрубком подачи подсасываемого газа, содержащим запорно-регулирующую арматуру, с уменьшенным расстоянием от точки врезки патрубка и входным концом компрессионной трубы.
На Фиг. 1 изображен сжимающий элемент 1 компрессора (для поршневых компрессоров - цилиндр с поршнем, для турбинных компрессоров - турбина, для винтовых компрессоров - винтовой блок, для спиральных компрессоров - спиральные кольца, для мембранных компрессоров - мембраны и т.д.), соединенный с трубопроводом 2. Другой конец трубопровода 2 соединен с эжектором 3. Эжектор 3 другой стороной связан с трубопроводом 4 подачи сжатого газа потребителю.
На Фиг. 2 представлено схематичное изображение эжектора 3 в разрезе, содержащего входной трубопровод 5, соединяющийся с трубопроводом 2. Входной трубопровод 5 установлен в обечайке 6 с возможностью возвратно-поступательного перемещения с помощью регулирующего привода 7 (электродвигатель с зубчатой передачей, многопозиционный соленоид, зубчатая передача с ручным, пневматическим или электромеханическим приводом и т.п.). К обечайке 6 присоединен патрубок 8 для поступления подсасываемого газа. Обечайка 6 соединена с входным концом 9 компрессионной трубы 10, выходной конец 11 которой соединен с входным концом 12 диффузора 13. Выходной конец 14 диффузора 13 соединен с входным трубопроводом 4 подачи сжатого газа к потребителю.
На Фиг. 3 представлено схематичное изображение эжектора 3 в разрезе, содержащего входной трубопровод 5, установленный в конической обечайке 6, и не имеющий патрубка подачи подсасываемого газа. На Фиг. 4 представлено схематичное изображение эжектора 3 в разрезе, содержащего компрессионную трубу 10 в форме цилиндра с изогнутой образующей. В компрессионную трубу 10 в точке врезки 15 вставлен патрубок 8 для поступления подсасываемого газа с запорной арматурой 16 (например, шаровой кран, дисковая задвижка, поворотный клапан и пр.). Компрессионная труба 10 имеет входной конец 9 и выходной конец 11.
На Фиг. 4 представлено схематичное изображение эжектора 3 в разрезе, содержащего входной конец 9 компрессионной трубы 10, в средней части которого в точке врезки 15 установлен патрубок подачи подсасываемого воздуха 8, на котором установлена запорно-регулирующая арматура 16, изменяющий свое положение при воздействии регулирующего привода 7 (электродвигатель с зубчатой передачей, многопозиционный соленоид, зубчатая передача с ручным, пневматическим или электромеханическим приводом и т.п.) относительно входного конца 9 и выходного конца 11 компрессионной трубы 10.
На Фиг. 5 представлено схематичное изображение эжектора 3 в разрезе, содержащего входной трубопровод с небольшим углом конусности 5, соединяющийся с трубопроводом 2. Входной трубопровод 5 установлен в обечайке 6 с возможностью возвратно-поступательного перемещения с помощью регулирующего привода 7 (электродвигатель с зубчатой передачей, многопозиционный соленоид, зубчатая передача с ручным, пневматическим или электромеханическим приводом и т.п.). К обечайке 6 присоединен патрубок 8 для поступления подсасываемого газа. Обечайка 6 соединена с входным концом 9 компрессионной трубы 10, выходной конец 11 которой соединен с входным концом 12 диффузора 13. Зазор между входной трубой 5 и входным концом 9 компрессионной трубы 10 незначительный. Выходной конец 14 диффузора 13 соединен с входным трубопроводом 4 подачи сжатого газа к потребителю.
На Фиг. 6 представлено схематичное изображение эжектора 3 в разрезе, содержащего входной трубопровод с большим углом конусности 5, соединяющийся с трубопроводом 2. Входной трубопровод 5 установлен в обечайке 6 с возможностью возвратно-поступательного перемещения с помощью регулирующего привода 7 (электродвигатель с зубчатой передачей, многопозиционный соленоид, зубчатая передача с ручным, пневматическим или электромеханическим приводом и т.п.). К обечайке 6 присоединен патрубок 8 для поступления подсасываемого газа. Обечайка 6 соединена с входным концом 9 компрессионной трубы 10, выходной конец 11 которой соединен с входным концом 12 диффузора 13. Зазор между входной трубой 5 и входным концом 9 компрессионной трубы 10 незначительный. Выходной конец 14 диффузора 13 соединен с входным трубопроводом 4 подачи сжатого газа к потребителю.
На Фиг. 7 представлено схематичное изображение эжектора 3 в разрезе, содержащего входной трубопровод с небольшим углом конусности 5, соединяющийся с трубопроводом 2. Входной трубопровод 5 установлен в обечайке 6 с возможностью возвратно-поступательного перемещения с помощью регулирующего привода 7 (электродвигатель с зубчатой передачей, многопозиционный соленоид, зубчатая передача с ручным, пневматическим или электромеханическим приводом и т.п.). К обечайке 6 присоединен патрубок 8 для поступления подсасываемого газа. Обечайка 6 соединена с входным концом 9 компрессионной трубы 10, выходной конец 11 которой соединен с входным концом 12 диффузора 13. Зазор между входной трубой 5 и входным концом 9 компрессионной трубы 10 значительный. Выходной конец 14 диффузора 13 соединен с входным трубопроводом 4 подачи сжатого газа к потребителю.
На Фиг. 8 представлено схематичное изображение эжектора 3 в разрезе, содержащего входной трубопровод с большим углом конусности 5, соединяющийся с трубопроводом 2. Входной трубопровод 5 установлен в обечайке 6 с возможностью возвратно-поступательного перемещения с помощью регулирующего привода 7 (электродвигатель с зубчатой передачей, многопозиционный соленоид, зубчатая передача с ручным, пневматическим или электромеханическим приводом и т.п.). К обечайке 6 присоединен патрубок 8 для поступления подсасываемого газа. Обечайка 6 соединена с входным концом 9 компрессионной трубы 10, выходной конец 11 которой соединен с входным концом 12 диффузора 13. Зазор между входной трубой 5 и входным концом 9 компрессионной трубы 10 значительный. Выходной конец 14 диффузора 13 соединен с входным трубопроводом 4 подачи сжатого газа к потребителю.
На Фиг. 9 представлено схематичное изображение эжектора 3 в разрезе, содержащего входной трубопровод с небольшим углом конусности 5, соединяющийся с трубопроводом 2. Входной трубопровод 5 установлен в обечайке 6 с возможностью возвратно-поступательного перемещения с помощью регулирующего привода 7 (электродвигатель с зубчатой передачей, многопозиционный соленоид, зубчатая передача с ручным, пневматическим или электромеханическим приводом и т.п.). К обечайке 6 присоединен патрубок 8 для поступления подсасываемого газа. Зазор между входной трубой 5 и входным концом 9 компрессионной трубы 10 незначительный. Обечайка 6 соединена с входным концом 9 компрессионной трубы 10, выходной конец 11 которой соединен с входным концом 12 диффузора 13. Выходной конец 14 диффузора 13 соединен с входным трубопроводом 4 подачи сжатого газа к потребителю.
На Фиг. 10 представлено схематичное изображение эжектора 3 в разрезе, содержащего входной трубопровод с большим углом конусности 5, соединяющийся с трубопроводом 2. Входной трубопровод 5 установлен в обечайке 6 с возможностью возвратно-поступательного перемещения с помощью регулирующего привода 7 (электродвигатель с зубчатой передачей, многопозиционный соленоид, зубчатая передача с ручным, пневматическим или электромеханическим приводом и т.п.). К обечайке 6 присоединен патрубок 8 для поступления подсасываемого газа. Обечайка 6 соединена с входным концом 9 компрессионной трубы 10, выходной конец 11 которой соединен с входным концом 12 диффузора 13. Зазор между входной трубой 5 и входным концом 9 компрессионной трубы 10 незначительный. Выходной конец 14 диффузора 13 соединен с входным трубопроводом 4 подачи сжатого газа к потребителю.
На Фиг. 11 представлено схематичное изображение эжектора 3 в разрезе, содержащего входной трубопровод с небольшим углом конусности 5, соединяющийся с трубопроводом 2. Входной трубопровод 5 установлен в обечайке 6 с возможностью возвратно-поступательного перемещения с помощью регулирующего привода 7 (электродвигатель с зубчатой передачей, многопозиционный соленоид, зубчатая передача с ручным, пневматическим или электромеханическим приводом и т.п.). К обечайке 6 присоединен патрубок 8 для поступления подсасываемого газа. Обечайка 6 соединена с входным концом 9 компрессионной трубы 10, выходной конец 11 которой соединен с входным концом 12 диффузора 13. Зазор между входной трубой 5 и входным концом 9 компрессионной трубы 10 значительный. Выходной конец 14 диффузора 13 соединен с входным трубопроводом 4 подачи сжатого газа к потребителю.
На Фиг. 12 представлено схематичное изображение эжектора 3 в разрезе, содержащего входной трубопровод с большим углом конусности 5, соединяющийся с трубопроводом 2. Входной трубопровод 5 установлен в обечайке 6 с возможностью возвратно-поступательного перемещения с помощью регулирующего привода 7 (электродвигатель с зубчатой передачей, многопозиционный соленоид, зубчатая передача с ручным, пневматическим или электромеханическим приводом и т.п.). К обечайке 6 присоединен патрубок 8 для поступления подсасываемого газа. Обечайка 6 соединена с входным концом 9 компрессионной трубы 10, выходной конец 11 которой соединен с входным концом 12 диффузора 13. Зазор между входной трубой 5 и входным концом 9 компрессионной трубы 10 значительный. Выходной конец 14 диффузора 13 соединен с входным трубопроводом 4 подачи сжатого газа к потребителю.
На Фиг. 13 представлено схематичное изображение входной трубы с изменяющейся геометрией 5, позволяющей регулировать зазор между ним и входным концом компрессионной трубы за счет своего перемещения вдоль оси и за счет изменения своей геометрии.
На Фиг. 14 представлено схематичное изображение входной трубы с неизменяющейся геометрией 5, позволяющей регулировать зазор между ним и входным концом компрессионной трубы за счет своего перемещения вдоль оси.
На Фиг. 15 представлено схематичное изображение эжектора 3 в разрезе, содержащего входной конец 9 компрессионной трубы 10, в средней части которого в точке врезки 15 установлен патрубок подачи подсасываемого воздуха 8, на котором установлена запорно-регулирующая арматура 16, изменяющий свое положение при воздействии регулирующего привода 7 (электродвигатель с зубчатой передачей, многопозиционный соленоид, зубчатая передача с ручным, пневматическим или электромеханическим приводом и т.п.) относительно входного конца 9 и выходного конца 11, с небольшим расстоянием между точкой врезки 15 и входным концом 9 компрессионной трубы 10.
На Фиг. 16 представлено схематичное изображение эжектора 3 в разрезе, содержащего входной конец 9 компрессионной трубы 10, в средней части которого в точке врезки 15 установлен патрубок подачи подсасываемого воздуха 8, на котором установлена запорно-регулирующая арматура 16, изменяющий свое положение при воздействии регулирующего привода 7 (электродвигатель с зубчатой передачей, многопозиционный соленоид, зубчатая передача с ручным, пневматическим или электромеханическим приводом и т.п.) относительно входного конца 9 и выходного конца 11, с большим расстоянием между точкой врезки 15 и входным концом 9 компрессионной трубы 10.
Регулирование параметров компримированного газа осуществляется следующим образом.
Если давление компримированного газа, прошедшего через сжимающий элемент 1, превышает требуемое для потребителя (группы потребителей) значение, регулирующий привод 7 в виде электродвигателя с зубчатой передачей, многопозиционного соленоида, зубчатой передачи с ручным, пневматическим или электромеханическим приводом приводят в действие в случае, перемещает регулирующий элемент (в первом случае -для эжектора с компрессионной трубой с прямой образующей - входная труба 5, во втором случае - для эжектора с компрессионной трубой с изогнутой образующей - патрубок 8 и запорная арматура 16). При перемещении рабочего элемента (Фиг. 13, Фиг. 14) эжектора с компрессионной трубой с прямой образующей (Фиг. 2, Фиг. 3) образуется зазор между входной трубой 5 (регулирующим элементом) и входным концом 9 компрессионной трубы 10 (Фиг. 7, Фиг. 8, Фиг. 11, Фиг. 12). При перемещении рабочего элемента (патрубка 8 с запорной арматурой 16) эжектора с компрессионной трубой с изогнутой образующей (Фиг. 4) уменьшается расстояние между точкой врезки 15 патрубка 8 и входным концом 9 компрессионной трубы 10 (Фиг. 15) и открывается запорная арматура 16. Ив первом, и во втором случае при перемещении регулирующего элемента в компрессионную трубу 10 начинает поступать подсасываемый газ. В компрессионной трубе происходит перемешивание и выравнивание параметров двух потоков газа. В результате газ, который прошел через сжимающий элемент 1 компрессора, отдает часть своей энергии подсасываемому газу. К моменту достижения выходного конца 11 компрессионной трубы 10 два потока газа становятся одним потоком с общими параметрами (давлением и расходом).
Если давление компримированного газа, прошедшего через сжимающий элемент 1, превышает требуемое для потребителя (группы потребителей) значение, регулирующий привод 7 в виде электродвигателя с зубчатой передачей, многопозиционного соленоида, зубчатой передачи с ручным, пневматическим или электромеханическим приводом приводят в действие в обратном направлении. В этом случае регулирующий привод 7 перемещает регулирующий элемент (в первом случае - для эжектора с компрессионной трубой с прямой образующей - входная труба 5, во втором случае - для эжектора с компрессионной трубой с изогнутой образующей - патрубок 8 и запорная арматура 16). При перемещении рабочего элемента (Фиг. 13, Фиг. 14) эжектора с компрессионной трубой с прямой образующей (Фиг. 2, Фиг. 3) зазор между входной трубой 5 (регулирующим элементом) и входным концом 9 компрессионной трубы 10 уменьшается (Фиг. 5, Фиг. 6, Фиг. 9, Фиг. 10). При перемещении рабочего элемента (патрубка 8 с запорной арматурой 16) эжектора с компрессионной трубой с изогнутой образующей (Фиг. 4) увеличивается расстояние между точкой врезки 15 патрубка 8 и входным концом 9 компрессионной трубы 10 (Фиг. 16) и закрывается запорная арматура 16. И в первом, и во втором случае при перемещении регулирующего элемента (для эжектора с компрессионной трубой с прямой образующей 10 - патрубок 8, для эжектора с компрессионной трубой с изогнутой образующей 10 - патрубок 8 и запорная арматура 16) поступление подсасываемого газа в компрессионную трубу 10 снижается, вплоть до полного прекращения.
Проведенные испытания показали эффективность использования предлагаемой конструкции для регулирования параметров компримированного газа (см. таблицы 1 и 2).
Figure 00000001
Как видно из таблицы, снижение давления с помощью эжектора на 10%, дает возможность получить компримированного газа на 6% больше, снижение давления компримированного газа с помощью эжектора на 40% увеличивает количество компримированного газа на 26%, снижение давления компримированного газа с помощью эжектора на 60% увеличивает количество подаваемого потребителю компримированного газа на 46%.
Figure 00000002
Из таблицы 2 видно, что, используя эжектор для регулирования параметров компримированного газа, можно получать компримированный газ с меньшими энергозатратами.
Заявленное устройство регулирования параметров компримированного газа можно установить не только на вновь возводимых компрессорных станциях, но и на уже эксплуатируемых компрессорных станциях и индивидуальных компрессорах.
Испытания были проведены на действующей компрессорной станции, на которой установлены 5 компрессоров, суммарной электрической мощностью 4 МВт.
Проведенные испытания доказали достижение заявленного результата: обеспечена возможность регулирования давления, выдаваемого потребителю компримированного газа в широком диапазоне давлений с сохранением или увеличением количества компримированного газа в массовом выражении за счет установки эжектора после сжимающего элемента компрессора.

Claims (12)

1. Устройство регулирования параметров компримированного газа, содержащее сжимающий элемент компрессора и регулирующий механизм с рабочим элементом, расположенный на трубопроводе компримированного газа по направлению его движения после сжимающего элемента компрессора, где регулирующий элемент установлен с возможностью возвратно-поступательного перемещения, отличающееся тем, что регулирующий механизм представляет собой эжектор.
2. Устройство по п. 1, отличающееся тем, что компрессионная труба эжектора имеет форму цилиндра с прямой образующей.
3. Устройство по п. 1, отличающееся тем, что компрессионная труба эжектора имеет форму цилиндра с изогнутой образующей.
4. Устройство по п. 2, отличающееся тем, что эжектор содержит входную трубу, представляющую собой рабочий элемент, обечайку, регулирующий привод, компрессионную трубу и диффузор.
5. Устройство по п. 4, отличающееся тем, что эжектор дополнительно содержит патрубок подачи подсасываемого газа.
6. Устройство по п. 3, отличающееся тем, что эжектор содержит компрессионную трубу, патрубок подачи подсасываемого газа с запорной арматурой, представляющий собой рабочий элемент, установленный с возможностью возвратно-поступательного перемещения, и регулирующий привод.
7. Устройство по п. 4 или 5, отличающееся тем, что рабочий элемент выполнен с постоянной или меняющейся геометрией.
8. Устройство по п. 4 или 5, отличающееся тем, что рабочий элемент установлен таким образом, что при его возвратно-поступательном перемещении расстояние между ним и компрессионной трубой является постоянным или переменным.
9. Способ регулирования параметров компримированного газа, заключающийся в том, что при снижении давления газа, требуемого для потребителя, относительно давления на выходе из сжимающего элемента компрессора осуществляют перемещение рабочего элемента регулирующего механизма до поступления подсасываемого газа в компрессионную трубу, при повышении давления газа, требуемого для потребителя, относительно давления на выходе из сжимающего элемента компрессора осуществляют перемещение рабочего элемента регулирующего механизма до уменьшения поступления подсасываемого газа в компрессионную трубу, вплоть до полного его прекращения.
10. Способ по п. 9, осуществляемый устройством по п. 2, отличающийся тем, что при снижении давления газа, требуемого для потребителя, относительно давления на выходе из сжимающего элемента компрессора рабочий элемент перемещают до получения зазора между ним и компрессионной трубой, а при повышении давления газа, требуемого для потребителя, относительно давления на выходе из сжимающего элемента компрессора рабочий элемент перемещают вплоть до полного устранения зазора.
11. Способ по п. 9, осуществляемый устройством по п. 3, отличающийся тем, что при снижении давления газа, требуемого для потребителя, относительно давления на выходе из сжимающего элемента компрессора рабочий элемент перемещают с уменьшением расстояния между точкой врезки патрубка подачи подсасываемого газа в компрессионную трубу и началом
компрессионной трубы и открывают запорную арматуру 17, а при повышении давления газа, требуемого для потребителя, относительно давления на выходе из сжимающего элемента компрессора рабочий элемент перемещают с увеличением расстояния между точкой врезки патрубка подачи подсасываемого газа в компрессионную трубу и началом компрессионной трубы и закрывают запорную арматуру.
RU2016133146A 2016-08-09 2016-08-09 Способ регулирования параметров компримированного газа и устройство для его осуществления RU2675175C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016133146A RU2675175C2 (ru) 2016-08-09 2016-08-09 Способ регулирования параметров компримированного газа и устройство для его осуществления

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016133146A RU2675175C2 (ru) 2016-08-09 2016-08-09 Способ регулирования параметров компримированного газа и устройство для его осуществления

Publications (3)

Publication Number Publication Date
RU2016133146A RU2016133146A (ru) 2018-02-12
RU2016133146A3 RU2016133146A3 (ru) 2018-07-26
RU2675175C2 true RU2675175C2 (ru) 2018-12-17

Family

ID=61227501

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016133146A RU2675175C2 (ru) 2016-08-09 2016-08-09 Способ регулирования параметров компримированного газа и устройство для его осуществления

Country Status (1)

Country Link
RU (1) RU2675175C2 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU717406A1 (ru) * 1978-03-20 1980-02-25 Научно-Исследовательский И Опытно- Конструкторский Институт Автоматизации Черной Металлургии Система защиты компрессора от помпажа
DE102008005354A1 (de) * 2008-01-21 2009-07-23 Man Turbo Ag Verfahren zur Regelung einer Strömungsmaschine
RU2528768C2 (ru) * 2010-04-20 2014-09-20 Атлас Копко Эрпауэр, Намлозе Веннотсхап Спосб регулирования компрессора
RU2570301C2 (ru) * 2010-09-09 2015-12-10 Сименс Акциенгезелльшафт Способ управления компрессором

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU717406A1 (ru) * 1978-03-20 1980-02-25 Научно-Исследовательский И Опытно- Конструкторский Институт Автоматизации Черной Металлургии Система защиты компрессора от помпажа
DE102008005354A1 (de) * 2008-01-21 2009-07-23 Man Turbo Ag Verfahren zur Regelung einer Strömungsmaschine
RU2528768C2 (ru) * 2010-04-20 2014-09-20 Атлас Копко Эрпауэр, Намлозе Веннотсхап Спосб регулирования компрессора
RU2570301C2 (ru) * 2010-09-09 2015-12-10 Сименс Акциенгезелльшафт Способ управления компрессором

Also Published As

Publication number Publication date
RU2016133146A3 (ru) 2018-07-26
RU2016133146A (ru) 2018-02-12

Similar Documents

Publication Publication Date Title
US10550768B2 (en) Intercooled cooled cooling integrated air cycle machine
US9200640B2 (en) Inlet guide vane for a compressor
US8079808B2 (en) Geared inlet guide vane for a centrifugal compressor
Thin et al. Design and performance analysis of centrifugal pump
WO2021114485A1 (zh) 一种磁悬浮空气压缩机防止喘振的结构
US11073085B2 (en) Intercooled cooling air heat exchanger arrangement
FI3857070T3 (fi) Öljyruiskutettu monivaiheinen kompressorilaite ja menetelmä sellaisen kompressorilaitteen ohjaamiseksi
CN105736393B (zh) 一种电动和汽轮双驱动的循环水泵
RU2675175C2 (ru) Способ регулирования параметров компримированного газа и устройство для его осуществления
US11959483B2 (en) Variable economizer injection position
CN102840136B (zh) 蒸汽驱动式压缩装置
CN109210125A (zh) 一种可调频自适应气流脉动衰减器
CN105195354A (zh) 一种多通道喷射器
MX338204B (es) Rotor de compresor supersonico y metodo para comprimir un fluido.
RU2352826C2 (ru) Центробежный гидравлический и воздушный насос-компрессор
US10962016B2 (en) Active surge control in centrifugal compressors using microjet injection
CN103967617A (zh) 涡轮螺旋桨发动机
CN206845241U (zh) 一种多级汽轮机的高压气缸
JP2016153639A (ja) 遠心圧縮機
RU2364914C1 (ru) Регулятор давления газа
CN216617967U (zh) 一种离心式压缩机进气系统
RU2246045C1 (ru) Способ регулирования расхода воздуха центробежного компрессора и устройство для его осуществления
RU214793U1 (ru) Двухсекционный центробежный компрессор
CN117167330A (zh) 离心压缩机及其控制方法
WO2013184042A2 (ru) Многоступенчатая турбомашина (варианты)

Legal Events

Date Code Title Description
HE9A Changing address for correspondence with an applicant
MM4A The patent is invalid due to non-payment of fees

Effective date: 20190103

NF4A Reinstatement of patent

Effective date: 20220118